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In normal airways, hyaluronan (HA) matrices are primarily located within the airway submucosa, pulmonary vasculature walls,
and, to a lesser extent, the alveoli. Following pulmonary injury, elevated levels of HA matrices accumulate in these regions, and in
respiratory secretions, correlating with the extent of injury. Animal models have provided important insight into the role of HA in
the onset of pulmonary injury and repair, generally indicating that the induction ofHA synthesis is an early event typically preceding
fibrosis. The HA that accumulates in inflamed airways is of a high molecular weight (>1600 kDa) but can be broken down into
smaller fragments (<150 kDa) by inflammatory and disease-related mechanisms that have profound effects on HA pathobiology.
During inflammation in the airways, HA is often covalently modified with heavy chains from inter-alpha-inhibitor via the enzyme
tumor-necrosis-factor-stimulated-gene-6 (TSG-6) and this modification promotes the interaction of leukocytes with HA matrices
at sites of inflammation. The clearance of HA and its return to normal levels is essential for the proper resolution of inflammation.
These data portray HA matrices as an important component of normal airway physiology and illustrate its integral roles during
tissue injury and repair among a variety of respiratory diseases.

1. Introduction

Considerable progress has been made over the past few
decades in our understanding of the role of hyaluronan (HA)
in pulmonary health and disease. Once thought to be an inert
molecule of the extracellular matrix, a picture has emerged
of HA as an important regulator of inflammation, airway
hyperresponsiveness (AHR), edema, and fibrosis in the lung.
This image has been made clearer by a significant number
of investigations into a wide variety of different pulmonary
diseases, environmental effects, and animal models of lung
injury, which are summarized in this review (Figure 1).

HA is a major component of extracellular matrices
(ECM) in every major organ system [1, 2]. It is a very large
(>2500 kDa), unsulfated glycosaminoglycan, unattached to
a core protein, though associated with several HA bind-
ing proteins and receptors that expand its repertoire of
functions [3, 4]. HA is extruded from the cell surface by

three membrane-bound HA synthases (HAS1, HAS2, and
HAS3) that utilize cytosolic UDP-N-acetyl-D-glucosamine
(UDP-GlcNAc) and UDP-D-glucuronate (UDP-GlcUA) as
substrates to form the repeating disaccharide unit 𝛽1,3-N-
GlcNAc linked 𝛽1,4 to GlcUA [5]. The turnover of HA
varies from tissue to tissue and is mediated by a family of
hydrolytic, lysosomal enzymes known as hyaluronidases [6].
As murine knockout models of airway injury have shown,
the clearance of HA, and its return to normal levels, is
critical for the resolution of inflammation [7]. Under normal
conditions, HA is synthesized as a high molecular weight
(HMW) polysaccharide but can be degraded into smaller
bioactive fragments during inflammatory and pathological
processes [8, 9]. The only covalent modification known
to occur on HA is a transesterification reaction with a
C-terminal aspartate residue (Asp702) of an inter-alpha-
inhibitor heavy chain to the 6th hydroxyl of GlcNAc on
HA via the enzyme tumor-necrosis-factor-stimulated-gene-6
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Figure 1: Overview of hyaluronan in respiratory disease: the lung is continuously exposed to external stimuli which can then impact
HA synthesis and turnover. Factors such as type of stimuli, genetics, and the lung environment itself determine if resolution or persistent
inflammation and HA changes persist.

(TSG-6) [10–14]. This reaction occurs during pathological
and developmental processes and has been found in inflamed
and remodeling lungs [15–17].

The present review provides a survey of HA-related data
in the area of pulmonary pathobiology with an emphasis
upon its expression, distribution, and turnover in a variety
of respiratory disorders and conditions from both human
subjects and animal models. The review is divided into
three major headings: (a) environmental and occupational
exposure, (b) human respiratory diseases, and (c) animal
models of pulmonary injury. For a reviewofHA receptors and
binding proteins in lung pathobiology the reader is advised to
consult the review by Lennon and Singleton [18].This review,
and another [19], includes an overview of the therapeutic
applications of HA in the lung. Whenever possible, actual
concentrations of HA and 𝑝 values were listed from the
original sources. Units of measurement, such as 𝜇g/L of HA
in bronchoalveolar lavage fluid (BAL), were standardized
throughout the text. The type of assay used to quantify HA
was noted in most instances, and specific information on
the assay was stated when possible (i.e., sandwich versus
competitive ELISA-like assays). The most common methods
presented in this review are radiometric or ELISA-like assays
involving an HA binding protein derived from cartilage. For
an overview and comparison of the sensitivity, specificity,
and molecular weight accuracy of commercially available
ELISA-like assays for HA analysis please see our review [20].
It should be noted that methods utilizing an HA binding
protein do not distinguish between HA modified with heavy
chains and HA without this modification. At times, data had

to be estimated from graphs. In such instances, the data was
presented as an approximation (i.e., ∼10 𝜇g/L).

