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Abstract

Life’s fundamental processes involve multiple molecules operating in close proximity within cells. 

To probe the composition and kinetics of molecular clusters confined within small (diffraction-

limited) regions, experiments often report on the total fluorescence intensity simultaneously 

emitted from labeled molecules confined to such regions. Methods exist to enumerate total 

fluorophore numbers (e.g., step counting by photobleaching). However, methods aimed at step 

counting by photobleaching cannot treat photophysical dynamics in counting nor learn their 

associated kinetic rates. Here we propose a method to simultaneously enumerate fluorophores and 

determine their individual photophysical state trajectories. As the number of active (fluorescent) 

molecules at any given time is unknown, we rely on Bayesian nonparametrics and use specialized 

Monte Carlo algorithms to derive our estimates. Our formulation is benchmarked on synthetic 

and real data sets. While our focus here is on photophysical dynamics (in which labels transition 

between active and inactive states), such dynamics can also serve as a proxy for other types of 

dynamics such as assembly and disassembly kinetics of clusters. Similarly, while we focus on the 

case where all labels are initially fluorescent, other regimes, more appropriate to photoactivated 

localization microscopy, where fluorophores are instantiated in a non-fluorescent state, fall within 

the scope of the framework. As such, we provide a complete and versatile framework for 

the interpretation of complex time traces arising from the simultaneous activity of up to 100 

fluorophores.
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1 Introduction

Fluorescently labeled molecules, such as labeled proteins, are often used to create contrast 

between a cell’s background and the labeled molecular species of interest [1, 2, 3]. As 

biological processes unfold within cellular environments, these labeled molecular species 

may aggregate into clusters giving rise to the appearance of bright spots in fluorescence 

microscopy [4, 5, 6, 7]. Assessing the composition of these clusters on the basis of the spot’s 

variable brightness is a key step toward unraveling the role of molecular clusters [4, 5, 8, 9, 

10, 6, 7].

Directly enumerating fluorophores and tracking their photophysical dynamics by 

discriminating between them on the basis of their physical location [11] is often impossible 

as typically an entire bright spot lies below the diffraction limit [2, 3]. Furthermore, 

fluorescence ruler methods, which enumerate fluorophores across time by comparing the 

brightness of a region of interest (ROI) to the brightness of a known calibration standard, are 

unreliable when the number of fluorophores is large on account of the inherent uncertainty 

introduced by photon shot noise which increases with growing fluorophore numbers [12, 

13]. Other sources of uncertainty, beyond shot noise, include camera or detector noise and 

the rapid rise and fall of fluorescence intensity of the spot [4, 5]. The latter can arise on 

account of photophysical activity of the individual fluorophore labels as they cycle between 

fluorescently emitting or active (i.e., bright) and non-emitting or inactive (i.e., dark or 

photobleached) states [14] or it can arise due to assembly and disassembly of a cluster as 

individual constituents bind and unbind. For the purposes of this manuscript we will focus 

on brightness steps as being caused exclusively by photophysical dynamics and postpone 

further mention of (dis)assembly to the Discussion. A cartoon depicting this process is 

shown in figure 1.

Traditionally, Photobleaching step analysis (PBSA) methods were developed to enumerate 

the number of fluorophores within a spot [12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 

24, 25]. Such methods proceed in many ways; for example, by exploiting hidden Markov 

models [23, 25], data filtering to identify steps [17], statistical measures to identify expected 

violations of statistics characteristic of steps [21, 18, 20, 19], or neural nets [22]. In a 

recently submitted manuscript, additional ways of automating and improving upon PBSA 

methods listed above have also been explored [26]. Yet all PBSA are limited to clusters 

where fluorophores irreversibly inactivate one at a time until they are all photobleached 

giving rise to step-like transitions between brightness levels [27, 15, 2, 28, 29, 30, 31, 32, 33, 

34, 35, 36, 37, 38, 39].

