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A B S T R A C T   

Introduction: Antiretroviral therapy for people living with HIV-1 must be taken lifelong due to the persistence of 
latent virus in long-lived and proliferating CD4+ T cells. Vitamin D3 is a steroidal gene transcription regulator 
which exerts diverse effects on immune and epithelial cells including reductions in CD4+ T cell proliferation and 
improvement in gut barrier integrity. We hypothesised that a high dose of vitamin D3 would reduce the size of 
the HIV-1 reservoir by reducing CD4+ T cell proliferation. 
Methods: We performed a randomised placebo-controlled trial evaluating the effect of 24 weeks of vitamin D3 
(10,000 international units per day) on the HIV-1 reservoir and immunologic parameters in 30 adults on anti-
retroviral therapy; participants were followed for 12 weeks post-treatment. The primary endpoint was the effect 
on total HIV-1 DNA at week 24. Parameters were assessed using mixed-effects models. 
Results: We found no effect of vitamin D3 on the change in total HIV-1 DNA from week 0 to week 24 relative to 
placebo. There were also no changes in integrated HIV-1 DNA, 2-long-terminal repeat (2-LTR) circles or cell- 
associated HIV-1 RNA. Vitamin D3 induced a significant increase in the proportion of central memory CD4+

and CD8+ T cells, a reduction in the proportion of senescent CD8+ T cells and a reduction in the natural killer cell 
frequency at all time points including week 36, 12 weeks after the study drug cessation. At week 36, there was a 
significant reduction in total HIV-1 DNA relative to placebo and persistently elevated 25-hydroxyvitamin D 
levels. No significant safety issues were identified. 
Conclusions: Vitamin D3 administration had a significant impact on the T cell differentiation but overall effects on 
the HIV-1 reservoir were limited and a reduction in HIV-1 DNA was only seen following cessation of the study 
drug. Additional studies are required to determine whether the dose and duration of vitamin D3 can be optimised 
to promote a continued depletion of the HIV-1 reservoir over time. 
Trial registration: ClinicalTrials.gov NCT03426592.   
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1. Introduction 

Antiretroviral therapy (ART) in people living with HIV-1 infection 
(PLHIV) can potently suppress HIV-1 RNA in plasma; however, ART 
cannot eliminate HIV-1 which persists as integrated provirus in long- 
lived and proliferating CD4+ T cells. HIV-1 replicates efficiently 
within CD4+ T cells expressing CCR6, a marker of Th17 cells which line 
the gastrointestinal tract, and causes a profound depletion of CD4+ T 
cells in the gastrointestinal tract following infection.1,2 The loss of CD4+

T cells impairs the gut barrier integrity leading to bacterial translocation 
across the gut wall and chronic immune activation.3,4 This does not 
completely resolve on ART5–7 and may contribute to HIV-1 persistence 
on ART by stimulating the proliferation of latently infected CD4+ T 
cells.8–11 

Vitamin D3 is a steroidal regulator of gene transcription and exerts 
multiple immunomodulatory effects which may be beneficial in target-
ing HIV-1 persistence. Vitamin D3 supplementation in PLHIV has been 
shown to increase the CD4+ T cell percentage and, in viraemic in-
dividuals, to reduce HIV-1 viral load.12,13 In multiple sclerosis, high dose 
vitamin D3 has been shown to reduce T cell proliferation14 and to shift 
CD4+ T cells to a less differentiated phenotype.15 Vitamin D3 has also 
been shown to reduce the frequency of both Th1 and Th17 cells, which 
are known to be preferentially infected in PLHIV on ART.15–19 

Furthermore, vitamin D3 promotes the gut barrier integrity in animal 
models and in vitro20,21 and has been shown to enhance bacterial di-
versity and reduce the bacterial pathogen colonisation in the upper 
gastrointestinal tract in healthy humans.22 

We hypothesised that a high dose vitamin D3 would reduce HIV-1 
persistence on ART through its effects on immune cells and the gut. 
To address this hypothesis, we performed a pilot randomised placebo- 
controlled trial evaluating the effect of 24 weeks of high dose vitamin 
D3 on HIV-1 persistence in PLHIV on suppressive ART. Dose and dura-
tion were based on a multiple sclerosis study demonstrating clear 
immunologic effects of vitamin D3 including a shift towards less differ-
entiated CD4+ T cell subsets.15 We assessed the pharmacokinetics and 
safety of vitamin D3 and its effects on a range of virologic and immu-
nologic parameters. 