2. Environmental and Occupational Exposure

2.1. Farmer’s Lung. Farmer’s Lung is a type of alveolitis caused
by a type III hypersensitivity reaction induced by the inhala-
tion of mold derived from plant material in the agricultural
industry [21]. Inflammation occurs in the alveolar wall in
response to an IgG-allergen mediated immune response,
causing edema and loss of pulmonary function in severe
cases. Bjermer et al. examined ten patients during acute
episodes of farmer’s lung [21]. Impaired diffusion capacity (on
average 51% of predicted) was associated with elevated levels
of HA (mean concentration 547𝜇g/L) in bronchoalveolar
lavage (BAL) fluid compared to healthy controls (15 𝜇g/L)
(as determined by a radiometric assay using an HA bind-
ing protein labeled with iodine-125). HA levels declined
(154 𝜇g/L) during the 4–10-week recovery phase, nearly to
normal levels at clinical remission 14months after admission,
though slightly elevated concentrations of HA were observed
in about half of the subjects. Similar findings were observed
in a separate study [22], and HA in BAL fluid (radiometric
assay)was found to distinguish farmerswith allergic alveolitis
from farmers with asymptomatic alveolitis [23]. These data
demonstrated that the accumulation of HA in farmer’s lung
was associated with the progression of the disease, suggesting
the possibility that HA in the smaller airways may contribute
to edema and impaired gas exchange by its relatively high
hydration capacity.
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2.2. Swine Confinement Workers. Larsson et al. tested the
hypothesis that swine confinement workers have signs of air-
way inflammation, alterations of lung function, and bronchial
responsiveness [24]. These workers are exposed to dust con-
taining feed, fecal, and dander particles and develop airway
symptoms, including cough, phlegm, wheeze, tightness of
chest, and slight decreases in FEV

1
, which had been reported

[25, 26]. In Larsson’s study, lung function, bronchial reactiv-
ity, and several tests for inflammation were performed on 20
randomly selected nonsmoking swine confinement workers
who regarded themselves as healthy. While lung function
and bronchial reactivity were not different from the urban
reference group, inflammatorymarkers, such as elevated BAL
leukocyte counts, elevated antibodies against swine dander,
dust and feed, and elevated BAL levels of HA (37𝜇g/L com-
pared to 27 𝜇g/L in the reference group) were observed (𝑝 <
0.01) (radiometric assay).The authors concluded that signs of
airway inflammation could be altered in pig farmers without
alteration in lung function or bronchial reactivity. HA in BAL
was found to be within normal limits in a similar study of
asymptomatic dairy farmers [27] (radiometric assay).

2.3. Swedish Wood Trimmers. Workers in the logging indus-
try are routinely exposed to mold released into the air
during the harvest and transport of trees. Some of these
workers develop allergic alveolitis as a result of this exposure
[28]. In a study by Johard et al., signs of alveolitis were
investigated in a population of Swedish wood trimmers [29].
Nineteen nonsmoking workers were subdivided into two
groups, with or without serological antibodies against mold.
While no difference was found in lung function (spirometry
and diffusion capacity) among these subjects, BAL levels of
HA were significantly elevated (42𝜇g/L compared to 27𝜇g/L
in the controls) (𝑝 < 0.001) (radiometric assay). HA levels
were not different between seropositive and seronegative
workers, indicating that the elevated antibodies against mold
did not predict increased risk for the development of airway
inflammation. In a related rat study, this group also reported
that the intratracheal instillation of sawdust, itself, resulted in
increased inflammation and elevated HA levels in BAL [30]
(radiometric assay).

2.4. Firefighters. Firefighters are exposed to toxic fire gases
and other combustion products from their occupation which
may cause acute and chronic respiratory symptoms [31, 32].
Bergström et al. tested the hypothesis that firefighters might
develop inflammatory changes in their lower airways as
a result of this exposure [33]. BAL was obtained from 13
nonsmoking firefighters and the results were compared to a
reference group of 112 nonsmoking healthy control subjects.
Elevated HA levels were observed in firefighters (27.7𝜇g/L)
compared to the control population (10 𝜇g/L) (𝑝 < 0.05)
(radiometric assay). While no attempt was made to correlate
the extent and timing of smoke exposure withHA levels, their
data suggests that long-term occupational exposure results in
inflammation that corresponds with elevated HA levels.

2.5. Asbestos. Asbestos is derived from silicate minerals and
has been used to provide electrical and building insulation

due, in part, to its resistance to fire [34]. Asbestos is com-
posed of fibrous crystals that can accumulate in the air and
cause lung injury as a result of inhalation, including lung
cancer, mesothelioma, pleural plaques, pleural effusion, and
asbestosis [35]. In a study conducted by Cantin et al., HA
concentration was measured in the BAL of 27 workers from
asbestos mills and mines, 9 without asbestosis, and 18 with
asbestosis [36]. Mean HA levels were found to be 53.9 𝜇g/L
in control subjects, 67.5𝜇g/L in asbestos-exposed workers
without asbestosis, and 206𝜇g/L in workers with asbestosis
(𝑝 < 0.05) (radiometric assay). This study also examined HA
in the BAL of asbestos-exposed sheep. Asbestos was applied
by intratracheal infusions of chrysotile at 10mg or 100mg
doses every 10 days for 39 months. Mean HA levels were
found to be 34.7 𝜇g/L in control (PBS) sheep, 83.0 𝜇g/L in
sheep treated with the 10mg dose, and 248.0𝜇g/L in the
sheep treated with the 100mg dose (𝑝 < 0.05). These data
indicate that BAL HA levels correspond with the extent of
lung damage by asbestos and with the amount of exposure to
asbestos. A separate study also observed that serumHA levels
corresponded to malignancies caused by asbestos exposure
[37] (radiometric assay).

2.6. Flour Dust. Flour dust exposure can lead to the devel-
opment of an IgE-mediated sensitization to flour proteins
causing asthma and rhinitis in the baking industry in a con-
dition known as baker’s asthma [37]. Brisman et al. analyzed
indices of nasal airway inflammation in bakers, seeking to
relate these to nasal symptoms and exposure to airborne flour
dust [38]. Twelve flour-exposed bakers participated in this
study and were examined by nasal lavage, visual inspection,
a test for mucociliary clearance, and nasal peak expiratory
flow. A significant correlation between nasal lavage HA levels
and nasal mucociliary clearance was observed (radiometric
assay). Two atopic individuals had the highest levels of HA in
the nasal lavage and there was a positive correlation between
the cumulative dose of flour dust and HA nasal lavage levels.
Furthermore, HA nasal lavage levels correlated with the
number of years the subjects worked as bakers. These data
indicate that a baker’s occupational exposure of flour dust
can cause nasal mucosal inflammation that is associated with
elevated levels of HA in nasal secretions.

