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Abstract

Sensorimotor control during overt movements is characterized in terms of three building blocks: a 

controller, a simulator, and a state estimator. We asked whether the same framework could explain 

the control of internal states in the absence of movements. Recently, it was shown that the brain 

controls the timing of future movements by adjusting an internal speed command. We trained 

monkeys in a novel task in which the speed command had to be controlled dynamically based on 

the timing of a sequence of flashes. Recordings from the frontal cortex provided evidence that the 

brain updates the internal speed command after each flash based on the error between the timing 

of the flash and the anticipated timing of the flash derived from a simulated motor plan. These 

findings suggest that cognitive control of internal states may be understood in terms of the same 

computational principles as motor control.

Introduction

Theories of embodied cognition posit an intimate link between mental states and how we 

move our body. Compelling theoretical arguments have advanced the hypothesis that 

movements are controlled through the interaction of three building blocks 1–5 (Figure 1a): a 
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controller that drives the body, a simulator that simulates movements to predict future states, 

and an estimator that updates state variables. Considering the common challenges that the 

dynamic control of motor and cognitive states face 6, we set out to test whether the 

regulation of cortical dynamics supporting anticipation and planning can be similarly 

understood in terms of the interplay between a controller, a simulator, and a state estimator.

To address this problem, we leveraged a recent finding in monkeys regarding how the brain 

controls movement initiation time. When animals are instructed to initiate a movement after 

a delay, neural responses in multiple brain areas evolve toward a movement-initiation state at 

a speed that is inversely proportional to the delay 7,8,9; i.e., faster for shorter intervals and 

slower for longer intervals. Moreover, similar to how movements are controlled by motor 

commands 10, the speed with which neural responses evolved over time was controlled by an 

internally-generated “speed command” 8.

From the perspective of control, initiating a movement based on an instructed delay and in 

the absence of feedback is relatively straightforward; it only requires an open-loop system 

driven by the desired speed command. The natural next question is how such speed 

command may be controlled in a closed-loop fashion in the presence of sensory feedback. 

To address this question, we developed a novel timing task in which the speed command 

controlling movement initiation time had to be adjusted based on uncertain and discrete 

sensory cues. As noted in the motor control literature, to integrate uncertain and delayed 

sensory feedback, the system would benefit from establishing a simulator and an estimator 

(Figure 1a). Accordingly, we asked whether closed-loop control of an internally-generated 

speed command could be explained in terms of augmenting the open-loop control with a 

simulator and an estimator.

Results

1-2-3-Go task

In the 1-2-3-Go task (Figure 1b), animals had to attend three flashes presented around the 

fixation point (S1, S2, and S3), and subsequently initiate a delayed saccade to a target (Go). 

On every trial, the inter-flash interval, which we refer to as the sample interval (ts), was 

drawn from a fixed prior distribution (Figure 1c). Animals had to estimate ts from 

measurements of the S1-S2 and S2-S3 intervals and produce an S3-Go interval (tp) that 

closely matched ts. Animals received reward when the relative error (|(tp - ts)/ts|) was below 

an adaptively controlled threshold (see Online Methods). The magnitude of reward 

decreased linearly with relative error (Figure 1d).

Animals integrate prior knowledge with multiple measurements

Animals learned to time their saccade based on ts (Figure 1e). Using linear regression (tp = 

bts+c), we verified that, for both animals, tp increased with ts (monkey B: b = 0.82 +/− 0.01 

[95% CI], t(5806) = 8.51 × 103; p < 0.001; monkey G: b = 0.81 +/− 0.02 [95% CI], t(2293) 

= 3.84 × 103; p < 0.001; two tailed t-test). The variability of tp also increased with ts as 

evidenced by the regression slope relating standard deviation of tp to ts (100 resamples of the 

data; monkey B: b = 0.04 +/− 0.002 [95% CI], t(498) = 782.52, p < 0.001; monkey G: b = 
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0.11 +/− 0.003 [95% CI], t(498) = 1.84 × 103, p < 0.001). This increase in variability is 

consistent with scalar variability 11 during time interval reproduction tasks 12,13.