Our goal is to present a general framework that can simultaneously count and determine the 

photo-trajectories of fluorophores within a diffraction-limited ROI while taking into account 

photophysical artifacts such as blinking. To achieve this: 1) we exploit a realistic generative 
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model that includes accurate photophysics, learns photophysical parameters, and can treat 

detailed camera models; 2) we relax the requirement that fluorophores all initialize from the 

bright state; and 3) we provide full Bayesian analysis providing not only point estimates, 

but also uncertainties over all unknown parameters. We show that the novel aspects of 

our method allow us to count upwards of 100 fluorophores in a single ROI. By virtue 

of the generality of our framework, we have the ability to treat other camera models or 

re-interpret the brightness step transitions as cluster assembly and disassembly kinetics. To 

illustrate our method, we use data in which a spot is illuminated with bright light and whose 

active fluorophores undergo photophysical transitions between bright and dark states before 

eventually photobleaching. As the number of fluorophores at any given time is unknown, 

we exploit tools within Bayesian nonparametrics [40, 41], in particular the Beta-Bernoulli 

process (BBP) [42, 43] never previously exploited in assessing the kinetics and composition 

of molecular clusters.

2 Methods

Here we set up: 1) the forward model, i.e., a model describing the stochastic dynamics 

of a large collection of molecules as well as other contributions to the data; and 2) 

discuss the inference strategy required to learn the number of fluorophores and their 

photophysical trajectories from the data. In particular, we show how we estimate the state 

(for simplicity we refer to photo-states as states) of each fluorophore at each time, the 

transition probabilities between fluorophore states, the probability that a fluorophore starts 

bright, the fluorophore mean brightness, and the background mean brightness. As with all 

methods within the Bayesian paradigm, whether parametric or nonparametric, we provide 

not only a point estimate for the maximum a posteriori (MAP) value of each variable, but 

also achieve full posterior inference with credible intervals.

2.1 Forward model

The forward model describes how the data are generated. We start with R diffraction-limited 

ROIs, indexed by r = 1, …, R. Each ROI has Kr fluorophores indexed by m = 1, …, Kr. We 

record the brightness (measured in ADUs) of each ROI for N successive time levels, indexed 

by n = 1, …, N. The brightness of the ROI r, at time level n is denoted wnr and is conditioned 

on the states of the fluorophores within the ROI at that time. The state of the kth fluorophore 

in ROI r at time level n is labeled Sn
k, r. For simplicity, at each time level, we let snk, r be in 

one of three states: dark, σD, active, σA, and photobleached, σB. We tackle the obstacle of 

multiple bright states in the supplement (supplement 5.5).

At the first time level, each fluorophore in each ROI, starts either active or dark with 

probabilities given by π0 which is an array with two elements: the probability of a 

fluorophore starting bright, π0A and the probability of a fluorophore starting dark, π0D. 

At each following time level, n, the state of each fluorophore is conditioned on the previous 

state of the fluorophore according to π, the transition probability matrix. Each element, πij, 

of the matrix represents the probability that a fluorophore will be in state σj given that it was 

previously in state σi (supplement 5.2). These transitions include “dark to dark”, “dark to 

Bryan et al. Page 3

Nat Comput Sci. Author manuscript; available in PMC 2022 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



bright”, “bright to bright”, “bright to dark”, “bright to photobleached”, or “photobleached to 

photobleached” transitions (figure 1).

Our kinetic scheme is mapped here,

s1
k, r  Categorical  π0 (1)

snk, r ∣ sn − 1
k, r  Categorical  πsn − 1

k, r (2)

Where Sn
k, r is the state of fluorophore k in ROI r at time level n, ~ means “is sampled from”, 

| means “given” or “conditioned on”, Categorical (x) means “the categorical distribution 

with probability mass x”, and πsn − 1
k, r  means “the row of π corresponding to the state of 

sn − 1
k, r ”. The support for these categorical distributions is understood to be the set of possible 

states of the fluorophores, {σD, σA, σB} meaning that for all n, k, and r, snk, r = σD, snk, r = σA, 

or snk, r = σB.

At each time level, the fluorophores in each ROI give rise to the mean brightness of the 

ROI at the time level, μnr. The mean brightness, μnr is the expected number of photons for 

the time level (calculated as the time step multiplied by mean photons emitted per unit time 

for the time level). We can decompose it into the sum of the mean background brightness of 

the ROI, μB
r , and the mean fluorophore brightness, μA, multiplied by the number of active 

fluorophores in the ROI,

μnr = μB
r + ∑

k = 1

Kr
μsnk, r (3)

Where μsnk, r means “the brightness of the state corresponding to Sn
k, r”, as in, if Sn

k, r = σA

then μsnk, r = μA or if Sn
k, r = σB then μsnk, r = 0. We note that ∑k = 1

Kr μsnk, r simply counts how 

many fluorophores are in the active state in the ROI at the time level of interest.