2.7. Conclusions. These studies indicate that (i) elevated
levels of HA in BAL fluid are associated with a variety
of environmental and occupational airway injuries. (ii) HA
levels correspond to the extent of exposure and lung injury.
And (iii) elevated HA levels in BAL may be present even in
the absence of obvious lung disease. As shown in Figure 1,
one of the host responses of the airways to occupational
and environmental exposures is the production of HA in
the lung tissue and pulmonary secretions. If the exposure
continues, and inflammation fails to resolve, abnormalmatrix
remodeling occurs, including the chronic synthesis of HA, its
modification with the heavy chains of inter-alpha-inhibitor,
and the production of proinflammatory HA fragments which
exacerbates the inflammatory and fibrotic stimuli [9, 39–45]
(Figure 2). It should be noted that the role of heavy chain
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Figure 2:Mechanistic role of HA in the response to lung injury: lung injury leads to the synthesis of HA that accumulates in the peribronchial
and perivascular spaces. The ongoing inflammation leads to the generation of heavy-chain-HA (HC-HA) complexes mediated via TSG-6
which is a bottleneck in the pathological transformation of HA matrices. These HC-HA complexes can be degraded into smaller LMW
fragments which engage cell receptors such as CD44, TLR4, and TLR2 and create downstream biological effects like fibrosis, AHR, and
inflammation.
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modifiedHA fragments in directing inflammatory events has
not yet been elucidated.

3. Human Respiratory Diseases

3.1. Smoking. Tobacco smoking is a major risk factor for
the development of several lung diseases most notably lung
cancer as well as chronic obstructive pulmonary disease
(COPD) which includes emphysema and chronic bronchitis.
One of the early findings, by McDevitt et al. [46], was that
the gas phase of cigarette smoke, introduced into solutions
of HA by the method of Kew et al. [47], led to a marked
reduction in HA viscosity and size in a time-dependent
manner. Dimethyl sulfoxide, a scavenger of hydroxyl radicals,
inhibited this degradation, suggesting that oxidative damage
by free radicals in the gas phase of cigarette smoke was
the mechanism by which HA was degraded. Bracke et al.
confirmed these observations in a mouse model of cigarette
smoke-exposed mice [42] (see animal model section below
for more information). In a study conducted by Sköld
et al. [48], smoking cessation was found to result in a
transient induction of HA accumulation in the BAL 1 month
(38.8 𝜇g/L), 3 months (34.0 𝜇g/L), and 6 months (37.5 𝜇g/L)
following smoking cessation, compared to smokers before
cessation (28.6𝜇g/L) and nonsmokers (10.0𝜇g/L) (𝑝 < 0.01
to 0.001) (radiometric assay). This data implies that the
induction of HA following smoking cessation may have a
reparative effect on lung pathology caused by smoke injury,
while smoking itself can degrade HA into LMW forms that
may promote inflammation [9].

3.2. COPD. Chronic obstructive pulmonary disease (COPD)
is a progressive lung disease characterized by fixed airway
obstruction that results in shortness of breath, cough, and
sputum production and is typically caused by tobacco smok-
ing [49]. In one study, COPDpatients had elevated (∼27𝜇g/L)
levels of HA in the BAL compared to normal nonsmokers
(∼17 𝜇g/L) (𝑝 < 0.01) [50] (radiometric assay). Additionally,
COPD patients with lower pulmonary function measure-
ments had higher levels of HA in BAL than COPD patients
with relatively normal pulmonary function. Similarly, in a
separate study, HA levels were higher in the sputum of
COPD patients (234 𝜇g/L) than healthy smokers (66 𝜇g/L)
(𝑝 < 0.005) [51] (ELISA-like assay). Furthermore, COPD
patients with higher levels of sputum HA had lower FEV

1
,

and higher inflammatory markers, than COPD patients with
moderate levels of HA. These data indicate that there is a
relationship between HA levels in COPD sputum and BAL
that corresponds with disease severity.

3.3. Asthma. Asthma is a chronic inflammatory disease
characterized by bronchial wall basement membrane thick-
ening, airway smooth muscle hypertrophy, mucous gland
hypertrophy, vascular dilation, and airway epithelial damage
[52]. The original report of HA in human asthma found HA
to be the only glycosaminoglycan present in the pulmonary
secretions (BAL) from 4 patients with severe asthma [53].
Later, it was determined that HA levels in BAL were signifi-
cantly increased in patients with persistent asthma who were

atopic (32 𝜇g/L) and nonatopic (21 𝜇g/L) in comparison to
control subjects (0 𝜇g/L) and patients with mild intermittent
asthma (0.5𝜇g/L) (𝑝 < 0.001) [54] (radiometric assay).
Liang et al. isolated and cultured fibroblasts from endo-
bronchial biopsies of 21 asthmatics, and 25 healthy controls,
and examined the cells for HA production [43]. Baseline
(unstimulated) HA production by airway fibroblasts was
significantly (𝑝 < 0.05) higher in the asthmatic popula-
tion (∼900𝜇g/L) compared to healthy controls (∼200𝜇g/L)
(ELISA-like assay). Furthermore, the average HA size was
lower in MW for the asthmatic (∼800 kDa) population than
controls (∼1500 kDa). This was accompanied by a marked
increase in HAS2 gene expression in asthmatic (∼18-fold)
compared to control (∼3-fold) fibroblasts (𝑝 < 0.05). In
another study by Ayars et al., patients with severe, steroid-
dependent asthma received either mepolizumab (anti-IL-5
antibody) or placebo in a randomized, double-blind, placebo-
controlled study [55]. Sputum HA was measured after 16
weeks of treatment. A significant decrease in sputum HA
was observed in the mepolizumab treatment group (97 𝜇g/L)
compared to the placebo group (266𝜇g/L) (𝑝 = 0.007), which
correlated with improvements in percent forced expiratory
volume in 1 s (FEV

1
%) (𝑝 = 0.001) (competitive ELISA-

like assay). In summary, HA is an important component
of airway secretions, and cultured fibroblasts, from asth-
matics that corresponds to disease severity and pulmonary
function.