In the presence of behavioral variability, an ideal observer would reduce variability by taking 

into account the prior statistics of ts 7,14,9. This was evident in animals’ behavior from 

systematic biases of tp (“BIAS”, see Online Methods) toward the prior mean (monkey B: 

BIAS=30.35 +/− 1.27 ms [mean +/− std], t(99) = 23.97, p < 0.001; monkey G: BIAS=29.89 

+/− 1.54 ms [mean +/− std], t(99) = 19.37, p < 0.001; two tailed t-test), and by the less-than-

unity regression slope relating tp to ts (monkey B: t(5806) = −1877, p < 0.001; monkey G: 

t(2993) = −987.8966, p < 0.001; two tailed t-test).

An ideal observer would additionally improve accuracy by combining information from 

measurements of both the S1-S2 and S2-S3 intervals 12. This was also evident in the 

animals’ behavior based on a subset of conflict trials for ts=800 ms condition in which either 

the S1-S2 interval, tS1-S2, or S2-S3 interval, tS2-S3, was made 50 ms longer or shorter. We 

analyzed the conflict trials to distinguish between three hypotheses: (H1) monkeys only 

relied on tS1-S2, (H2) monkeys only relied on tS2-S3, or (H1,2) monkeys used both intervals. 

When either tS1-S2 or tS2-S3 was 850 ms, the average tp was significantly longer than when 

both intervals were 800 ms (Figure 1f, light blue for tS2-S3; one tailed t-test; Monkey B: 

t(629) = 2.95, p = 0.002; Monkey G: t(352) = 3.51, p < 0.001; pink for tS1-S2; one tailed t-

test; Monkey B: t(611) = 2.17, p = 0.015; Monkey G: t(345) = 1.51, p =0.066). This 

indicated that animals used both tS1-S2 and tS2-S3 and rejected both H1 and H2. Moreover, 

the change in average tp was statistically indistinguishable between the two conflict 

conditions (two tailed t-test; Monkey B: t(428) = −0.62, p = 0.531; Monkey G: t(213) = 

−1.54, p = 0.125) suggesting that animals combined the two measurements with comparable 

weights. Together, these results confirm that animals combined the two measurements.

A sequential updating model for the 1-2-3-Go task

Recently, we found that human performance on this task was better captured by a near-

optimal sequential updating model than an optimal Bayesian model 12. This model, which 

we refer to as the Extended Kalman Filter (EKF), functions as follows (Figure 1g; 

Supplementary Figure 1c): 1) At S1, the estimated interval, te(S1), is set to the mean of the 

prior. 2) At S2, the model integrates the first measurement, denoted mS1-S2, with the prior to 

compute an updated estimate, te(S2). To do so, EKF, updates te(S1) by a nonlinear function of 

error between te(S1) and mS1-S2 (see Online Methods). (3) At S3, the model repeats this 

process to integrate the second measurement, mS2-S3, with the prior and mS1-S2 and compute 

the final estimate, te(S3). After S3, the model produces tp, which is te(S3) plus signal 

dependent production noise.

We found that the pattern of responses in monkeys was also more accurately captured by the 

EKF model (Figure 1e, curves) compared to an optimal Bayesian model (Supplementary 

Figure 1). We also used EKF to substantiate that animals integrated both measurements. We 

compared the log likelihood of the data given three variants of the EKF based on H1, H2, and 

H1,2, respectively. The EKF that relied on both measurements was more likely than the other 

two variants (Figure 1h). Further, EKF fitted to trials without conflict was able to capture the 

distribution of tp in conflict trials (Figure 1f, curves). Based on these results, we concluded 
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that monkeys integrated the prior with the two measurements using a sequential updating 

strategy exemplified by EKF.