2. Materials and methods 

2.1. Study design and participants 

This pilot randomised double-blind placebo-controlled trial was 
conducted between February 5, 2018 and May 9, 2019. Thirty PLHIV 
over 18 years of age on ART with plasma HIV-1 RNA below 40 copies/ml 
for at least 3 years were recruited at three sites in Melbourne, Australia: 
Royal Melbourne Hospital, the Alfred Hospital and Melbourne Sexual 
Health Centre. Participants were required to have a screening 25- 
hydroxyvitamin D level between 50 nM and 125 nM, the lower limit 
being to avoid deficiency within the placebo arm. Complete inclusion 
and exclusion criteria are listed in the Supplementary Material pp 
53–55. 

2.2. Randomisation and blinding 

Participants were randomly assigned 1:1 to vitamin D3 or placebo 
with randomisation stratified by time-of-enrolment cohorts. Each such 
cohort comprised ten participants sequentially enrolled across all sites 
who were randomised and commenced on study drug simultaneously to 
facilitate similar seasonal endogenous vitamin D production over time. 
Details of the random allocation sequence generation, storage and use 
are outlined in the Supplementary Material p 44. Vitamin D3 and pla-
cebo were over-encapsulated with identical hydroxypropylmethyl cel-
lulose capsules to maintain blinding. Participants, study investigators, 
dispensing pharmacists and statisticians remained blinded to the treat-
ment allocation until all data had been analysed. 

2.3. Procedures 

Participants received either 10,000 IU vitamin D3 capsules (Healthy 
Origins, Pennsylvania, USA) or placebo capsules (Swiss Caps Romania 
SRL, Cornu, Romania) which they were instructed to take orally once 
every morning for 24 weeks. The vitamin D3 capsules contained olive oil 
while the placebo capsules contained a mixture of palm oil, sunflower 
oil, rapeseed oil and tuna oil. All participants were also requested to 
consume at least 1g of dietary calcium per day throughout the trial using 
written and online resources (Supplementary Material p 63 and www. 
calorieking.com.au). Participants were advised to remain on ART 
throughout the trial. Study site visits occurred at weeks 0 (baseline), 12, 
24 and 36 (Fig. 1) while phone visits occurred at weeks 2, 6, 18 and 28. 
Details of procedures and specimens collected at each visit are outlined 
in the Supplementary Material pp 47–50 while specimen processing is 
outlined in the Supplementary Material pp 42–43. 

2.4. Laboratory assays 

Details of nested real-time PCRs for total HIV-1 DNA, integrated HIV 
DNA, 2-long terminal repeat (2-LTR) circles and unspliced HIV-1 RNA, 
cellular immunophenotyping using flow cytometry and 25-hydroxyvita-
min D and high sensitivity C-reactive protein (hsCRP) assays are 
described in the Supplementary Material pp 2–3. For flow cytometry 
analysis, T cell maturation subsets were distinguished using CD45RA, 
CCR7 and CD27 as previously described.8,23 Fluorescent antibodies used 
are shown in Table S1 while the gating strategy is shown in Fig. S1. 

2.5. Outcomes 

The primary outcome was the fold difference between the vitamin D3 
and placebo arms in the mean fold change in frequency of total HIV-1 
DNA (copies/106 CD4+ T cells) from week 0 to week 24. Secondary 
outcomes included fold differences between groups in fold change over 
time from week 0 to weeks 12, 24 and 36 in frequency of total HIV-1 
DNA (other than week 24), integrated HIV-1 DNA, 2-LTR circles and 
unspliced HIV-1 RNA and absolute differences between groups in ab-
solute change over time from baseline to weeks 12, 24 and 36 in fre-
quency of CD4+ T cells, CD8+ T cells and NK cells, their maturation 
subsets, activation status, exhaustion marker and chemokine receptor 
expression and serum hsCRP and 25-hydroxyvitamin D levels. Other 
secondary endpoints included study drug and dietary calcium adherence 
and incidence and severity of adverse events. 

