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Abstract
It has long been a concern that performance measures of species distribution models 
react to attributes of the modeled entity arising from the input data structure rather 
than to model performance. Thus, the study of Allouche et al. (Journal of Applied 
Ecology, 43, 1223, 2006) identifying the true skill statistics (TSS) as being independent 
of prevalence had a great impact. However, empirical experience questioned the valid-
ity of the statement. We searched for technical reasons behind these observations. 
We explored possible sources of prevalence dependence in TSS including sampling 
constraints and species characteristics, which influence the calculation of TSS. We 
also examined whether the widespread solution of using the maximum of TSS for 
comparison among species introduces a prevalence effect. We found that the design 
of Allouche et al. (Journal of Applied Ecology, 43, 1223, 2006) was flawed, but TSS is 
indeed independent of prevalence if model predictions are binary and under the strict 
set of assumptions methodological studies usually apply. However, if we take realistic 
sources of prevalence dependence, effects appear even in binary calculations. 
Furthermore, in the widespread approach of using maximum TSS for continuous pre-
dictions, the use of the maximum alone induces prevalence dependence for small, but 
realistic samples. Thus, prevalence differences need to be taken into account when 
model comparisons are carried out based on discrimination capacity. The sources we 
identified can serve as a checklist to safely control comparisons, so that true discrimi-
nation capacity is compared as opposed to artefacts arising from data structure, spe-
cies characteristics, or the calculation of the comparison measure (here TSS).

K E Y W O R D S

Cohen’s kappa, model performance, predictive models, sample size, species distribution models

1  | INTRODUCTION

Measuring model performance (goodness) is a central issue in species 
distribution modeling (SDM, Guisan & Zimmermann, 2000) and pre-
dictive vegetation modeling (PVM, Franklin, 1995). There are three 
major tasks performance measures are used for: 1) comparing mod-
eling techniques, typically using one dataset and the same species 

with each technique (e.g., Jones, Acker, & Halpern, 2010; Zurell et al., 
2012), 2) comparing the performance of models of different spe-
cies with one or more modeling techniques using one dataset (e.g., 
Coetzee, Robertson, Erasmus, Van Rensburg, & Thuiller, 2009; Engler 
et al., 2013; Pliscoff, Luebert, Hilger, & Guisan, 2014), and 3) when 
models of the same species are tested on different datasets (e.g., 
Randin et al., 2006; Ribeiro, Somodi, & Čarni, 2016).
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In the first case, data properties are fixed and thus of less impor-
tance. Therefore, the actual prevalence in the data has no effect on the 
outcome of comparisons. On the contrary, when different species or 
prediction on different dataset is compared, characteristics of the data 
(including prevalence) may influence model performance.

Why is prevalence dependence a problem? If model goodness 
measures are used for tasks two and three, the intention is to com-
pare how well the models reflect the species’ environmental require-
ments (Elith & Graham, 2009; Robertson, Peter, Villet, & Ripley, 2003). 
Species with more distinct environmental requirements are expected 
to be modeled better (assuming that relevant predictors were included) 
compared to species with wide tolerance. If we want to assess the de-
gree the models reflect true environmental requirements (as many has 
aimed at), we do not want rarity to interfere. For example, we have a 
model of a species and we test its discrimination capacity on test site A 
and test site B (task 3), and we expect to receive similar discrimination 
level. If the two sites differ in prevalence and a prevalence-dependent 
measure is used, it will seem as if the model would have changed. It is 
similar when rating different species’ models (task 2).

In fact, improving models of rare species, so that they reflect the 
environmental background better, has been a central issue lately 
(Lomba et al., 2010; Williams et al., 2009; Zimmermann, Edwards, 
Moisen, Frescino, & Blackard, 2007). We admit that there is a ten-
dency that species with narrower tolerance are also less frequent, but 
it is not an absolute rule (Flather & Sieg, 2013; Kunin & Gaston, 1993). 
Besides autecological reasons, human activities may also account for a 
lower observed prevalence of a potentially common species.