For data obtained with an EMCCD camera the brightness measured, wnr, is conditioned on 

the mean brightness and the gain, G, through a gamma distribution [44]

wnr ∣ μnr Gamma μnr /2, 2G . (4)

This model takes into account both shot and the readout noise [45]. Substituting Eq. (3) into 

Eq. (4) we find

W n
r ∣ Sn

1:Kr, r, μA, μB
r Gamma 1

2 μB
r + ∑

k = 1

K
μsnk, r , 2G . (5)
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With this model, the mean expected readout is μnrG ADUs (units of camera readout) with a 

standard deviation of 2μnrG2 ADUs. Thus our model’s noise scales with the brightness with 

an excess noise factor of 2 that is characteristic of EMCCDs [46, 44]

This scheme, where many fluorophores give rise to a single measurement (the brightness at a 

time level), takes the form of a factorial hidden Markov model [47, 48].

2.2 Inverse formulation

We now develop the inverse formulation needed to estimate parameters from the data given 

a known number of ROIs, R, and associated time trace lengths, N. Following the Bayesian 

paradigm, we place prior distributions on all parameters whose posterior distribution we 

wish to determine. A graphical representation of our inverse model is shown in figure 2. 

Our choice of priors for transition rates and brightness parameters is straightforward and 

can be found in the SI (See supplemental section 5.1). However, our prior on the number of 

fluorophores is less straightforward as it requires a Bayesian nonparametric formulation that 

we outline below.

As we cannot set a prior on the number of fluorophores in each ROI, Kr, we invoke Bayesian 

nonparametrics in our analysis. Briefly, we implement this using a nonparametric weak limit 

[49, 50]. That is, we assume an exceedingly large number of model fluorophores in the 

ROI, K ≫ Kr, indexing each fluorophore with k = 1, …, K. We then assign each model 

fluorophore a load variable bk,r. If the load is on, bk,r = 1, we say that the fluorophore 

contributes to the ROI’s brightness. If the load is off, bk,r = 0, then the fluorophore is 

a virtual fluorophore which does not contribute to the brightness. Thus by summing the 

loads over all model fluorophores, we obtain the number of fluorophores located within 

the ROI. A load, bk,r, is a random variable sampled from the Bernoulli distribution with 

hyperparameter γ

bk, r Bernoulli γ
K + γ − 1 . (6)

This probability mass is motivated by the Beta-Bernoulli process [42, 43] further discussed 

in supplement 5.4. In particular, as K becomes large, formally as K → ∞, the probability 

distribution converges to a distribution in which an infinite number of model fluorophores 

are considered [49, 50]. This choice of prior allows for inference independent on our choice 

for K provided a sufficiently large K (exceeding any reasonable number of fluorophores) is 

set; see supplement 5.10).

In analogy to equations (1)–(5), states are sampled just as we did in the forward model, 

except that each measurement, wnr, is now conditioned on the loads

s1
k, r ∣ π0  Categorical  π0 (7)

Sn
k, r ∣ Sn − 1

k, r , π  Categorical  πsn − 1
k, r (8)
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wnr ∣ sn1:K, r, b1:K, r, μA, μB
r Gamma 1

2 μB
r + ∑

k = 1

K
bk, rμsnk, r , 2G . (9)

Here ∑k = 1
K bk, rμsnk, r enumerates the number of fluorophores simultaneously active (i.e., 

loads in the active state in the ROI at time level n).

Lastly, if experiments are carried out long enough, all fluorophores eventually irreversibly 

photobleach. As such, we have knowledge of the final states of the fluorophores. Put 

differently, the fluorophore states at the last time level are fixed at

sN
k, r = σB . (10)

As such SN
k, r is shaded in grey in figure 2.