Speed control in the 1-2-3-Go task

Previous work in monkeys has shown that the brain controls movement initiation time by 

setting a speed command that determines how fast neural trajectories in the cortico-basal 

ganglia system evolve toward a movement-initiation state (i.e., “threshold”) 8. Building on 

this finding, we considered two hypotheses regarding how the brain might control movement 

initiation time in the 1-2-3-Go task. One hypothesis, which we refer to as the open-loop 
hypothesis, is that the brain integrates the prior with the two measurements (mS1-S2 and 

mS2-S3) to compute the final estimate, te(S3), which in turn determines the speed of neural 

trajectories in the S3-Go epoch. A key prediction of this hypothesis is that neural activity in 

the S1-S2 and S2-S3 epochs should be similar and reflect explicit measurements of time 

intervals. Moreover, activity patterns in the first two epochs should be qualitatively different 

from that in the third epoch in which the responses would evolve with different speeds 

depending on the animal’s final estimate. The predictions of this hypothesis can be 

illustrated using a toy model. Let us assume that the brain tracks time by accumulating ticks 

from a clock. Since the first two epochs are associated with measurement of the interval, we 

would expect some neurons to carry signals reflecting a fixed clock, and others to exhibit 

ramping activity with a fixed slope (Figure 2a, left and middle). In the third epoch, however, 

signals would change qualitatively such that the clock speed and the slope would correspond 

to the animal’s estimate (Figure 2a, right).

The other hypothesis, which we refer to as the internal model hypothesis, is that the brain 

implements a closed-loop control system similar to the EKF model, in which feedback is 

used to update estimates sequentially from te(S1) at S1 to te(S2) at S2 to te(S3) at S3. To 

implement this strategy, the brain has to additionally establish a simulator and an estimator. 

The simulator would run after each flash to predict the next flash, and the estimator would 

update the speed based on the prediction error at the time of the next flash.

We used the inverse relationship between interval estimate and speed of neural trajectories to 

formulate a set of concrete predictions under the internal model hypothesis: 1) After S1 and 

before S2, the speed of neural trajectories should reflect the initial estimate, te(S1). 2) After 

S2 and before S3, the speed command and the speed with which responses evolve should be 

inversely proportional to te(S2). 3) After S3, the speed should be adjusted to reflect te(S3). 

Note that the key difference between the open-loop and internal model hypotheses is the 

nature of signals in the S2-S3 epoch. According to the open-loop hypothesis, responses in 

this epoch reflect an interval measurement regardless of the duration of the interval in the 

S1-S2 epoch. In contrast, the internal model hypothesis predicts that responses in the S2-S3 

epoch evolve with different speeds depending on the animal’s estimate after S2 (te(S2)). The 

predictions of the two hypotheses for the other two epochs (S1-S2 and S3-Go) are identical.

The predictions of this hypothesis can also be demonstrated using the clock-accumulator toy 

model (Figure 2b). In the first epoch, the clock speed and the slope of the ramping activity 

would be fixed and reflect te(S1) (Figure 2b, left). The second and third epoch, in contrast, 

would represent a simulated motor plan (S2-S3) and an actual motor plan (S3-Go). 
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Accordingly, both the level of activity of neurons that encode the clock speed, and the slope 

of the neurons generating ramping activity would be interval-dependent (Figure 2b, middle 

and right). Specifically, in S2-S3 and S3-Go, the speed and the slope should be inversely 

proportional to te(S2) and te(S3), respectively.

Single-neuron signatures of the internal model hypothesis

We recorded neural activity (N=63 and 118 in monkeys B and G, respectively) in the 

dorsomedial frontal cortex (DMFC; Figure 3a) including the supplementary eye field (SEF), 

the dorsal region of the supplementary motor area (SMA), and pre-SMA. Our choice of 

recording areas was motivated by previous work showing a central role for DMFC in 

sensorimotor timing 15–18. We targeted the same region of DMFC where we previously 

observed the inverse relationship between time and speed 7,8,9.

DMFC responses were modulated throughout the trial and had heterogeneous profiles that 

were typically distinct across the three epochs (Fig. 3b). Our main interest was to evaluate 

the neural data in terms of the open-loop and internal model hypotheses. To do so, we 

analyzed the activity of 115 well-isolated neurons with respect to the aforementioned 

predictions of those hypotheses (Fig. 2b).