Prevalence of different species may differ for two basic reasons: 
Either sampling points are fixed, but different species occur with dif-
ferent frequency, or presence information of species is independent 
because of a presence-only collection scheme, which is often true 
for datasets originating from museum collections (Elith & Leathwick, 
2007). It is difficult to imagine a project with real data, where each 
species has the same prevalence unless common species are resam-
pled to low prevalence. The latter would however mean information 
reduction, which would be unnecessary if measures would not depend 
on prevalence.

Model goodness measures relate to calibration and discrimination 
ability (Lawson, Hodgson, Wilson, & Richards, 2014). While calibra-
tion measures the model’s ability to match input data, discrimination 
reflects how well occurrences versus absences are found in indepen-
dent data. Indices for discrimination ability include one truly threshold 
independent option (AUC, Hanley & McNeil, 1982) and several ones, 
where the basic idea is to find a threshold for the calculations of the 
index (kappa, true skill statistics [TSS], F score, Cohen, 1960; Allouche, 
Tsoar, and Kadmon (2006); Powers, 2011 respectively). The values of 
the index are then compared either at a threshold corresponding to the 
maximum or according to an equality criterion (e.g., TPR = TNR also 
called ROC-based approach; Cantor, Sun, Tortolero-Luna, Richards-
Kortum, & Follen, 1999). Although AUC is widely applied, many agree 
that it tends to be overoptimistic (Lobo, Jiménez-Valverde, & Real, 
2008; Shabani, Kumar, & Ahmadi, 2016), and therefore, it is often 
complemented by another measure of model goodness. This second 

measure used to be maximum kappa (Araújo & Luoto, 2007; Davidson, 
Hamilton, Boyer, Brown, & Ceballos, 2009; Guo & Liu, 2010). However, 
worries have been voiced about kappa being prevalence dependent 
and thus potentially providing misleading information (McPherson, 
Jetz, & Rogers, 2004; Pontius & Millones, 2011). Lately, TSS has been 
applied instead (also in prestigious packages as BIOMOD, Thuiller, 
Lafourcade, Engler, & Araújo, 2009) as Allouche et al. (2006) claimed 
that it is insensitive to prevalence differences. Nonetheless, reaction 
of TSS has been observed in relation to prevalence differences in ac-
tual studies (Allouche et al., 2006; Hanspach, Kühn, Pompe, & Klotz, 
2010). Some other threshold dependent measures (F score, Drake, 
Randin, & Guisan, 2006; Powers, 2011) are also available, but their use 
is much more restricted then that of TSS. Please note that TSS exists 
under a wide variety of synonyms, typically used outside ecology (see 
also Wilks, 2011) except for the last one mentioned: Youden index 
(Youden, 1950), Peirce Skill Score (Peirce, 1884), Kuipers Skill Score 
(Murphy & Daan, 1985), Sum of Sensitivity and Specificity (SSS, Liu, 
White, & Newell, 2013). It is also noteworthy that TSS is most often 
applied in the form of maximum TSS over all possible probability cut-
offs (e.g., in the BIOMOD package) and advocated in reviews in this 
form (Liu, Berry, Dawson, & Pearson, 2005; Liu et al. 2016).

Motivated by the observed prevalence effects in TSS, we aimed 
at finding reasons, why such pattern may arise. We specifically set the 
following aims to:

•	 revisit Allouche et al. (2006) if their arguments (whether theoretical 
or simulation-based) appropriately prove that TSS is independent of 
prevalence

•	 explore possible manifestations of prevalence dependence in 
theory

•	 determine whether and how TSS is prevalence dependent
•	 search for the source of prevalence dependence of TSS experienced 
in practice.

2  | THEORETICAL CONSIDERATIONS

2.1 | A critique to the design of Allouche et al. (2006)

The true skill statistics is defined based on the components of the 
standard confusion matrix representing matches and mismatches be-
tween observations and predictions (Fielding & Bell, 1997; Table 1.).

True skill statistics is defined as

Where

The literature refers to TPR as true-positive rate or sensitivity, 
while to TNR as true-negative rate or specificity (Fielding & Bell, 1997). 