Together, these equations allow us to construct the high dimensional posterior over the 

collection of random variables (S1:N
1:K, 1:R, b1:K,1:R, μA, μB

1:R,π, and π0). This posterior 

does not assume an analytical form. As such, we employ the Markov chain Monte Carlo 

framework to computational sample parameters from this posterior [51, 52, 40, 53]. Briefly, 

our Gibbs sampler starts with an initial set of values for the parameters and attractively 

samples new values for each parameter one at a time while holding the others fixed 

(supplement 5.7).

3 Results

Here we demonstrate our method on simulated and experimental data for purposes of 

model validation. We show that we can accurately learn the number of fluorophores within 

in an ROI as well as the fluorophore photo-trajectories. We do so robustly even as the 

number of fluorophores approaches 100. In the supplement, we perform a more detailed 

robustness analysis on our method using simulated data (supplement 5.10). There, we test 

our method by varying the number of loads and the number of simulated fluorophores, and 

the fluorophore state model.

To validate our method on real data, we analyzed brightness traces where fluorophores 

undergo transitions between photophysical states as they eventually photobleach. This data 

uses Gattaquant DNA origami constructs with known number of fluorophore binding sites 

(such that ground truth be known on the total expected number of fluorophores) labelled 

with ATTO-647N fluorophores with known binding efficiency [26].

Traces with ATTO647N fluorophores examined by us and by others [54] show that 

ATTO647N has two bright states (see SI section 5.13 for plots of the data traces). We 

note that in the following sections, our model is supplemented to accommodate a second 

bright state for the fluorophores in the data we analyze. The expanded model is discussed in 

supplement 5.5.
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3.1 Data acquisition

Data acquisition, provided by Hummert and Yserentant et al. [26], is briefly summarized 

here. ATTO647N labeled DNA oligomers were bound to DNA origami constructs. The DNA 

origami were imaged using a custom built Nikon Eclipse microscope with total internal 

reflection fluorescence (TIRF) illumination and a back illuminated EMCCD iXon Ultra 897 

camera [26]. A log of Gaussian filter was used to select ROIs. Traces including artifacts 

such as diffusing fluorophores where excluded. For each ROI at each time level, we summed 

the brightness of every pixel within the ROI to get the total ROI’s brightness at each time 

level (i.e., the brightness time trace). We took time traces using two different types of of 

DNA origami constructs with 20 and 35 binding sites, respectively. For the 20 binding site 

origami, movies were taken for 1000 seconds at 50ms camera exposure (20000 frames) with 

a gain of 50. For the 35 binding site origami, movies were taken for 3000 seconds at 200ms 

camera exposure with an gain of 10 (15000 frames).

In order to analyze traces with more than 20 or 35 fluorophores, we also summed the 

brightness of every pixel involving multiple ROIs to get the total brightness arising from 

these combined ROIs at each time level. Because our camera model is a gamma distribution 

which is closed under addition, this procedure generates controlled traces with a ground 

truth containing known multiples of 20 or 35 fluorophores.

3.2 Results on simulated data

We evaluated our method with data simulated using the forward model put forward in Eqs. 

(1)–(5) with parameters chosen to mimic real data. We simulated 50 ROIs containing 14 

fluorophores on average. The traces are 1000 s long with brightness wnr collected every 50 

ms, so 20000 total frames. The exact number of fluorophores in each ROI is sampled from 

a binomial distribution to mimic 20 binding sites with 70% labeling efficiency. The gain 

used for the simulation was 50 [55]. The dimensionless background brightness parameters 

are μB
r = 1000. The fluorophores were simulated with two bright states with brightness given 

by μA1 = 450 and μA2 = 350 (plus one dark state and a photobleached state with brightness 

given by μD = μB = 0). These values were chosen to mimic the experimental data that we 

analyze in section 3.4. For example, the height and duration of a simulated photobleaching 

event qualitatively match those seen in the real data (see SI section 5.13).