Temporal scaling across individual neurons

Temporal scaling predicts that response profiles across ts would become more similar after 

undoing the temporal scaling. This was most conspicuous for the small subset of neurons 

with a ramp-like response profile for which the slope of the ramp had an inverse relationship 

to ts (Figure 4a, top right). However, consistent with previous findings 8,19,20, a majority of 

neurons had non-monotonic firing rate profiles, and were better fit by higher-order 

polynomials (see Online Methods; Supplementary Figure 2). For example, cross-validated 

6th order polynomials explained 40.86%, 24.42%, and 20.34% more variance than cross-

validated 1st order polynomials in the S1-S2, S2-S3, and S3-Go epochs, respectively (Figure 

4b).

To assess the presence of temporal scaling for every neuron, we normalized response 

profiles in time according to the animal’s estimates (i.e. te(S2) and te(S3) for the S2-S3 and 

S3-Go epochs, respectively; Figure 4c), and asked whether a polynomial fit to the 

normalized response profiles would explain more variance (R2) than a polynomial of the 

same order fit to original data (see Online Methods). We used the difference between the 

explanatory powers of the two polynomial fits (ΔR2) as our metric of the degree of scaling. 

We also computed the same metric in the S1-S2 epoch as a benchmark since we were certain 

that there was no temporal scaling in this epoch (the animal did not yet know ts). Here, we 

show the result for a 6th order polynomial, which was sufficiently complex to describe the 

temporal responses across DMFC population (Supplementary Figure 2).

The degree of scaling in the S3-Go epoch was consistently stronger than the S1-S2 epoch 

(Figure 4d, bottom; one-tailed Wilcoxon, Z = 7.08, p < 0.001). Importantly, the same was 

true in the S2-S3 epoch (Figure 4d, top; one-tailed Wilcoxon; Z = 4.62; p < 0.001), and the 

results remained unchanged independent of the degree of the polynomial used to assess 

scaling. In fact, scaling was evident even when the polynomial order was chosen to 
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maximize R2 for unscaled data (Supplementary Figure 3). Therefore, we concluded that 

responses in both S2-S3 and S3-Go were temporally stretched in accordance with ts. These 

observations provide evidence that 1) signals in the S3-Go epoch are governed by a speed-

dependent motor plan consistent with previous work on motor timing 8,21, and 2) responses 

in the S2-S3 epoch also exhibited temporal scaling despite the fact that they were not 

associated with a motor plan. The latter observation suggests that activity in the S2-S3 epoch 

is predictive of the upcoming flash, and therefore provides evidence in support of the 

internal model hypothesis and against the open-loop hypothesis.

Speed command across individual neurons

A neuron could be a candidate for providing the hypothesized speed command if its 

response in the S2-S3 and S3-Go epochs were to vary systematically with ts (Figure 2b). In 

our population, the firing rate of many neurons was modulated by ts in either S2-S3 or S3-

Go epochs (Figure 5a). To quantify this observation rigorously, we fit a linear-nonlinear-

Poisson (LNP) model to the spike count data (Figure 5b, lines; see Online Methods). This 

yielded a parameter, βSX (with X = 1, 2, or 3) that we used to quantify the degree to which 

firing rate depended on ts at the time of each flash. At S1, neurons cannot logically encode ts 

since the animal has not yet measured ts. Accordingly, βS1 across the population was 

distributed tightly around zero (Figure 5c, left), and was not significant for any of the 

neurons. βS2 and βS3 were distributed more broadly and were significant for 27 and 20 of 

the neurons, respectively (Figure 5c, middle and right, white bars; see Online Methods). 

However, the degree of sensitivity to ts at S2 and S3 were unrelated across the population 

(Figure 5d; R2 = 0.0013, p = 0.70).

We next asked whether single neurons had an invariant representation of ts throughout each 

epoch. Invariant encoding of ts would predict high and persistent correlation between spike 

counts at pairs of time points within each epoch. To test this prediction, we quantified spike 

count correlations for each neuron as a function of ts across all pairs of time points within 

the first 600 ms after the onset of each epoch (e.g., Figure 5e), and constructed a 2D map of 

average correlations across ts. In both S2-S3 and S3-Go epochs, average correlations 

exhibited a diagonal structure indicating that correlations were high for nearby time points 

and weak for points farther apart (Figure 5f). These results provide evidence against an 

invariant representation of ts in the S2-S3 or S3-Go epochs at the level of individual neurons. 