TSS=TPR+TNR−1,

TPR=
TP

TP+FN

TNR=
TN

TN+FP
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In the rare case, when predictions are binary, computation of the con-
fusion matrix is straightforward. If there are probabilistic predictions, 
the goodness measure relying on the contingency table is calculated 
by converting the probabilities into presence and absence predictions. 
This is usually carried out by carrying out such a conversion at evenly 
spaced values of the probability spectrum (e.g., 0.1, 0.2, …, 0.9). These 
values are termed cutoffs or thresholds.

Allouche et al. (2006) claim to have randomized their models; how-
ever, they only randomized their confusion matrix. They held the value 
of TPR and TNR constant. If TPR and TNR, or their sum, is held con-
stant, TSS cannot vary theoretically.

Allouche et al. (2006) set: TPR = TNR = 0.8 or TPR = 0.7 and 
TNR = 0.9 or the opposite way. Thus

TSS = TPR + TNR − 1 = 0.8 + 0.8 − 1 = 0.6
or TSS = TPR + TNR − 1 = 0.7 + 0.9 − 1 = 0.6
Therefore, whatever the prevalence, the result is 0.6, as it is also 

clear from Figure 1 in Allouche et al. (2006). The low-level variation 
in the TSS value in the figure is due to the constraint that numbers in 
the cells of the contingency table (including true-positive and true-
negative cases) have to be integer; thus, actual TPR/TNR may slightly 
differ from the theoretical values.

2.2 | Redefinition of prevalence dependence

As Allouche et al. (2006) did not appropriately prove that TSS is in-
dependent of prevalence and empirical experience indicates such 
an effect, there is a need to revisit prevalence dependence in TSS. 
The usual interpretation of prevalence dependence in distribution 
modeling (Lawson et al., 2014; Manel, Williams, & Ormerod, 2001; 
McPherson et al., 2004; Santika, 2011) is that the value of the index 
should be constant over prevalence ranges if model goodness is con-
stant. We follow this definition, but it should be mentioned that alter-
native definitions of prevalence dependence could be developed. For 
example, an index could be regarded as prevalence independent, if its 
range (i.e., maximum and minimum values) does not depend on prev-
alence (cf. independence of beta-diversity from alpha-  and gamma-
diversity; Jost, 2007).

The problem is how to measure model goodness exclusively with-
out the confounding effects arising from data structure and especially 

prevalence differences. Lawson et al. (2014) pointed out that there is 
a distinction whether a performance measure quantifies model cal-
ibration or discrimination. In line with their opinion and taking into 
account that TSS measures discrimination capacity, we are targeting 
this model feature in our considerations. Thus, we consider two mod-
els equally good if they are characterized by same rate of discrimi-
nation errors (error rates of FP and FN). We examine two types of 
influences on TSS: the discrimination capacity of the model (1 − e) and 
prevalence (π = P/N) in the data. In all our calculations, we fixed the 
total sample size (N); therefore, the ratio of presence observations and 
total number of observations (prevalence, π = P/N) only depends on 
the absolute number of presence observations (P = N*π). Therefore, if 
P is present in any equation leading to TSS, it also indicates prevalence 
dependence.

While the representation of e in the equations is thus desirable 
(TSS was designed to reflect that), if P or π is in the equation, then prev-
alence also matters and can confound discrimination effectiveness.

The majority of the currently available model goodness measures 
and especially Kappa and TSS rely on a dichotomic representation of 
site occupancy. Therefore, they actually reduce the problem to a dichot-
omic representation of habitat suitability: Each of the locations is either 
suitable or unsuitable for the organism. The fact that we have no actual 
information on this suitability has not been taken into account yet, even 
though many of the predictive models are targeting the mapping of 
this suitability. Nonetheless, all estimations have errors, which can arise 
if 1) the model does not precisely predict suitability (for example, be-
cause not all relevant variables were measured). This kind of error is the 
most commonly considered error type (Guisan & Zimmermann, 2000; 
Pearce & Ferrier 2000). Discrimination capacity measures are expected 

TABLE  1 Confusion matrix of matches and mismatches of 
predictions and observations

Observation

Prediction

1 0 Σ

1 True positives 
(TP)

False 
negatives 
(FN)

No. positive 
observations 
(P = π*N)