Figure 3 shows the results for our analysis. The left panel shows the measured brightness 

versus time trace, superimposed with a sampled mean brightness over time, and the ground 

truth mean brightness over time. By mean brightness over time we mean the mean expected 

measurement at each time, μnr, given the number of fluorophores in each state at that 

time level, the brightness of each state, and the camera gain. The mean brightness over 

time directly informs us on the photo-states of the fluorophores; see Eq. 3. Importantly, 

we capture all brightness drops due to blinking (i.e., photophysical dynamics) that cannot 

otherwise be obtained using existing PBSA methods that have built into them assumptions 1 

and 2 discussed in the introduction.
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On the right panel we show posterior over the number of fluorophores per ROI. That is, we 

find Br = ∑k = 1
K bk

r for each ROI and each sample of our posterior. We then histogram the 

Br’s for r = 1, …, R. In the limit that the number of ROIs is large, this should converge 

to the ground truth distribution of fluorophore numbers marginalized over the uncertainty 

associated with the number of fluorophores in a single ROI. We calculate the mean error 

of our method as the average difference between our estimate and the ground truth. Our 

sampled mean expected brightness trace matches well with the ground truth (within 1 

fluorophore). Error analysis shows that roughly half of the samples were equal to the ground 

truth. No samples were more than 2 fluorophores off.

3.3 Comparison against other methods

Here we compare the results of our method to those obtained using the change point method 

of Tsekouras et al. [15], the two state model of Garry et al. [25], as well as a ruler method 

[12, 13]. We note that the Garry et al. method is equivalent to a two state implementation 

of our own method though they focus on state populations whereas we look at the state 

of each individual fluorophore. As such, we use our own method, but modified to include 

only one bright state, one photobleaching state, and no dark state, when comparing our 

method to the two state model. Our implementation of the ruler method is explained in SI 

section 5.9. We compare the methods on three different data sets: 1) data simulated using 

the same parameters as in the demonstration (section 3.2); 2) data simulated in which some 

fluorophores initiate in the dark state; and 3) data simulated with higher noise. Figure 4 

shows the results of our comparison.

As seen in the top row of figure 4, all three methods, besides the two state model, do 

reasonably well (within 20% error) in inferring the number of fluorophores using the base 

set of parameters. The two state model underestimates the number of fluorophores due to the 

fact that it cannot account for blink events (see SI section 5.10.3). Note that the mean error 

(the average difference between the estimated number of fluorophores in an ROI and the 

ground truth number of fluorophores used in the simulation) was smallest for our method. 

That all four methods do well is expected because the data is clean and the steps are easy to 

see by eye and therefore all three methods should do well at identifying brightness levels and 

inferring the number of fluorophores.

Next we look at simulated data in which some (40%) of the fluorophores start in the dark 

state. The second row of figure 4 shows the results. Here, the two state model, the ruler 

method, and the change point method underestimate the number of fluorophores by over 

40% because they do not allow for fluorophores to initiate in a dark. Our method, which 

allows fluorophores to initiate in such a state, learns the number of fluorophores with less 

than two fluorophores mean error.

The last row of figure 4 shows results on data simulated with higher noise. The higher noise 

level was achieved by decreasing the brightnesses, μA and μB. This physically represents 

lowering the intensity of the laser used to excite the fluorophores down to a level where 

shot noise dominates. We simultaneously raised the gain to keep the average brightness 

at the same level. Under these conditions, the two state model no longer underestimates 
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the number of fluorophores as brightness drops arising from blinking events are within the 

variance of the noise. As such, the two state model becomes reasonable. Our model, which 

has four states including two bright states and a dark state, has negligibly greater mean error 

than the two state model in this experiment, due to slight overfitting from having two bright 

states with brightnesses very close to each other relative to the measurement noise. While 

the two state model was able to infer the number of fluorophores in the noisy data essentially 

as accurately as our method, it was unable to do so in the low noise limit (figure 4 top row). 

As such, our physically-inspired method with photophysical dynamics reveals itself to be 

most robust across a range of scenarios.

3.4 Results on experimental data

Results from experimental data are shown in the top left and bottom left of figure 5. Here 

we plot the inferred distribution for the number of fluorophores in an ROI against the 

ground truth distribution for the number of fluorophores. The ground truth distribution of 

fluorophores here is binomially distributed [48] assuming a 70% percent labeling efficiency. 

The 70% labeling efficiency was provided to us by the manufacturer.