3.4. Sarcoidosis. The pulmonary manifestation of sarcoido-
sis is the accumulation of granulomas in the interstitium,
including the alveoli, small airways, and blood vessels [56].
The disease progresses to fibrosis in a small percentage
(5–15%) of cases. Hallgren et al. found HA (16 𝜇g/L) in
the BAL of 23 patients with sarcoidosis, though it was
undetectable in smoking or nonsmoking healthy volunteers
[57] (radiometric assay). Serum HA levels were normal,
but patients with abnormal lung function (spirometry) had
HA BAL concentrations six times higher than patients with
normal vital capacity. In a separate study, Eklund et al.
found HA BAL levels from 23 sarcoidosis patients at 12 𝜇g/L
on average [58] (radiometric assay). HA levels positively
correlated with the numbers of BAL leukocytes. Bjermer et
al. identified a strong correlation between BAL HA and mast
cell levels which correlated inversely with lung volume [59]
(radiometric assay). Macrophages and granulocyte counts
were not related to BAL HA levels or indicators of lung
disease, though lymphocyte counts were significantly (𝑝 <
0.001) elevated and corresponded tomast cells andHA levels.
Blaschke et al. demonstrated that elevated levels of other
extracellular matrix components, including fibronectin and
type III procollagen peptide, correlated with elevated levels
of HA (39 𝜇g/L compared to control values of 25𝜇g/L) in
the BAL of patients with sarcoidosis (𝑝 < 0.001) [60]
(radiometric assay). In summary, HA BAL levels are elevated
in patients with sarcoidosis and correspond to decreased
lung function, increased leukocyte counts, and increased
extracellular matrix components.
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3.5. Idiopathic Pulmonary Fibrosis. Idiopathic pulmonary
fibrosis is a disease of the lung interstitium that involves fibro-
sis within alveolar tissue, small airways, and blood vessels
[61]. Bjermer et al. found elevated levels of HA (46 𝜇g/L)
in the BAL fluid of 22 patients with idiopathic pulmonary
fibrosis compared to 21 control subjects (9 𝜇g/L) (𝑝 < 0.001)
[62] (radiometric assay). Serum HA levels were normal, but
elevated neutrophil and lymphocyte counts correlated with
the increased levels of HA. Patients with deterioration of
lung function and radiographic progression had higher BAL
levels of HA than in patients whose disease was stable (𝑝 <
0.01).This study was largely substantiated by a separate study
conducted by Milman et al. who expanded it to include
correlations with procollagen type III aminoterminal peptide
[63]. In a histological examination of HA by Garantziotis et
al., HA was found to colocalize with inter-alpha-inhibitor in
fibroblastic foci of patients with usual interstitial pneumoni-
tis, implying that the HA present in these regions is likely
to be covalently modified by heavy chains from inter-alpha-
inhibitor [17].

3.6. Idiopathic Pulmonary Hypertension. Idiopathic pul-
monary arterial hypertension (IPAH) is a progressive disease
that leads to deterioration in cardiopulmonary function and
premature death from right ventricular failure [64]. The
pathogenesis of IPAH includes cell proliferation, vascular
remodeling, and inflammatory cell recruitment. Papakon-
stantinou et al. investigated total glycosaminoglycan content
between IPAH and control donor lungs and found that only
HAhad elevated levels associatedwith IPAH[65].The relative
HA levels in IPAH lung tissue (78.6 𝜇g) were greater than
the amount of HA in control donor lung tissue (43.2𝜇g)
(𝑝 < 0.01), consistent with the observation that HAS1 gene
and protein expression was elevated in the IPAH cohort
while Hyal1 gene expression was significantly decreased
(𝑝 < 0.05) (ELISA-like assay). HAS1 protein localized to
pulmonary arterial smooth muscle cells in IPAH lung tissue
and increased HA deposition was observed in remodeled
pulmonary arteries. In a separate study, Aytekin et al. demon-
strated that plasma HA levels were markedly elevated in
IPAH (325 𝜇g/L) compared with controls (28𝜇g/L) (𝑝 =
0.02) [66] (competitive ELISA-like assay). Cultured, and
unstimulated, pulmonary arterial smooth muscle cells from
IPAH patients secreted higher levels of HA into conditioned
media (12 𝜇g/mL) compared to control cells (6 𝜇g/mL) (𝑝 =
0.04). This HA was in the form of “cable” structures that
promoted the adhesion of mononuclear cells, comparing
their adhesion to pulmonary arterial smooth muscle cells
from IPAH (9.5 × 104 cells bound) and control subjects
(3.0 × 104 cells bound) (𝑝 = 0.01). This same group also
observed that the HA in IPAH lungs is a pathological form of
HA covalently modified with heavy chains from inter-alpha-
inhibitor [16].Heavy chainmodifiedHA (HC-HA)was found
within regions of vascular modeling, including plexogenic
lesions. Inflammatory cells colocalized within these matrices
in regions of vascular pathology in IPAH lung tissue, raising
the possibility that HC-HA may direct inflammatory events
that cause vascular remodeling in IPAH.