0 False positives 
(FP)

True negatives 
(TN)

N − P

Σ Number of 
positive 
predictions (S)

N − S Total number of 
observations (N)

F IGURE  1 Subcases of beta distribution with parameters 
defined in Table 6. The sampling of probability values for presence 
“observations” is carried out according to these curves in our 
simulations. The individual predicted probability values appear in 
our simulated predictions with such densities. Lines represent: a) 
quadratic, b) linear, c) square root, d) 1/16th power curve
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to reflect the degree of this error and this error only. However, as Hirzel 
and Le Lay (2008) have introduced, there is another possible source 
of error: 2) the observed pattern does not fully reflect the suitability 
pattern, for example, due to sink populations or other components of 
metapopulation dynamics. We assume that the two kinds of errors do 
not extinguish each other (or would do so under very specific condi-
tions only); therefore, we examine their cases separately.

2.3 | Binary considerations

Although less frequent in practice, we first examine the case when not 
only observations, but also predictions are binary. If the model good-
ness measure appears independent of prevalence in such a case, the 
second step is the examination whether any prevalence dependence 
appears if continuous predictions are considered.

We take the strategy of proceeding from simple cases toward 
complex ones. We assume that if prevalence dependence appears in a 
simple case, it is unlikely that it disappears in the corresponding more 
complex cases.

In case 1), we assume that the observed pattern coincides with 
the suitability. In such a case, the contingency table takes the form 
presented in Table 2.

Applying our definition of model goodness (i.e., the opposite of 
the level of error rates) to these equations, TSS is prevalence inde-
pendent, as its value can be calculated from the two error rates 
(e1 and e2) without using the prevalence value. This form of prevalence 
dependence is the usually considered and tested from Manel et al. 
(2001), McPherson et al. (2004), Santika (2011), Lawson et al. (2014). 
Prevalence dependence of kappa has been proved for this case with 
equal error rates (i.e., e1 = e2) by McPherson et al. (2004).

Let us examine case 2 now, when we disregard potential weak-
nesses of the models but allow misleading observations, that is, allow 
the observed distribution pattern to be different from the habitat 
suitability pattern. Such situation can arise, for example, from intense 
metapopulation dynamics, sink subpopulations, or a transient animal 

being difficult to spot in the habitat. Differences between the suitabil-
ity and observations can appear as a) missed presences, b) fallacious 
presences, and c) fallacious absences (Hirzel & Le Lay, 2008). The first 
two contribute to false-positive predictions, while the last one appears 
as false negative, although this may be mitigated by missed presences.

a.	 Firstly, we examine the case when there are missed presences only; 
that is, some of the presences are not detected even though the 
place is suitable and the species lives there. In the simplest case, 
the sampling error (i.e., the rate of missed presences denoted by e; 
Table 3) is constant, and thus, this error itself is independent from 
prevalence. (We do not miss more presences if the species is rare.)

Even if the level of error does not depend on prevalence directly, 
TSS does appear to depend on prevalence (π) according to the equations 
above. Therefore, TSS differences may arise for species with different π 
even though we fixed the rate of missed presences (constant e) and did 
not allow any other error source.

b.	 Secondly, let us consider fallacious absences (i.e., the species is not 
present even though the habitat is suitable) as the only source of 
error. As in metapopulation dynamics, we can assume that the num-
ber of false-positive cases is proportional to the number of suitable 
sites (i.e., the error rate is constant; Table 4.). From a mathematical 
point of view, this case is equivalent to the previous one.

c.	 Thirdly, let us examine when fallacious presences are present and 
there is no other source of error. There are two reasonable alterna-
tive assumptions regarding error rates:

i.	� Some proportion of presences is a fallacious presence. This is equiv-
alent to case 1, if e2 = 0. We have proven that TSS is prevalence 
independent in this case. (ii) The number of fallacious presences is 
proportional to the number of unsuitable sites (Table 5). In this case, 
TSS is prevalence dependent:

From Table 5, it follows that

Thus,

TPR=
TP

TP+FN
=1−e1

TNR=
TN

TN+FP
=1−e2

TSS=TPR+TNR−1=1−e1−e2

TPR=
TP

TP+FN
=1

TNR=
TN

TN+FP
=
N−S

N−P
=
N−P∕

(
1−e

)