We note that the width of the ground truth distribution for the number of fluorophores 

in the ROI arises due to labeling efficiency of the fluorophores, whereas the width in the 

distribution of the learned number of fluorophores arises from labeling efficiency as well as 

uncertainty in the inference. As such, we expect the distribution over the learned number 

of fluorophores to naturally be wider than the ground truth distribution for the number of 

fluorophores. For example, in the extreme case where we had 100% labeling efficiency, 

the ground truth distribution would have zero width, yet our method would still have a 

width due to uncertainty in the estimate. On the other hand, the mean estimated number of 

fluorophores in each ROI should be close to the ground truth and thus remains a reliable way 

by which to evaluate the accuracy of our method.

For our 20 binding site analysis, the predicted mean of the distribution for the number of 

fluorophores is only about 1.3 fluorophores higher than expected as can be seen in the top 

left panel of figure 5. This is likely due to overfitting sources of noise not accounted for in 

our model such as unbound fluorophores freely diffusing above the origami structure.

Given the agreement between ground truth and our method for 20 and 35 binding sites, we 

wanted to test how high we could count. In order to create controlled data sets with known 

ground truth, we combined the data from ROIs as discussed in section 3.1. For example, 

by summing together two ROIs with 20 or 35 binding sites, we could count fluorophores 

in ROIs with as many as 40 or 70 total binding sites (figure 5 middle column). By adding 

together four ROIs with 20 or 35 binding sites, we could generate new ROIs with as many 

as 80 or 140 fluorophores (figure 5 right column). For all four cases, the mean number of 

fluorophores per ROI learned from our an analysis closely matches (within 3 fluorophores) 

the ground truth of the expected mean.
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4 Discussion

Learning the number of molecules located within a molecular cluster, while simultaneously 

and self-consistently determining the dynamics of the cluster’s constituent members, is a key 

step toward unraveling life’s processes occurring well below light’s diffraction limit [27, 15, 

2, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 

56]. In order to do so, we introduced a Bayesian nonparametric framework that accurately 

models the photophysics, shot noise, and detector noise that gives rise to the data, along with 

sampling methods capable of exploring this high dimensional probability space. Our method 

was illustrated for as many as 100 fluorophores. We note that the ability to count such a high 

number of fluorophores is necessary for cellular applications as, for example, nuclear pore 

complexes are known to be made up from 32 monomers [6, 26], Rac1 can aggregate into 

clusters of 50–100 [7], and Pol-II can aggregate into clusters of a few hundred [4].

By operating within the Bayesian paradigm, we can propagate uncertainty arising from 

sources of error, such as photon shot noise and detector signal amplification, into the full 

distributions over fluorophore numbers and the transition probabilities we determined.

Now, if the counting of fluorophores in a cluster were the only goal and it could be assumed 

that all fluorophores were initially active, then we could ignore dynamics altogether and 

avoid learning transition probabilities (as well as trajectories). In this case, a collapsed 

state formulation (one that keeps track of the total population of decreasing numbers 

of fluorophores) can be used [15, 25, 26]. However, even then, existing methods for 

enumeration do not sample full Bayesian posteriors and counting would not be possible 

for cases where the majority of fluorophores are initially inactive such as in the case of 

photoactivation localization microscopy (PALM) [57, 58, 59, 11]. Indeed, moving forward, 

PALM and other superresolution experiments [4, 5] could provide exciting in vivo test beds 

for our method.

Furthermore, while we have chosen to focus on brightness traces recorded using an EMCCD 

camera, we could in principle modify our method to allow other detector models. This 

could be achieved trivially be modifying equation 31 to incorporate the noise model of the 

desired detector. Moving forward this would allow photobleaching enumeration on a variety 

of detectors including photomultiplier tubes [60] or sCMOS cameras [61].