3.7. Lung Transplant. Rao et al. investigated HA BAL and
plasma levels from 57 lung transplant recipients as a marker
of early posttransplantation infection and acute cellular
rejection [67]. Mean BAL HA levels in recipients with
clinically stable conditions was 33.5 𝜇g/L (radiometric assay).
Mild rejection did not result in significant BAL HA levels,
though it was slightly higher with infection (51.10 𝜇g/L) (𝑝 =
0.036). Moderate to severe rejection resulted in significantly
elevated BAL HA levels (295.0 𝜇g/L) (𝑝 = 0.0001) and the
highest levels were found in patients with diffuse alveolar
damage (392 𝜇g/L).Mean plasmaHA levels in clinically stable
recipients were 59.60 𝜇g/L and were elevated in severe rejec-
tion (112.0 𝜇g/L) and diffuse alveolar damage (169.20 𝜇g/L)
and even higher in recipients with acute respiratory infec-
tion (191.0 𝜇g/L). These observations were substantiated and
expanded by Riise et al. [68, 69].

3.8. Bronchiolitis Obliterans. One of the major causes of
lung transplant rejection is the onset of bronchiolitis oblit-
erans syndrome (BOS) which is characterized by irreversible
limitations of airflow associated with small airway fibrosis
[70]. Todd et al. found elevated levels of HA within the
intraluminal fibrous tissue of patients with BOS [71]. This
corresponded with elevated expression (2-3-fold) of HAS1-3
in whole lung tissue from BOS compared to control subjects
(𝑝 < 0.05). HA BAL levels were elevated in BOS subjects
(107.91 𝜇g/L) compared to controls (28.97 𝜇g/L) (𝑝 < 0.0001)
and remained steady between different grades of BOS. Fur-
thermore, HA plasma levels were elevated in early or severe
onset BOS subjects (90.37 𝜇g/L) compared to patients who
had remained BOS free for at least 5 years (44.42 𝜇g/L) (𝑝 =
0.03) (sandwich ELISA-like assay).

3.9. Conclusions. (i) In normal tissues, HA matrices are
primarily located within (a) the airway submucosa, (b) the
walls of pulmonary vasculature, (c) and to a lesser extent,
alveoli. (ii) During pulmonary injury and repair, there is
increased synthesis of HA matrices in these regions that
colocalizes with inflammatory cells and likely influences their
activation. (iii) The HA that accumulates in these regions is
often covalently modified with heavy chains from inter-a-
inhibitor which significantly promotes leukocyte adhesion to
HA matrices [15–17, 72, 73] (Figure 2). (iv) Elevated HA BAL
levels correspond with the extent of lung injury while HA
serum levels do not always correlate with lung injury.

4. Animal Models of Pulmonary Injury

4.1. Asthma. HA deposition and correlation with inflamma-
tion have been described in the ovalbumin [74], cockroach
antigen [75], and Aspergillus fumigatus [76] murine models
of allergic inflammation. In the ovalbumin model described
by Cheng et al., the accumulation of HA within BAL was a
relatively early event, occurring within the first 24 hrs after
allergen challenge (∼25 𝜇g/L compared to ∼10 𝜇g/L in näıve
controls) (sandwich ELISA-like assay). HABAL levels peaked
at day 8 (∼125 𝜇g/L), corresponding with elevated inflamma-
tory cell counts in the BAL. Induction of whole lung HAS1
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and HAS2 gene induction peaked (∼20-fold above näıve
values) within the first 2–4 hrs and steadily declined to almost
normal levels by the end of 24 hrs. The accumulation of HA
in the lung tissue was evident 12 hrs after allergen challenge
(∼140 𝜇g/g dry weight compared to ∼75𝜇g/g in näıve con-
trols), peaked at 6 days (∼375 𝜇g/g), and steadily declined to
lower levels 6 weeks later (∼150 𝜇g/g) (Fluorophore-Assisted-
Carbohydrate-Electrophoresis (FACE) analysis). Elevated
peribronchial distribution of HA was apparent 12 hrs after
allergen challenge and colocalized with eosinophil distribu-
tion 2 days later (HABP fluorescence microscopy). Similar
results were confirmed and expanded in cockroach [75] and
fungal models of allergic airway inflammation [76]. The HA
that accumulated in murine lungs following ovalbumin chal-
lenge was covalently modified with heavy chains from inter-
alpha-inhibitor [15]. TSG-6 −/− mice, which lack the ability
to transfer heavy chains to HA, developed less inflammation,
lower AHR, and lower levels of HA in response to allergen
challenge, implying that HC-HA is an important factor in
allergic inflammation [15]. Lower levels of lung HA in TSG-
6 −/− mice (FACE and HAPB fluorescence microscopy)
subjected to allergen induced asthma may be caused by the
ability of TSG-6 to not only transfer heavy chains to HA but
also regulate HA accumulation [77].

4.2. Bleomycin. The bleomycin model of pulmonary fibrosis
is based upon a side-effect of its use as a chemotherapeutic
agent for the treatment of several cancers [78]. Bleomycin
exerts its antibiotic and tumorigenic effect by inducing
DNA strand breaks, though the mechanism whereby it
induces lung injury is not fully understood [79]. In rodents,
bleomycin induces acute alveolitis with interstitial edema and
fibrosis. Using a biotinylated HA binding protein to probe
rat lung tissue sections, Nettelbladt et al. observed that HA
accumulated in the edematous alveolar septa 4 days after the
intratracheal administration of bleomycin [80]. Lymphocytes
were present in the interstitial cellular infiltrate. In control
rat lungs, HA was not seen in the alveolar tissue but was
confined to peribronchial and perivascular spaces. Ten and
twenty days after administration of bleomycin, macrophage
infiltration was observed, as well as proliferating fibroblasts
and collagen deposition in the alveolar tissue. At these later
time points, HA deposition became less prominent in the
alveolar interstitial tissue but more distinctly located around
proliferating fibroblasts. The authors noted increased lung
water content that peaked 4 days after bleomycin treatment
and speculated that increased levels of HA might contribute
to the water accumulation. This same group also noted that
the accumulation of HA in the BAL of rats treated with
bleomycin was relatively small (0.2-0.3 × 106 Daltons) and
did not respond to high-dose corticosteroid treatment [81].
In a separate study in hamsters, Bray et al. observed that
total lung HA levels peaked 6 days after administration of
bleomycin and was 14.6-fold higher than untreated levels
(autoradiography) [82].These levels sharply dropped onday 7
and steadily declined to approximately double control values
by day 17. Total levels of lysosomal hyaluronidases were
increased (673 units compared to 506 units in control lungs)
in the injured lungs, even at the peak of HA accumulation on