N−P
=

(
1−e−π

) (
1−π

)

1−e

TSS=TPR+TNR−1=
N−P∕

(
1−e

)

N−P
=

(
1−e−π

) (
1−π

)

1−e

S = (P−eN)∕(1+e),

TPR=
TP

TP+FN
=
S

P
=

P−eN

P
(
1+e

) =
π−e

π
(
1+e

)

TABLE  2 Confusion matrix of matches and mismatches of 
predictions and observations assuming different rates of false-
negative and false-positive errors, e1 and e2

Observation

Prediction

1 0 Σ

1 TP = (1 − e1) P FN = e1P P = πN

0 FP = e2(N − P) TN = (1 − e2) (N − P) N − P

Σ S N − S N
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Our findings regarding the prevalence dependence of TSS is sum-
marized in Table 6.

2.4 | The case of continuous predictions

Having explored prevalence dependence of binary predictions, we 
examine whether binarization has any influence on prevalence de-
pendence. First of all, there is no need to examine cases, where 
there has been prevalence dependence discovered in the binary 
case, as continuous predictions are reduced to binary cases at regu-
lar cutoffs to provide a distribution of goodness values, from which 
usually the maximum is chosen. If there is already prevalence de-
pendence in the binary case, it is unlikely that repeated applica-
tion of the same principle would eliminate the effect. It was case 1, 
the most popular interpretation of prevalence dependence in fact 
(when the species is assumed to occupy suitable sites only), which 
showed no prevalence dependence. However, as detailed in the 
Introduction, empirical prevalence dependence has been observed. 
Therefore, we examine whether binarization induces such an effect.

We can formulate TPR and TNR as conditional probabilities given a 
binary prediction as already pointed out by Lawson et al. (2014):

where x denotes the predicted value.
If we have continuous probabilities as prediction, the equations 

are as follows:

where xc refers to the cutoff value corresponding to maximum 
TSS.

Let F1 and F0 denote the conditional distribution functions of pre-
dicted values conditional on the presence and absence of the species, 
subscripts refer to presence (1) and absence (0), respectively. The ex-
pected value of TPR, TNR, and TSS is as follows:

TNR=
TN

TN+FP
=1

TSS=TPR+TNR−1=
π−e

π
(
1+e

)

TPR=P (x = 1|species present)

TNR=P (x = 0|species absent)

TPR=P
(
x>xc|species present

)

TNR=P
(
x≤xc|species absent

)

E (TPR)=P
(
x>xc|species present

)
=1−P

(
x≤xc|species present

)

=1−F1
(
xc
)

TABLE  3 Contingency table when the model is assumed to be 
perfect, but there are missed presences in the observations. “e” 
denotes the rate of missed presences

Observation

Prediction

1 0 Σ

1 TP = (1 − e) S FN = 0 P = πN

0 FP = eS TN = (N − S) N − P

Σ S = P/(1 − e) N − S N

TABLE  4 Contingency table when the model is assumed to be 
perfect, but there are fallacious absences in the observations

Observation

Prediction

1 0 Σ

1 TP = P FN = 0 P

0 FP = eS TN = (N − S) N − P

Σ S = P/(1 − e) N − S N

TABLE  5 Contingency table when the model is assumed to be 
perfect, but there are fallacious presences and their amount is 
proportional to the number of unsuitable sites in the observations

Observation

Prediction

1 0 Σ

1 TP = P − e (N − S) = S FN = e (N − S) P

0 FP = 0 TN = N − P N − P

Σ S N − S N

Species occupy suitable sites only, and 
model goodness changes.

Species occupy unsuitable sites also, and model 
goodness is fixed (for our analysis). Binary 
predictions considered only. Source of species’ 
distribution difference:

Binary predictions
Continuous 
predictions

Missed 
presence

Fallacious 
absence

Fallacious 
presence

No Yes for small 
sample size, No 
for large sample 
size

Yes Yes Yes, except if 
the rate of 
fallacious 
presences is 
proportional to 
the number of 
unsuitable sites

TABLE  6  Is there prevalence 
dependence in TSS? Answers for cases 
examined in our study
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As usually the cutoff corresponding to the maximum value of TSS 
is used, we inspect the prevalence dependence of this measure. The 
maximum of the expected value of TSS is where the derivative is 0.