2.6. Statistics 

No data was available to estimate the size or standard deviation of 
the effect of vitamin D3 on HIV-1 DNA to perform a power calculation. 
This was a pilot study to generate these estimates to inform a power 
calculation for future studies. Sample size was determined based on cost 
and feasibility. All analyses were by intention-to-treat; no imputation 
was made for missing data. A 2-sided 5% significance threshold (and 
corresponding 95% confidence interval) was used as an indication of 
association. Thus 95% confidence intervals around differences between 
groups that excluded 1 for fold differences or 0 for absolute differences 
were considered significant. The statistical analysis plan is detailed in 
the Supplementary Material pp 17–21 while details of the statistical 

Fig. 1. Study protocol.  
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approach used for each assay are outlined in the Supplementary Mate-
rial p 2. 

2.7. Study approval 

The study was approved by the Human Research Ethics Committee of 
Melbourne Health, Melbourne, Australia and carried out in accordance 
with the National Health and Medical Research Council National 
Statement on Ethical Conduct in Human Research 2007 (updated 2018) 
and the Note for Guidance on Good Clinical Practice (CPMP/ICH-135/ 
95). Written participant consent was obtained prior to any study related 
activities. The trial is registered at clinicaltrials.gov (NCT03426592). 

3. Results 

3.1. Participants 

Of 42 potential participants screened for trial eligibility, 30 were 
enrolled and randomised to the vitamin D3 arm (n = 15) or the placebo 
arm (n = 15). Three participants in the vitamin D3 arm withdrew from 
the study early for personal reasons (two prior to starting study drug and 
one prior to week 12). In the placebo arm, one participant withdrew 
from the study for personal reasons after week 12 and another withdrew 
from the study drug after week 12 due to an adverse event (grade 2 
constipation considered possibly related to study drug) but remained on 
the study and had all study procedures as per protocol (Fig. 2). There-
fore, 12 participants in the vitamin D3 arm and 14 in the placebo arm 
were evaluated for the primary endpoint. Baseline characteristics were 
similar between groups (Table 1). 

3.2. Pharmacokinetics and adherence 

The 25-hydroxyvitamin D levels were similar at baseline between 
groups and increased in the vitamin D3 arm to a mean of 228 nM (95% CI 
187 nM–279 nM) at week 12 and 248 nM (95% CI 203 nM–304 nM) at 
week 24 (Fig. 3A). Relative to the placebo arm, 25-hydroxyvitamin D 
levels changed from baseline by 170 nM (95% CI 131 nM–209 nM) at 
week 12 and 185 nM (95% CI 142 nM–228 nM) at week 24. Levels 
remained slightly elevated relative to the placebo arm at week 36 (dif-
ference 45 nM (95% CI 23 nM–66 nM)) (Fig. 3B). Adherence to study 
drug and dietary calcium was high with no differences seen between 
study arms (Fig. S2). 

3.3. Safety 

One serious adverse event occurred during the trial; this was hospi-
talisation for community acquired pneumonia complicating influenza A 
infection in a placebo arm participant. Non-serious adverse events were 
evenly balanced between groups and were all grade 1 or 2 with the 
exception of one grade 3 event (Table S2); no grade 4 events occurred. 
One case of hypercalcemia occurred; this was asymptomatic and 
occurred in a participant receiving vitamin D3 at week 24. The level was 
minimally elevated at 2.65 mM and returned to normal one week later 
following routine cessation of study drug. No cases of symptomatic 
hypercalciuria occurred; asymptomatic hypercalciuria in the vitamin D3 
arm was 0.58 (95% CI 0.09 to 2.49) fold that in the placebo arm (2 of 13 
participants in the vitamin D3 arm and 4 of 15 in the placebo arm). 

3.4. Virology 

Our primary goal was to determine the effect of high dose vitamin D3 
on markers of HIV-1 persistence (total and integrated HIV-1 DNA, 2-LTR 
circles and unspliced HIV-1 RNA, Fig. 4A–D). For the primary endpoint, 
there was no significant difference in total HIV-1 DNA between partic-
ipants in the vitamin D3 and placebo arms (1.15 (95% CI 0.93 to 1.40) 
fold difference in the change in frequency of total HIV-1 DNA per 106 Fig. 2. Trial profile.  