This conclusion was further supported by an analysis using the LNP model (Supplementary 

Figure 4). Note that although single neurons did not encode ts invariantly, we were able to 

readily decode ts from the population activity over the entire S2-S3 and S3-Go epochs 

(Supplementary Figure 5–7).

Population response in DMFC exhibits hallmarks of the internal model hypothesis

Single-neuron analyses were consistent with some of the predictions of the internal model 

hypothesis. However, four considerations motivated us to further analyze the responses at 

the level of population. First, single neurons that exhibited temporal scaling had non-

monotonic response profiles (Figure 4b), and thus could not unambiguously predict the 

upcoming event. We reasoned that this ambiguity might be resolved at the population level. 

Second, single neurons whose firing rate encoded ts and thus could serve as a control signal 
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did so transiently (Figure 5f). However, at the level of population, responses carried a 

persistent representation of ts that was present for the entire S2-S3 or S3-Go epochs 

(Supplementary Figures 4–7). Third, since our experiment did not include any dynamic 

stimuli or ongoing movement between consecutive flashes, the observed patterns of activity 

likely emerge from recurrent interactions, and therefore, may be more interpretable if 

analyzed at the population level. Fourth, we wanted to exploit the additional statistical power 

afforded by the population analysis to ask whether the speed command and the simulated 

motor plan reflected ts or the animal’s internal estimate of ts (te(SX)).

As a first step, we performed principal component analysis (PCA) to identify the dominant 

modes of response from S1 to Go. Projections of neural activity onto the first 3 PCs as a 

function of ts revealed a set of highly structured neural trajectories with two notable features. 

First, neural trajectories had a persistent representation of ts after S2 (Figure 6a). This 

suggests that, unlike single neurons, the population activity in DMFC carries a ts-dependent 

signal that could serve as a speed command. Second, neural trajectories were highly similar 

in form and terminated in nearby states at the time of S3 and Go irrespective of the duration 

of ts. This observation implied that the speed at which different trajectories evolve had an 

inverse relationship to ts, which is what is expected from a predictive process anticipating 

the next event.

Analysis of relative speed and distance of neural trajectories

When a set of neural trajectories are structured as in our experiment, it is possible to 

estimate their relative distance and speed using a recently developed analysis known as 

KiNeT 7. We have described KiNeT in detail in the Online Methods section. Here, we use an 

analogy to describe the key idea. Imagine that we want to measure the speed of a set of 

runners running in parallel tracks along a winding road. If we draw a line connecting nearby 

points along the tracks, the time at which each runner reaches that line would be inversely 

proportional to their speed. We can also estimate the distance between tracks from the 

relative position of runners when they reach that line. KiNeT applies the same logic to 

estimate relative distances and speeds of a set of winding neural trajectories (see Online 

Methods).

Let us denote the neural trajectory associated with a specific value of ts by Ω
[ts]

 (Figure 6a). 

We designated Ω[800] as the reference trajectory, and defined t[800] as the vector of time 

points along Ω[800] (e.g., a vector containing 0, 1, …, 800). Next, for every neural state along 

Ω[800], denoted r[800], we found the nearest neural state on the remaining Ω
[ts]

 trajectories, 

denoted r
[ts]

 (Figure 6b), and defined t
[ts]

 as the vector of time points when activity reached 

r
[ts]

 (Figure 6c). Finally, we quantified the distance between Ω
[ts]

 and Ω[800], denoted δ
ts, 

using the vector connecting r
[ts]

 and r[800], and the speed of Ω
[ts]

 relative to Ω[800] (V
ts ) 

based on the values of t
[ts]

 relative to t[800] (see Online Methods).
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DMFC population activity is governed by speed-dependent predictive dynamics

We first formulated the predictions of KiNeT for the open-loop and internal model 

hypotheses. For both hypotheses, the speed in the S1-S2 epoch should not depend on ts 