The derivatives of F0 and F1, that is, the density functions, will be 
referred to as f0 and f1; thus, TSS is maximal where

If the theoretical curves were known and the cutoff was based on 
them or any other a priori threshold setting method was chosen, TSS 
would indeed be prevalence independent. In practice, however, the 
cutoff is determined from the data. Due to this, the mean of TSS max-
ima will be higher than the expected value, because we only choose a 
maximum value other than the one corresponding to the theoretical 
cutoff if the former is higher. Thus, the mean of TSS maxima is a biased 
estimate of the theoretical TSS. The bias is due to the cumulative fre-
quency distribution being different from the theoretical distribution 
function. We have two theoretical distribution functions with two 
corresponding cumulative frequency functions. The theoretical distri-
bution function and the cumulative frequency function increasingly 
resemble each other with increasing sample size. If the sample size is 
fixed, but prevalence changes, the fit of the cumulative distribution 
function to the theoretical distribution function improves for one of 
the conditional distribution, but deteriorates for the other. If the im-
provement/deterioration depends on prevalence in a nonlinear man-
ner, they do not extinguish the effect of each other, which may result 
in the prevalence dependence observed. We tested this effect with 
numerical simulations.

3  | SIMULATION METHODS AND RESULTS

3.1 | Methods

We constructed model scenarios where two aspects varied, discrimi-
nation capacity and prevalence. We varied prevalence as the propor-
tion of presences in the observations from 0.05 to 0.95 in increments 
of 0.05. This corresponds to the approach of Allouche et al. (2006) 
and other papers studying the effect of prevalence on kappa (Manel 
et al., 2001; McPherson et al., 2004). To observe the effect of sample 
size, the following sizes were applied: 100, 1,000, 10,000. Presence 
or absence was allocated to this amount of observations so as to pro-
duce the prevalence desired.

Predicted probability values were randomly chosen from the 
beta distribution with parameters given in the Table 7 representing 

different model goodness scenarios. Density functions of predicted 
probabilities for presences (f1) and absences (f0) were defined by the 
following general formula: 

 where x corresponds to possible values of the suitability estimate, 
while α and β are the parameters of the distribution. Parameters has 
been chosen so that f0(x) = 1 − f1(x) if x∈

[
0,1

]
, and it is always true that 

higher predicted probabilities are chosen more frequently than lower 
ones for presences, while there is an opposite trend for absences. We 
will refer to the models according to the function in the nominator of 
f1(x): a) quadratic, b) linear, c) square root, d) a power of 1/16 (Figure 1) 
curves. The steepness of function in the nominator of f1(x) represents 
the discrimination power. Steepness patterns were selected so as to 
present contrasting distribution of predictions and thus to represent 
different discrimination powers. The quadratic curve corresponds to 
the best model, where low probabilities are disproportionately more 
often assigned to absences, while high probabilities to presences. The 
linear curve represents medium model performance, while the appli-
cation of the square root function results in a weakly discriminating 
model, where medium probabilities are assigned both to presences and 
absences in most cases. The 1/16th power corresponds to extreme 
weak discrimination. TSS was calculated at 19 cutoffs (thresholds) 
equally spaced along the probability spectrum (0.05–0.95) for each 
prevalence ratio and model goodness scenarios. This was repeated 
1,000 times for each combination to assess variation. The mean of the 
maximum TSS values was calculated for each combination of model 
goodness scenarios and prevalence values. Calculations were carried 
out in the R Statistical Environment (R Core Team 2014).