Table 1 
Baseline characteristics.   

Placebo (n =
15) 

Vitamin D3 

(n = 15) 
Total (N =
30) 

Age, median (IQR), years 49 (38–54) 50 (35–52) 49 (38–52) 
Gender and sex – cisgender male, 

no. (%) 
15 (100) 15 (100) 30 (100) 

Race 
Indigenous Australian, no. (%) 0 (0) 1 (7) 1 (3) 
White, no. (%) 14 (93) 13 (87) 27 (90) 
Black, no. (%) 1 (7) 0 (0) 1 (3) 
Pacific Islander, no. (%) 0 (0) 1 (7) 1 (3) 

Duration of HIV-1 infection, 
median (IQR), years 

12 (9–15) 11 (6–18) 11 (7–16) 

CD4 T cell count nadir, median 
(IQR), cells/μL 

320 
(180–476) 

265 
(52–499) 

280 
(109–484) 

Time since CD4 T cell count nadir, 
median (IQR), years 

9 (4–12) 7 (5–11) 8 (5–12) 

Most recent CD4 T cell count, 
median (IQR), cells/μL 

700 
(630–1154) 

830 
(701–910) 

782 
(635–1052) 

ART containing: 
NNRTI, no. (%) 9 (60) 4 (27) 13 (43) 
Integrase inhibitor, no. (%) 5 (33) 10 (67) 15 (50) 
Protease inhibitor, no. (%) 1 (7) 3 (20) 4 (13) 

Systolic BP, median (IQR), mmHg 120 
(110–133) 

125 
(115–130) 

120 
(115–130) 

Diastolic BP, median (IQR), 
mmHg 

74 (70–85) 80 (72–89) 80 (70–85) 

BMI, median (IQR), kg/m2 27 (25–28) 25 (23–29) 26 (24–28) 
No. of comorbidities, median 

(IQR) 
2 (1–8) 2 (1–4) 2 (1–5) 

Comorbidities 
Smoking, no. (%) 2 (13) 3 (20) 5 (17) 
Alcohol misuse, no. (%) 1 (7) 2 (13) 3 (10) 
Intravenous drug use, no. (%) 1 (7) 1 (7) 2 (7) 
Previous hepatitis B, no. (%) 1 (7) 1 (7) 2 (7) 
Previous hepatitis C, no. (%) 3 (20) 2 (13) 5 (17) 
Hypertension, no. (%) 2 (13) 3 (20) 5 (17) 
Hypercholesterolaemia, no. (%) 4 (27) 3 (20) 7 (23) 
Diabetes mellitus, no. (%) 1 (7) 0 (0) 1 (3) 
Class 1 obesity, no. (%) 0 (0) 2 (13) 2 (7) 
Ischemic heart disease, no. (%) 1 (7) 0 (0) 1 (3) 
Congestive cardiac failure, no. 
(%) 

0 (0) 0 (0) 0 (0) 

COPD, no. (%) 0 (0) 1 (7) 1 (3) 
Malignancy, no. (%) 1 (7) 0 (0) 1 (3) 

Abbreviations: ART = antiretroviral therapy; NNRTI = non-nucleoside reverse 
transcriptase inhibitor; COPD = chronic obstructive pulmonary disease. 
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CD4+ T cells from baseline to week 24 (p = 0.19)). From baseline to 
week 12 there was a 1.24 (95% CI 1.01 to 1.51) fold increase (p = 0.039) 
and from baseline to week 36 there was a 0.76 (95% CI 0.62 to 0.94) fold 
decrease (p = 0.009) in frequency of total HIV-1 DNA relative to those in 
the placebo arm (Fig. 4E). The other virologic endpoints showed no 
significant effect of vitamin D3 (Fig. 4E). All participants maintained a 
plasma viral load below 40 HIV-1 copies/ml throughout the trial. 