day 6, indicating active turnover of HA. It was also observed
that maximal HA content occurred prior to the rise in
collagen and elastin biosynthesis, suggesting that HA acts as
an acute phase molecule that may direct subsequent fibrotic
events. Further evidence for an early role of HA during
bleomycin-induced alveolitis was obtained by Nettelbladt
et al. who demonstrated that HA induction was apparent
within 24 hrs of bleomycin treatment, much earlier than
the fibrotic stage that occurs several days later (radiometric
assay) [83]. Garantziotis et al. observed that bikunin −/−
mice, deficient in their ability to covalently modify HA
with heavy chains from inter-alpha-inhibitor, demonstrated
deficient lung angiogenesis after bleomycin exposure [17].
Teder et al. observed that CD44 −/− mice succumbed to
unremitting inflammation following bleomycin lung injury,
characterized by the accumulation of HA fragments at the
site of tissue injury and impaired clearance of macrophages,
neutrophils, and lymphocytes [84]. Dygai et al. observed that
the intranasal application of hyaluronidase, immobilized on
polyethyleneoxide, did not modify the inflammatory process
or deposition of collagen fibrils in the lung parenchyma [85].
Studies by others have substantiated, and expanded, these
observations [86–92].

4.3. Elastase. The intratracheal administration of elastase
remains a common and convenient method for the induction
of emphysema-like airway pathology, including the augmen-
tation of airspaces, inflammatory cell influx into the lungs,
and systemic inflammation [93]. In two early studies, Moczar
et al. demonstrated that cultured lung explants from ham-
sters, intratracheally injected with elastase, demonstrated
significantly enhanced incorporation of 14C-glucosamine
into HA [94]. In a separate study by Cantor et al., coadminis-
tration of hyaluronidase with elastase resulted in significantly
greater airspace enlargement than hamsters treated with elas-
tase alone [95]. Rescue by the intratracheal administration
of HA immediately after elastase instilment resulted in a
marked decrease in airspace enlargement. When HA was
administered 1 or 2 hrs before elastase administration, rescue
of airspace enlargement was retained [96]. When HA was
administered 1 or 2 hrs after elastase administration, rescue
was compromised. Scuri et al. demonstrated a protective
effect on bronchoconstriction of inhaled HA against elastase-
induced injury in sheep, where 200 kDa HA had significantly
greater protective effect than 70 kDaHA [97].This protective
effect was also observed in the 150–300 kDa range which was
found to be more dependent upon dosage rather than MW
[98]. Studies by others have substantiated and expanded these
observations [99–101].

4.4. Hyperoxia. Preterm birth by cesarean section often
results in an imbalance of fluid secretion and absorption in
the lungs that results in interstitial edema which is treated
by oxygen supplementation and/or ventilator support which
can exacerbate pulmonary fluid retention [102]. Juul et al.
demonstrated that the HA content of untreated neonatal rat
pups decreased over the first 10 days of life while pups housed
under hyperoxic conditions exhibited a time-dependent
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increase in both lung HA and lung weight [103]. This HA
accumulated in the perivascular regions of medium sized
arteries and in the alveolar walls. A similar study by Johnsson
et al. confirmed and expanded these observations in rabbit
pups, delivered by cesarean section 1 or 2 days before term
[104]. Though this report did not observe a time-dependent
decrease in HA content of pups housed under room air
conditions, continuous exposure to hyperoxia resulted in
significantly elevated levels of lung HA concentration 6 days
after term. This increase was accompanied by significantly
elevated wet/dry lung weight ratios. Increased HA deposition
was observed in alveoli, arterioles, and bronchiole of pups
housed under hyperoxic conditions. The extent to which
the elevated HA levels, induced by hyperoxia, contribute to
edema is not yet known.

4.5. Cigarette. Tobacco smoke contains >7000 chemicals,
including cyanide, benzene, formaldehyde, methanol, acety-
lene, and ammonia [105]. At least 70 of these chemicals
are known carcinogens and many of them cause heart and
lung diseases in addition to cancer [106]. Mice exposed
to cigarette smoke for 4 weeks (subacute) or 24 weeks
(chronic) demonstrated higher levels of staining for HA in
alveolar walls for both time points [42]. This was in contrast
to the deposition of collagen and fibronectin which were
only elevated at the chronic time point. A modest (∼25%)
increase of HA levels in total lung tissue was observed in
the smoke-exposed mice at 4- and 24-week time points.
The size of this HA was significantly smaller (average MW
about 70 kDa) than HA without smoke exposure (broad
range of 250–1000 kDa), though it remains to be determined
whether the MW redistribution was caused by oxidative
damage from smoke exposure itself or from downstream
inflammatory effects. Cigarette smoke induced HAS3 gene
expression (∼40%) and decreased HAS1 expression (∼30%)
while not significantly effecting HAS2 gene expression. Two
separate studies demonstrated a therapeutic effect for inhaled
aerosolized HA (150 and 1600 kDa) in a mouse and rat model
of cigarette smoke exposure [107, 108]. These therapeutic
effects included significantly less neutrophil infiltration, lung
edema, airway apoptosis, and mucus plugging.