(Figure 7a, left top). Accordingly, in the first epoch, t
[ts]

 should be identical to t[800] 

irrespective of ts. However, the two hypotheses make different predictions for the S2-S3 

epoch. According to the open-loop hypothesis, the computation in the S2-S3 epoch is similar 

to the S1-S2 epoch. Therefore, for the open-loop hypothesis, t
[ts]

 should remain identical to 

t[800] irrespective of ts (Figure 7a, upper). In contrast, the internal model hypothesis predicts 

that activity in the S2-S3 epoch is predictive and, therefore, the speed exhibits an inverse 

relationship to ts (Figure 7a, lower). Therefore, t
[ts]

 should increase faster than t[800] for 

slower trajectories and vice versa. In the S3-Go epoch, both hypotheses predict that the 

speed would depend on ts, and therefore the relationship between t
[ts]

 and t[800] should 

depend on ts (Figure 7a, lower). Therefore, the key prediction that differentiates between the 

two hypotheses is whether or not activity in the S2-S3 epoch is predictive, or equivalently, 

whether the relationship between t
[ts]

 and t[800] depends on ts.

KiNeT provided clear evidence in support of the internal model hypothesis. In the S1-S2 

epoch, V
ts  did not exhibit any systematic relationship to ts; i.e., the slope of t

[ts]
 as a 

function of t[800] was not statistically different from one (Figure 7b left; two tailed t-test; ts = 

600: t(99) = 0.1225, p = 0.9028; ts = 700: t(99) = −0.3136, p = 0.7545; ts = 900: t(99) = 

−0.5884, p = 0.5576; ts = 1000: t(99) = 0.7642, p = 0.4466; Figure 7a left). Accordingly, 

V
ts  in the S1-S2 epoch was better explained by ts-independent model than a ts-dependent 

model (Figure 7b, left inset; one-tailed t-test, t(99) = −22.4067, p < 0.001). In the S2-S3 

epoch, values of t
[ts]

 increased faster than values of t[800] for longer ts (Figure 7b middle; 

one-tailed t-test; ts = 900: t(99) = 5.3862, p < 0.001; ts = 1000: t(99) = 9.1030, p < 0.001) 

and slower for shorter ts (one-tailed t-test; ts = 600: t(99) = −14.4431, p < 0.001; ts = 700: 

t(99) = −9.6668, p < 0.001; Figure 7b, middle). This indicates that V
ts  in the S2-S3 epoch 

was ordered according to ts, consistent with the internal model hypothesis (Figure 7b, 

middle inset; one tailed t-test, t(99) = 4.1760, p < 0.001). The organization of t
[ts]

 with 

respect to t[800] in the S3-Go epoch was also consistent with adjustments of speed depending 

on ts (Figure 7b right; one tailed t-test, t(99) = 35.2322, p < 0.001). These results are 

consistent with DMFC responses reflecting a simulated and an actual motor plan in the S2-

S3 and S3-Go epochs, respectively.

DMFC population activity reflects an interval-dependent speed command

The open-loop and the internal model hypothesis also make distinct predictions regarding 

the representation of a ts-dependent speed command. The open-loop hypothesis predicts a ts-
independent speed command in the first two epochs (Figure 7c, top) and a ts-dependent 

signal in the third epoch (Figure 7c, bottom). The internal model hypothesis, in contrast, 

predicts a ts-dependent signal in both the second and third epochs (Figure 7c, bottom). 
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Qualitative examination of Ω
[ts]

 supported the internal model hypothesis: neural states 

evolved along parallel trajectories in both the S2-S3 and S3-Go epochs and were 

systematically organized in neural state space in accordance with ts (Figure 6a). To examine 

this organization quantitatively, we measured the distance δ
ts  between each Ω

[ts]
 and Ω[800] 

as a function of time after using KiNeT (see Online Methods; Figure 6d).

In the first epoch, trajectories were highly overlapping and there was no significant distance 

between Ω[700] and Ω[900] (Figure 7d, left; one tailed t-test; t(99) = 0.4796, p = 0.6325), the 

two test trajectories. In contrast, in the S2-S3 (Figure 7d, middle) and S3-Go epochs (Figure 

7d, right), test trajectories were systematically separated according to ts (one tailed t-test; 

S2-S3: t(99) = 8.2495, p < 0.001; S3-Go: t(99) = 6.2927, p < 0.001; see Online Methods). 