3.5. CD4+ and CD8+ T cell maturation subsets 

Our secondary goal was to determine the impact of high dose vitamin 
D3 on immune cell differentiation and other immunologic parameters 
that might be relevant to HIV reservoir size. There were no significant 
differences between arms in change over time in CD4+ T cells, CD8+ T 
cells or B cells as a proportion of viable cells (Table S3). We expected 
vitamin D3 to shift CD4+ T cells to a less differentiated phenotype.15 

Accordingly, relative to placebo, the vitamin D3 arm was associated with 
an increased frequency of central memory (CM) CD4+ T cells at each 
time point and a decrease in frequencies of effector memory (EM) and 
terminally differentiated (TD) CD4+ T cell subsets which were signifi-
cant at week 36 for EM CD4+ T cells and at week 24 for TD CD4+ T cells 
(Fig. 5A, Table S3 & Fig. S3). Similarly, CD8+ T cells showed a clear shift 
towards less differentiated subsets in participants receiving vitamin D3 
relative to placebo with a significant increase in CM CD8+ T cells and a 
decrease in effector memory re-expressing CD45RA (EMRA) CD8+ T 
cells at all time points (Fig. 5B, Table S3 & Fig. S4). Naïve CD8+ T cell 
frequency also increased at week 36 relative to placebo. 

3.6. CD4+ and CD8+ T cell activation, exhaustion and chemokine 
receptor expression 

Relative to the placebo arm, participants in the vitamin D3 arm had 

an increase in frequency of activated CD38+HLA-DR+ CD8+ T cells at 
week 12 and of exhausted PD-1+ CD8+ T cells at week 24 (Table S3 & 
Fig. S5). At week 36, participants in the vitamin D3 arm had an increase 
in frequency of activated CD38+HLA-DR+ CD4+ T cells (Table S3 & 
Fig. S6). Relative to placebo, participants in the vitamin D3 arm 
demonstrated an unexpected increase in frequency of Th17 
(CCR6+CXCR3-) CD4+ T cells at weeks 12 and 24 whereas there was a 
reduction in frequency of Th1 (CCR6-CXCR3+) CD4+ T cells at week 12 
(Table S3 & Fig. S6). Participants in the vitamin D3 arm demonstrated a 
reduction in the frequency of senescent CD57+ CD8+ T cells at each time 
point relative to placebo (Table S3 & Fig. S5). 

3.7. Natural killer (NK) cells and high-sensitivity C-reactive protein 
(hsCRP) 

Relative to placebo, in the vitamin D3 arm there was a significant 
decrease in the frequency of total NK cells at all time points (Fig. S7 & 
Table S3). There was no significant difference between arms in the 
change over time in the frequency of NK cell maturation subsets, 
including regulatory NK cells (CD56bright), cytotoxic NK cells 
(CD56dimCD16+) or cytotoxic NK cells that had shed CD16 
(CD56dimCD16-24) (Table S3 & Fig. S8). We also evaluated NK cells 
expressing NKG2A and NKG2C, receptors for the non-classical MHC 
class Ib molecule HLA-E which appears to play an important role in 
immune control of HIV-1.25 The NKG2A inhibits NK cell activation upon 
recognition of self-peptide derived from the leader sequence of MHC 
class Ia (HLA-A, -B or –C) presented on HLA-E; however, pathologic 
alteration of peptide expression on HLA-E can activate NK cells either 
through NKG2A disinhibition or NKG2C activation.26–28 We found an 
increase in the frequency of NKG2A+NKG2C– NK cells and decrease in 
frequency of NKG2A-NKG2C+ NK cells at weeks 12 and 24 relative to 
placebo (Fig. S7 & Table S3). Participants in the vitamin D3 arm had an 

Fig. 3. Pharmacokinetics. 
(A) 25-hydroxyvitamin D levels within each group 
over time; means and 95% confidence intervals are 
depicted. n = 12, 12, 12, 12 for vitamin D3 arm and n 
= 15, 15, 14, 13 for placebo arm at weeks 0, 12, 24 
and 36 respectively (sample missing in one placebo 
arm participant at week 36). (B) Effect of vitamin D3 
on change in 25-hydroxyvitamin D levels from base-
line relative to placebo. Means and 95% confidence 
intervals are shown as determined using mixed effects 
linear models. n = 12, 12, 12 for vitamin D3 arm and 
n = 15, 14, 13 for placebo arm at weeks 12, 24 and 36 
respectively.   
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increase relative to placebo in the frequency of activated 
CD38+HLA-DR+ NK cells at weeks 24 and 36 (Fig. S7 & Table S3). 
There was no difference between arms in the change in hsCRP level over 
time (Table S3). 