3.2 | Results

We found a response to prevalence changes in the maximum value 
of TSS for small sample sizes (Figures 2 and 3), which however de-
creased with an increase in sample size and approached the theoreti-
cally expected value. Sample size of 10,000 eliminated any TSS bias 
even for the worst model even with lowest prevalence correspond-
ing 500 presences. Sample size of 1,000 with 50 presences showed 

E (TPR)=P
(
x>xc|species present

)
=1−P

(
x≤xc|species present

)

=1−F1
(
xc
)

E (TNR)=P
(
x≤xc|species absent

)
=F0

(
xc
)

E (TSS)=F0
(
xc
)
−F1

(
xc
)

�E
(
TSS

)

�xc
=
�F0

(
xc
)

�xc
−
�F1

(
xc
)

�xc
=0

f0
(
xc
)
− f1

(
xc
)
=0

f(x)=

{ xα−1(1−x)
β−1

∫
1

0
tα−1(1−t)β−1dt

, if x∈[0,1]

0, otherwise

TABLE  7 The f0 and f1 functions used in our simulations are 
specific cases of the beta distribution if α = 1 or β = 1. The table 
shows the corresponding other parameter of the beta distribution 
producing the probability function of selecting a certain probability 
value for presence observations. Selections for absence observations 
follow the opposite trend. The rbeta function in R generates random 
numbers with such distributions (Appendix S1)

Curve type f1 f0

Quadratic α = 3, β = 1 β = 3, α = 1

Linear α = 2, β = 1 β = 2, α = 1

Square root α = 1.5, β = 1 β = 1.5, α = 1

16th root α = 17/16, β = 1 β = 17/16, α = 1
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prevalence dependence for the worst model only; thus, already this 
sample size can be applied with confidence for reasonably performing 
models.

The dependence at low sample size had an U-shaped form, im-
plying that the same model goodness can result in higher maximum 
TSS solely due to a low or high prevalence if sample size is low (cor-
responding to a rare or common species; Figure 2.). The dependence 
on prevalence increased with decreasing model quality at constant 
sample sizes.

4  | DISCUSSION

We found that prevalence dependence is absent in TSS only under 
strict assumptions and large sample sizes. This is in contrast with ac-
tual use of TSS, when these assumptions are often violated. Allouche 
et al. (2006) used a flawed design; therefore, their results are not rele-
vant. However, using their assumptions, TSS is indeed not prevalence 
dependent. Nonetheless, there is a tendency for prevalence depend-
ence observations in TSS (Allouche et al., 2006; Lawson et al., 2014; 
McPherson et al., 2004).

Causes of prevalence dependence could be retraced in our study 
either to 1) a lack of ideal association of species with suitable sites or 
2) the use of the maximum value of TSS for cutoff selection and espe-
cially at small sample sizes.

1.	 Previous considerations of prevalence dependence in general 
assumed that species occupy all suitable sites and suitable sites 
only. This is often not the case (Hirzel & Le Lay, 2008). This 

narrow assumption had no significance regarding prevalence 
dependence of the previously more common kappa, as it proved 
to be prevalence dependent even under those idealistic assump-
tions (McPherson et  al., 2004). If species behavior does not 
follow that assumption, the prevalence dependence is not likely 
to diminish. However, we found that in the binary case (which 
is also equivalent to a predetermined cutoff), TSS is indeed not 
prevalence dependent (although not for the reason Allouche 
et  al., 2006 gave). Nonetheless, this only holds if a species 
closely follows the suitability pattern. Ideally, we want to evalu-
ate the capacity of a model to trace suitability pattern and 
when we compare species want to compare this property. 
However, we found that if species are differently detectable 
(differ in the proportion of missed presences) or tend to leave 
suitable space open (fallacious absences) or tend to occur at 
unsuitable places (fallacious presences) to a degree differing, 
these features might mix up with model discrimination capacity 
and may lead to artefacts in comparisons.

There is abundant evidence against species closely following suitabil-
ity patterns, including metapopulation theory (Hanski, 1991), extinction 
debt (Tilman, May, Lehman, & Nowak, 1994), and other considerations 
(Gu & Swihart, 2004). Such mechanisms may be behind “species charac-
teristics” influencing model performance such as in Hernandez, Graham, 
Master, and Albert (2006) and Hanspach et al. (2010) and may also ac-
count for the prevalence dependence seen in Allouche et al. (2006)’s 
Figure 2.