Moreover, the magnitude of δ
ts was nearly constant between consecutive flashes as 

evidenced by the slope of the regression line relating δ
ts to t[800], which was less than 0.1% 

of the offset in both epochs. These observations indicate that population responses in DMFC 

harbor a representation of ts throughout the S2-S3 and S3-Go epochs, consistent with the 

internal model hypothesis.

We performed a number of additional analyses to verify the robustness of our results. For 

example, the preceding results were based on the application of KiNeT to the first 10 PCs 

derived from activity within each epoch, which captured more than 90% of variance 

(Supplementary Figures 8 and 9). However, the same results were found when we applied 

KiNeT to PCs of activity across the three epochs (Supplementary Figure 10). Moreover, all 

results were consistent across the two animals (Supplementary Figure 11). We also tested 

KiNeT on responses aligned to the time of saccade to ensure that results in the S3-Go epoch 

were not due to an averaging of firing rates across trials of different durations (due to 

different saccade times; Supplementary Figure 12). Finally, we note that the systematic 

modulations of the relative distance and speed with ts in the S2-S3 and S3-Go epochs cannot 

be a simple artifact of applying KiNeT to complex spatiotemporal responses as we found no 

evidence for ts-dependent speed in the S1-S2 epoch despite the presence of complex non-

monotonic response profiles.

Linking behaviorally-relevant computations to internal models

Results of KiNeT provided evidence for the presence of a speed command driving a 

simulated motor plan during the S2-S3 epoch, and an actual motor plan in the S3-Go epoch. 

However, according to the internal model hypothesis, the speed command and the simulation 

have to be guided by an estimator. Therefore, we predicted that δ
ts and V

ts  should reflect 

the animal’s internal estimate of ts, and not the experimentally controlled ts. To test this 

prediction, we used the fits of EKF to the behavior to infer the animal’s internal estimates 

immediately after S1, S2, and S3 – te(S1), te(S2), and te(S3). According to EKF, te(S1) is equal 

to the mean of the prior (Figure 8a, left), te(S2) follows ts but is biased toward the prior mean 

(Figure 8a, center), and te(S3) follows ts with less bias than te(S2) (Figure 8a, right).
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We leveraged these prior dependent biases to ask whether the speed of different neural 

trajectories was ordered according to ts (no bias) or te(SX) (biased) as prescribed by EKF. 

Since speed is inversely proportional to time, we used KiNeT to restate this question as 

follows: does t
ts  more accurately correspond to ts or te? We converted t

ts  to an inferred 

estimate, t e, by multiplying the slope of the regression line relating t
ts  to t[800] 

(Δt
[ts]

/Δt[800]; Figure 8b, left) by the reference interval of 800 ms (see Methods). Clearly, t e

exhibited the biases observed in te(S2) and te(S3) during S2-S3 and S3-Go epochs, 

respectively (Figure 8b, center and right panels). This relationship was not explained by the 

monotonic relationship between te with ts, as the organization of neutrally-derived t e was far 

better predicted by the animal’s estimates than ts (Figure 8b, insets, see Online Methods).

We also asked whether the ts-dependent position of neural trajectories that provide a 

correlate of the speed command reflected te more accurately than ts. To test this, we asked 

whether average distances between neural trajectories within each epoch were more 

accurately captured by the experimentally-controlled ts or by the behaviorally-inferred te in 

that epoch (see Methods). Again, we found that the distances between trajectories were more 

similar to te(S2) and te(S3) than ts (Figure 8c, center and right). These observations suggest 

the neural correlates of both the speed command and the predictive dynamics associated 

with the simulated motor plan correspond to the animal’s estimates (see Supplementary 

Figure 13 for individual animals). In other words, changes in neural activity after each flash 

reflect the estimation process prescribed by EKF.