The generality afforded by our method in learning dynamics, and thus learning the state 

of every constituent member of a cluster explicitly, does come at an added computational 

cost. The majority of the computational cost comes from the forward-backward filtering 

algorithm used to sample the states. The forward filter backwards sample algorithm (FFBS) 

runs with time complexity O S2N  where S is the size of the the state space and N is the 

number of time levels. As we must run the FFBS over each load in each ROI, the total 

computation time to sample all the states scales like O S2NRK  where R is the number of 

ROIs and K is the number of loads per ROI. Additionally, in order to facilitate proper mixing 

of the variables, we sample the states, two loads at a time in a joint state space of size SJ 

where J is the number of loads we sample jointly (see SI section 5.7) which increases the 

size of the state space, but also decreases the number of times we have to run the FFBS 
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per ROI (for example, sampling two loads at a time means we use FFBS half as many 

times). As such, overall, the time complexity of our algorithm scales as O SJNRK /J . As 

the majority of the computational bottleneck is ascribed to sampling the states, we therefore 

sample the states of each ROI in parallel. Computational time can be improved by a factor 

of R if at each iteration of the Gibbs sampler, we sample the states for each ROI (which are 

independent from each other) in parallel. As the remaining parameters are sampled relatively 

quickly as compared to state sampling, we sample those globally at each iteration of the 

Gibbs sampler.

Finally, while we have focused on photophysical dynamics, it is possible to imagine 

learning the assembly and disassembly kinetics of a cluster. For example, using a two 

state model where the fluorophores transition between being cluster bound and unbound, 

our framework could be used to learn the state transition rates as well as the total number 

of fluorophores bound to the cluster at any given time. Learning such kinetics would be 

especially relevant to monitoring the formation of large transient protein assemblies relevant 

to cellular transcription [8, 9, 10]. What remains to be seen is how data could be analyzed 

if assembly and disassembly of molecules in a cluster are occurring while photophysics 

of labels on these molecules is simultaneously taking place. In this case, either stable 

fluorophores that remain in a bright state would need to be used or a difference in timescales 

between the assembly and disassembly kinetics and photophysical kinetics would need to be 

sufficiently large to be independently determined by a future analysis method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Summary of the problem.
Each fluorophore attains one of three types of states: dark, active (bright), or photobleached. 

Only fluorophores in the active state emit photons. Each fluorophore transitions between 

these states as indicated by the arrows. The brightness over time of an ROI reflects the states 

of all fluorophores within the ROI. Our goal is to estimate the number of fluorophores in 

each ROI, as well as the photo-states of the fluorophores at each time level.
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Figure 2: The graphical representation of the inverse model.
Nodes (circles) in the graphical model represent random variables. Blue nodes are the 

random variables we infer. White nodes are auxiliary random variables (latent variables). 

Grey nodes are observations (data). The arrow between nodes indicates conditional 

dependence, meaning that if x is conditioned on y then we would draw an arrow going 

from node y to node x. The plates (dashed boxes) indicate that random variables within 

plates repeat over the index appearing at the top left of the plate. For example, the μB
r  node is 

within the outer plate with index r implying an μB
r  associated to each ROI (indexed r).
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Figure 3: Inference on simulated data.
We generated data using the forward model in section 2.1. We learn the number of 

fluorophores in each ROI and compare to ground truth (right panel) and associated photo-

trajectories in each ROI (shown on left panel for one of many ROIs). In addition, we must 

also simultaneously and self-consistently learn all other associated parameters shown in 

figure 2.
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Figure 4: Comparison against other methods.
Here we compare our method against a change point method, the ruler method, and the 

two state model. We compare all methods on three different data sets. On the top row we 

compare on simulated data using the base set of parameters. On the second row we compare 

on simulated data in which some fluorophores start dark. On the bottom we compare on 

simulated data with high noise. The left panel of each row shows the inferred phototrajectory 

for an ROI using our method, the change point method, and the two state model (the ruler 

method does not generate trajectories). The right panel shows the inferred distribution for 

the number of fluorophores for each of the different methods. In the legend we show the 

mean error of each method calculated as the average difference between the inferred number 

of fluorophores and the ground truth
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Figure 5: Inference on real data.
Here we illustrate our method in enumerating fluorophores from real data. The top row 

analyzes data from experiments using DNA origami with 20 binding sites (we then combine 

data from different ROIs to generate data sets with a higher number of fluorophores). 

Similarly, the bottom row analyzes data from experiments using DNA origami with 35 

binding sites (also combined to form ROIs with a larger number of fluorophores). Also 

plotted are the expected distribution of fluorophores (a binomial distribution), and a vertical 

line showing the mean expected number of fluorophores learned from our method.
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