4.6.Ozone. Ozone exposure leads to oxidative stress-induced
inflammation of the airways, epithelial injury, and AHR
which peaks at 24 hours after exposure. In a study conducted
by Garantziotis et al., ozone exposed mice demonstrated
enhanced AHR associated with elevated levels (∼40𝜇g/L
compared to undetectable levels in normal air exposed mice)
of HA in BAL [39] (ELISA-like assay). CD44 −/− (a major
receptor for HA) and bikunin −/− (unable to make HC-HA)
mice showed even higher levels of elevated HA in response
to ozone exposure (∼100 𝜇g/L) but had significantly lower
levels of AHR compared to WT mice. Mice pretreated with
HA binding protein were protected from developing ozone-
induced AHR. LMW HA exacerbated AHR in response to
ozone treatment while HMW HA alleviated it. An allergic
model of asthma was also found to exacerbate AHR and
HA BAL levels in response to ozone treatment [109]. Other

studies have substantiated and expanded these observations
[40, 110–112].

4.7. Radiation. The pathological effect of radiation on the
respiratory system is complex, involving the death of lung
cells and the mounting of an inflammatory response [113].
The two major functional outcomes of radiation damage on
the respiratory system include radiation pneumonitis and
radiation fibrosis [113]. In a rat model of bilateral radiation-
induced lung disease, Rosenbaum et al. found elevated levels
of HA in serum (5.5-fold) and BAL (1.5-fold) 4 weeks after
irradiation, during peak alveolitis [114]. Elevated levels of HA
were not observed at earlier (2 weeks) or later (6–20 weeks)
time points; thus serumHA levels appear to be a poor predic-
tive indicator of radiation-induced pneumonitis. Histological
staining demonstrated that HA accumulated in the intra-
alveolar edema fluid but not the alveolar walls. Administra-
tion of methylprednisolone significantly decreased alveolitis
and HA levels in the alveolar space and serum but did not
affect fibrosis. In a separate study by Li et al., irradiation
to the lower portion of the right lung of rats induced an
accumulation of HA in BAL that was significantly elevated
(152.8 𝜇g/L) 6 weeks after irradiation compared to untreated
controls (5.5 𝜇g/L) [115]. Interestingly, HA BAL levels were
not elevated at earlier (2 and 4weeks) or later (8 and 10weeks)
time points. HAS2 gene expression was elevated at 4, 6, and
10 weeks of irradiation while Hyal2 expression decreased
concomitantly. In a third study by Iwakawa et al. histological
analysis ofHA lung levels at sites of inflammationwas evident
within 12 hrs of radiation exposure and resolved 2 weeks later
[116].

4.8. Ventilation. Early respiratory distress syndrome (RDS)
in premature infants is characterized by lung edema ulti-
mately leading to fibrosis or bronchopulmonary dysplasia
[117]. Testing the hypothesis that increased HA levels in the
alveolar interstitium would be associated with severe RDS;
Juul et al. subjected 34 preterm delivered Macaca nemestrina
monkeys to ventilation and found that HA levels were
elevated (86.3𝜇g/g lung wet weight) in lung extracts with
progressively more severe RDS compared to animals without
RDS (19.6 𝜇g/g) (𝑝 < 0.001) (radiometric assay) [117]. As the
severity of RDS increased, HA was increasingly associated
with the microvasculature in the interalveolar spaces, and in
themost severe cases, HAwas present in the alveolar walls. In
a separate study by Bai et al., HAS3 −/− mice demonstrated
reduced neutrophil infiltration, macrophage inflammatory
protein-2 production, and lung microvascular leakage in
response to ventilator-induced lung injury [118].TheHA pro-
duced by WT mice in response to ventilator-induced injury
contained both HMW (1600 kDa) and LMW (<360 kDa)
HA while only HMW HA was observed in HAS3 −/−
mice. Wang et al. described a therapeutic improvement in
ventilated premature piglets when surfactant treatment was
supplemented with HA [119].

4.9. Bacterial Infection. Bacteria colonize the respiratory
tract by multiplying in or on the airway epithelial mucosa,
causing inflammation, increased mucus secretion, and
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impaired mucociliary clearance [120]. In one report by Juul
et al., neonatal piglet lung HA levels decreased 4 hrs after
inoculation with group B streptococcus (27𝜇g/g wet weight)
and atelectasis plus pneumonia (10 𝜇g/g) compared to control
piglets (51 𝜇g/g) (𝑝 < 0.005) (radiometric assay) [121]. Later
time points were not examined. In a study conducted by
van der Windt et al., enhanced pulmonary inflammation
was associated with decreased Klebsiella pneumoniae growth
in CD44 −/− mice compared to WT mice [122]. Lethal
dosage with this bacterium did not impact the survival
of CD44 −/− mice compared to WT mice, though res-
olution of lung inflammation was delayed. Other studies
confirmed and expanded some of these observations [123,
124]. Marion et al. provided evidence that Streptococcus
pneumoniae have the capacity to utilize HA as a carbon
source during colonization [125]. Intranasal exposure of
staphylococcal enterotoxin B induced elevated levels of HA
in BAL (∼40 pg/mL) compared to control mice (∼18 pg/mL)
(ELISA-like assay) [126] and treatment with an inhibitor
of HA synthesis (4-methylumbelliferone) had a protective
effect on lung injury caused by this toxin [127]. Chang et al.
demonstrated that intratracheal inoculation with Escherichia
coli caused a rapid (2 hr) induction of HAS1 and HAS2 gene
expression associated with increased histological staining for
HA in the lungs [128].