4. Discussion 

This is the first reported study to evaluate the effect of high dose 
vitamin D3 on the HIV-1 reservoir in PLHIV on ART. Although no 
toxicity has ever been reported with doses of vitamin D3 up to 10,000 
IU/day,29 this dose has not previously been evaluated in the context of 
ART. We found no difference between the vitamin D3 arm and the pla-
cebo arm in the change in frequency of total HIV-1 DNA within CD4+ T 
cells from baseline to week 24. However, relative to placebo, there was 
an increase in total HIV-1 DNA in the vitamin D3 arm from baseline to 
week 12 and a decrease from baseline to week 36 (12 weeks after 
ceasing study drug) without any significant changes in integrated HIV-1 
DNA, 2-LTR circles or cell associated HIV-1 RNA. We found an increase 
in the frequency of both CD4+ and CD8+ CM T cells, a reduction in se-
nescent CD8+ T cells and a reduction in NK cells at all time points, 
including following cessation of vitamin D3. We also saw some changes 
in T cell activation and exhaustion although these were not maintained 
over the duration of the study drug administration. No significant safety 
issues were identified throughout the trial. 

Our study demonstrated limited impact of high dose vitamin D3 on 
the HIV-1 reservoir. The increase that we saw in total HIV-1 DNA at 

week 12 was of marginal significance and not maintained at week 24 
whilst still on study drug. However, the reduction in total HIV-1 DNA at 
week 36 had a confidence interval well clear of 1.0 making a false 
positive result less likely. The 25-hydroxyvitamin D levels were still 
elevated at this time point relative to placebo, likely reflecting its long 
half-life in vivo.30 We believe that our findings could have several in-
terpretations: the effect of vitamin D3 on HIV-1 DNA could be 
time-dependent (ie 24 weeks of exogenous vitamin D3 exposure is 
insufficient but 36 weeks is sufficient for a beneficial effect), 
dose-dependent (ie vitamin D3 only exerts a beneficial effect at lower 
levels) or withdrawal-dependent (ie exposure to a high dose was 
necessary for a beneficial effect to be seen at subsequent lower 
25-hydroxyvitamin D levels). Further trials would be required to 
determine which of these explanations is correct. 

Whilst the point estimates for the mean effect on integrated HIV-1 
DNA were similar to those for total HIV-1 DNA at each time point, 
confidence intervals were wider in keeping with the greater coefficient 
of variation for the integrated HIV-1 DNA assay.31 Despite the observed 
changes in HIV-1 DNA, it is important to note that more than 90% of 
total HIV-1 DNA detected by standard PCR methods is defective and 
therefore not capable of replicating and causing viral rebound upon ART 
cessation.32 Whilst the frequency of total HIV-1 DNA in PLHIV on 
long-term suppressive ART correlates closely with the intact virus,33 we 
cannot exclude a differing effect of vitamin D3 on the intact and defec-
tive HIV-1 DNA. Quantification of the intact HIV-1 DNA and replication 
competent virus will be important in any future studies.32 

Fig. 4. Virology. 
(A) Total HIV-1 DNA, (B) integrated HIV DNA, (C) 2- 
LTR circles and (D) unspliced HIV-1 RNA within each 
group over time; means and 95% confidence intervals 
are depicted. n = 12, 12, 12, 12 for vitamin D3 arm 
and n = 15, 15, 14, 14 for placebo arm at weeks 0, 12, 
24 and 36 respectively for each assay. (E) Effect of 
vitamin D3 on change in frequency of HIV-1 DNA and 
RNA within CD4+ T cells from baseline relative to 
placebo. Means and 95% confidence intervals are 
shown as determined using mixed effects negative 
binomial regression models. n = 12, 12, 12 for 
vitamin D3 arm and n = 15, 14, 14 for placebo arm at 
weeks 12, 24 and 36 respectively for each assay.   
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The most striking findings in our study were immunological. Vitamin 
D3 induced a clear increase in the proportion of both CD4+ and CD8+ CM 
T cells and a reduction in more differentiated T cells. This likely reflects 
the known effect of vitamin D3 in reducing CD4+ and CD8+ T cell pro-
liferation.14,34 The CD4+ T cell proliferation is an important mechanism 
for HIV-1 persistence on ART.8,9 Previous work has shown a higher 
frequency of HIV-1 DNA and clonal expansion of infected cells within 
more mature CD4+ T cell subsets such as EM compared to less mature 
CM CD4+ T cells.35 These changes in CD4+ T cell subsets were observed 
at all time points, including at week 36 despite the reduction in 
25-hydroxyvitamin D level, suggesting that an ongoing antiproliferative 
effect could have contributed to the reduction in total HIV-1 DNA seen at 
week 36. 