We offer no solution yet; our aim here is to draw the attention that 
these aspects need to be considered when making comparisons. The 

F IGURE  2 Demonstration of the 
dependence of the maximum value of TSS 
on prevalence. The ratio of presences and 
absences in the observations (prevalence) 
was varied from 0.05 to 0.95 in increments 
of 0.05. Average maximum values from 
1,000 simulations are shown for four model 
scenarios (a)–(d). For details, see Fig 1
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tendency for the appearance of missed presences is related to the life 
strategy of the species, so it might not be a problem if models of similar 
species are compared (e.g., several species of trees: Zimmermann et al., 
2009), but comparison between species with great differences (but-
terflies vs. plants; e.g., Hanspach et al., 2014) may become significant.

Tendency for fallacious absences and presences is likely in con-
nection with the degree of involvement of metapopulation dynamics 
in the species’ distribution. Fallacious absences reflect a population 
structure, where empty suitable patches are a constant proportion 
in the landscape (cf. Levin’s model, Pásztor, Botta-Dukát, Magyar, 
Meszena, & Czárán, 2016; Husband & Barrett, 1998), while falla-
cious presences can reflect sink populations (e.g., Ficetola, Thuiller, & 
Padoa-Schioppa, 2009).

2.	 The sample size effect has been observed in relation to the use 
of maximum TSS, which is most widespread in the literature in 
relation to TSS use (a few recent examples: Zurell et  al., 2012; 
Gallardo & Albridge 2013, Baross et  al. 2015). It is also one of 
the default measures in BIOMOD (Thuiller et  al., 2009), one of 
the most widespread SDM tool and also propagated in reviews 
(Liu 2005; Liu, Newell, & White, 2016). While users of max TSS 
still assume that they use a prevalence independent measure, we 
observed as large differences as almost 0.2 in the average 

maximum TSS due to differences in prevalence only even in “good 
models” at the lowest sample size. Differences in maximum TSS 
as small as 0.001 and 0.06 have been interpreted as the model 
with the higher TSS being superior to the one with the lower 
maximum value (Coetzee et  al., 2009 and Zurell et  al., 2012, 
respectively). Therefore, the level of influence of prevalence de-
tected for low sample sizes has a message for the practice, too.

One could argue that lower sample sizes used in our simulations 
(100 observations with 5–95 presences within) are extreme, but sev-
eral similar examples can be found (e.g., Hernandez et al., 2006; Papeş 
& Gaubert, 2007; Williams et al., 2009; Wisz et al., 2008). Species’ dis-
tribution models of rare plants are frequent target of research (Engler, 
Guisan, & Rechsteiner 2004; Guisan et al., 2006; Zimmermann et al., 
2007; Williams et al., 2009), where both extreme prevalence and sample 
sizes occur. According to our results, in such cases, the effect of data 
structure may be particularly severe, and therefore, automatically apply-
ing maximum TSS for across-species or across-sites comparison may lead 
to erroneous conclusions. We agree with Lobo et al. (2008) that in such 
cases, indices should be adjusted to the case studied taking into account 
the potential effect of prevalence on the indices.

It is also worth to note that prevalence dependence does not 
affect the comparison of different models of a single species from a 
single dataset. Thus, our finding does not affect model type compar-
isons for one species with one dataset, such as the ensemble model-
ing approach in BIOMOD, which heavily relies on TSS (Thuiller et al., 
2009).

5  | CONCLUSIONS

The redefinition of prevalence dependence has brought a wider range 
of interpretations and explanations to attention. Sources of preva-
lence dependence have to be considered when evaluating models of 
different objects (while it is no concern when different models of the 
same object with the same data points are compared). We found three 
sources of prevalence dependence not yet considered, arising for an 
incomplete reflection of habitat suitability in species’ distribution: 
different degree of missed presences, fallacious absences, and falla-
cious presences per species. Another source of potential prevalence 
dependence was the use of maximum value over the predicted proba-
bility continuum for comparisons (maximum TSS). We found three risk 
factors for prevalence dependence even when assuming species per-
fectly mirroring suitability but using maximum TSS for across-species 
comparisons: rare or very common species, small sample sizes, and 
weak models.
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