4.10. Conclusions. These studies indicate the following. (i)
The induction of HA synthesis in the lung is an early event
following lung injury, occurring within hours of the original
stimulus. (ii) HA synthesis precedes pulmonary fibrosis, and
HA levels continue at elevated levels throughout the initial
stages of fibrosis. (iii)The clearance of HAmatrices following
pulmonary injury is necessary for the proper resolution of
inflammation. (iv) The size of HA is affected by the stage of
disease and can exacerbate respiratory symptoms following
injury (Figure 2). (v) The covalent modification of HA with
heavy chains from inter-a-inhibitor, by the enzyme TSG-6,
plays a key role in the development of airway inflammation
[15–17, 72, 73] (Figure 2).

5. Overall Summary and Conclusions

The rise and fall of HA levels in the injured lung are essential
for its repair and return to homeostasis (Figure 1). The
data reviewed in this paper present a model whereby HA
synthesis in the airways can be induced by either an acute
injury (i.e., an asthma exacerbation) or a series of chronic
insults (i.e., exposure to environmental irritants, smoking,
lung transplant, genetic diseases, etc.). The induction of HA
synthesis in lung tissue following an acute injury can be
relatively rapid, occurring within the first 24 hrs of injury
[74]. Once induced by injury, lung HA levels can remain
elevated for several weeks [74]. Chronic conditions induce a
low-level, long-term injury that leads to the accumulation of
abnormally high levels of HA in the lung tissue. Following
both acute and chronic pulmonary injury, two modifications
happen to HA that regulate its pathobiology: (i) the covalent
transfer of heavy chains from inter-alpha-inhibitor to the
C6 hydroxyl of an N-acetylglucosamine residue on HA and

(ii) its degradation into LMW fragments (Figure 2). The
former is a process regulated by the enzyme TSG-6 [14, 15, 17]
while the latter is regulated by the activity of hyaluronidases
and the production of free radicals at the site of injury [6, 9].

Clearly there is a connection between elevated HA levels
and its regional distribution with inflammatory cell infil-
tration. Leukocytes are typically found embedded within
HA matrices of the airway submucosa and in perivascular
regions. The covalent modification of HA with heavy chains
from inter-alpha-inhibitor has been shown to promote leuko-
cyte adhesion to HAmatrices [77, 129], and this modification
has been described in several respiratory disorders [15–17, 72,
73]. The effect that this modification has on leukocyte patho-
biology remains to be established and both proinflammatory
and anti-inflammatory data have been reported [1, 2, 15, 130].

While the induction of HA synthesis is clearly triggered
by pulmonary injury, its role in directing fibrotic events
remains to be defined and the signals that orchestrate its
turnover and degradation following injury are not fully
understood. The production of HA fragments, as a result of
matrix remodeling and tissue damage by free radicals, is one
of the signals that mediates inflammation and fibrosis [3, 45].
These HA “danger signals” operate via TLR4, MyD88, and
TIRAP signaling pathways in the airways where they regulate
AHR and the production of proinflammatory cytokines [111].
Intratracheal instillation of LMW HA fragments induces
CD44-dependent AHR while instillation of HMW HA is
protective [39]. Thus, in the airways, and other biological
systems, the size ofHA is one of themechanismswhereby this
relatively simple polysaccharide directs inflammatory and
fibrotic events.

A variety of stimuli have been found to induce the
accumulation of HA in respiratory secretions, reaching levels
between 27 and 547 𝜇g/L in BAL fluid. This is in contrast
to the relatively low levels of HA found in the respiratory
secretions of healthy controls which ranged from 0 to 53 𝜇g/L
in the BAL fluid reported in this review. The variation of HA
levels in the BAL of healthy controls cannot be explained
by difference in analytical techniques since no trend was
observed between these techniques in that regard. It is more
likely that the selection criteria of a particular healthy control
patient cohort and/or the volume of BAL fluid instilled and
collected may be responsible for the range of HA levels
observed in healthy controls.The cellular source of HA found
in respiratory secretions includes the airway epithelium [131],
and the serous epithelial cells of the submucosal glands [132,
133], while it appears to be a minor component of goblet
and mucous gland cell secretions [133].The contribution that
HA makes to respiratory secretions is not fully understood,
though its large hydrodynamic volume is likely to contribute
to mucus hydration and its viscoelastic properties.

While elevated levels of HA promote pulmonary wound
healing in acute injury, it is less clear whether elevated levels
of HA promote wound healing in a chronic state. In allergic
asthma, where the respiratory system mounts an immune
response against a relatively inert “invader,” it is not clear
whether the induction of HA has beneficial or harmful
effects. If HA is exerting a beneficial effect in a specific
respiratory disease, then therapeutic strategies to enhance
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this effect might accelerate and improve the healing process.
Indeed, several reports have described beneficial effects in
the administration of HA, itself, as a therapy for several
pulmonary conditions [19, 95, 97, 98, 107, 108, 119, 134–
150], though themechanisms whereby these beneficial effects
occur remain to be defined. If HA is exerting a negative
effect, such as might be the case in a chronic or allergic
condition, then therapeutic strategies that antagonize HA
synthesis, binding proteins, receptors, and so forth would be
more effective.

In summary, these data present HA as a unique polysac-
charidematrix which contributes to the homeostasis, mainte-
nance, and repair of the injured lung (Figure 2).Thebiochem-
ical and biophysical properties of HA endow this polysaccha-
ride with protective and regenerative effects that contributes
to edema and the regulation of AHR. The accumulation
of HA at sites of pulmonary injury and repair provides
an essential microenvironment that directs inflammatory
events and fibrosis.The failure to mount an effective immune
response, the inability to resolve inflammation, and/or the
development of irreversible fibrosis in the respiratory system
is, in part, influenced by the regulation of this relatively simple
glycosaminoglycan.
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