In regard to T helper subsets, the reduction in Th1 cell frequency was 
not surprising16 whereas we expected a decrease in the frequency of 
Th17 cells based on findings of high dose vitamin D3 in multiple scle-
rosis.15 However, the effect of vitamin D3 on Th17 cells may not 
necessarily be the same for PLHIV as for people with multiple sclerosis. 
For instance, if HIV-1 selectively depletes Th17 cells in more differen-
tiated CD4+ T cell subsets, a vitamin D3-induced shift towards less 
differentiated subsets (which was seen in both our study and the mul-
tiple sclerosis study15) could increase the total Th17 cell frequency, even 
if vitamin D3 reduced the frequency of Th17 cells within each 

maturation subset. Irrespective, the increase in Th17 cells in our study 
may have contributed to the transient increase in total HIV-1 DNA at 
week 12 as CD4+ T cells expressing CCR6 are also known to be enriched 
for HIV-1 DNA.18,19,36 

We observed changes in CD8+ T cells and NK cells induced by 
vitamin D3 that may have favoured clearance of infected cells. For 
example, the reduction of senescent CD8+ T cells by vitamin D3 at all 
time points may have enhanced HIV-1 specific CD8+ T cell function and 
therefore elimination of HIV-1-infected cells.37,38 Further studies would 
be required to evaluate this possibility. The increase in frequency of 
NKG2A+NKG2C– NK cells could also have contributed to the depletion 
of total HIV-1 DNA. Infected CD4+ T cells can present a conserved HIV-1 
peptide on HLA-E which is not recognised by the inhibitory 
NKG2A/CD94 receptor complex leading to disinhibition and potent 
killing by NKG2A+ NK cells.39 In contrast, NK cells expressing NKG2C 
do not exhibit enhanced degranulation in response to HIV-1-infected 
cells potentially due to co-expression by these NK cells of inhibitory 
receptors to HLA-C.39 

The main strength of this study was its randomised double-blind 
placebo-controlled design providing a high degree of internal validity. 
The main limitation was the small sample size which increases the risk of 
false negative results. Additionally, multiplicity of testing with a small 
sample size increases the risk of false positive results. However, as a pilot 
trial, our analyses were exploratory and results will need to be 
confirmed in future studies. Other important limitations were that intact 
virus was not measured and that we only evaluated the HIV-1 reservoir 
in blood whereas the majority of the reservoir resides in lymphoid tissue. 
The predominance of white males in our trial limits generalisability of 
our findings to females and other racial groups. Finally, we cannot 
exclude the possibility of some of our results being due to differences in 
oil content between the vitamin D3 and placebo capsules; however, this 
seems unlikely considering that these are commonly consumed in much 
higher quantities in the diet. 

5. Conclusions 

Vitamin D3 had no effect on the change in frequency of total HIV-1 
DNA in peripheral blood CD4+ T cells from baseline to week 24. How-
ever, it had a number of immunologic effects which may be relevant to 
the HIV-1 reservoir size as there was a reduction in total HIV-1 DNA at 
week 36, 12 weeks after ceasing the study drug, with persistently 
elevated 25-hydroxyvitamin D levels at this time point compared to 
placebo. Additional studies are required to determine whether the dose 
and duration of vitamin D3 can be further optimised to promote a 
continued depletion of the HIV-1 reservoir over time. 
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