A final prediction of the internal model hypothesis is that the speed and distance of neural 

trajectories ought to reflect the integration of each new measurement. This integration was 

clearly evident during the transition from S1-S2 to S2-S3 epoch: speeds and distances were 

independent of ts before S2, and were systematically organized according to ts after S2. To 

assess whether a similar integration was evident during the transition from S2-S3 to S3-Go 

epoch, we returned to the predictions of the EKF model (Figure 8a). According to the 

model, both te(S2) and te(S3) exhibit a systematic bias towards the mean of the prior 

distribution, but the overall bias is smaller in the S3-Go epoch (Figure 8a, right) 12. To 

examine whether this pattern was present in neural trajectories, we compared the bias in 

both the speeds and distances of neural trajectories in the S2-S3 and S3-Go epochs (see 

Online Methods). The analysis of speeds provided clear evidence that biases were larger 

during the S2-S3 epoch than during the S3-Go epoch (Figure 8d, top). We also measured the 

degree of bias in the distance between neural trajectories. Because neural trajectories in the 

S2-S3 and S3-Go epochs were analyzed using PCs derived from activity in their respective 

epochs, a direct comparison of the distances was not warranted. Therefore, we computed the 

bias based on relative distances within each epoch (see online Methods). Again, results 

indicated that the degree of bias was larger during the S2-S3 epoch than the S3-Go epoch 

(Figure 8d, bottom). These observations validated our hypothesis that DMFC responses 

reflected animal’s estimate in accordance with sequential updating after both S2 and S3 

flashes.
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Discussion

Our results demonstrate that internal models can be used to understand the algorithm the 

brain uses to control internally generated cortical activity patterns in the absence of overt 

movements. This is an important finding as it indicates that the internal model hypothesis, 

advanced by decades of research on sensorimotor function 5,22–26 and motor control 
4,10,27–29, may also be used to understand how the brain controls mental states that are not 

observable.

A prominent result from our analysis of individual neurons was the heterogeneity of 

responses. A few neurons exhibited characteristics consistent with a speed command (i.e., 

control signal) and predictive dynamics (i.e., simulation), but the responses of most neurons 

reflected a mixture of both. This motivated a complementary analysis across the population, 

which led to three important findings. First, the distance between neural trajectories 

provided evidence for the presence of a persistent speed command consistent with the output 

of a controller. Second, the speed with which trajectories evolved through time revealed a 

predictive process consistent with the output of a simulated motor plan in the S2-S3 epoch, 

and an ongoing motor plan in the S3-Go epoch. Third, the speed information inferred from 

neural activity reflected the sequential updating consistent with the output of an underlying 

estimator.

Although the activity in DMFC was consistent with the computations associated with the 

controller, simulator and estimator, we do not know whether and how DMFC might 

implement these computations. We previously established that inactivation of the DMFC 

interferes with time interval production 8. Given that active and simulated motor plan rely on 

similar dynamics, it is possible that DMFC also contributes to both 30. However, the tight 

interaction between DMFC and other cortical and subcortical areas 31–35, suggests that other 

brain areas are also involved.

Our previous work on a simple time production task suggests that the speed command in 

DMFC may originate in thalamus 8. It is therefore possible that the speed command in the 

1-2-3-Go task is also driven by a tonic thalamic input. The source of the speed command in 

the thalamus has not been identified. One possibility is the dentate nucleus of the cerebellum 

that trans-thalamically drives DMFC 36–38, and is thought to support interval timing in non-

motor tasks 39–42. This interpretation is consistent with experimental and modeling work 

suggesting a role for ascending cerebellar signals in driving cortical dynamics 43. However, 

if the speed command is indeed provided by the cerebellum, then performing sequential 

updating as in the 1-2-3-Go task will have to engage the entire cortico-cerebellar loop so that 

the command can be updated in the cerebellum depending on the state of the simulated 

motor plan in cortical circuits.

More generally, since the generation of simulated and actual motor plans involves recurrent 

interactions among neurons, making definite statements about the nature of the control 

signal is difficult. Dynamical system can generate task-dependent dynamics either through 

adjustment of initial conditions or via direct inputs 7,44. In our work, we interpreted the 

presence of the persistent ts-dependent signals across the population as a persistent control 
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signal. However, it is also possible that this persistent signal results from setting the initial 

conditions of the system. Consistent with this interpretation, trajectories associated with the 

S1-S2 and S2-S3 epochs terminated at different states, providing a potential substrate for 

using initial conditions as the control signal. If so, we would need to reinterpret the action of 

the control signal as being mediated through initial conditions. Exerting control through 

initial conditions instead of a tonic input does not change our conclusions with respect to 

understanding the control of dynamics in terms of internal models but points to a different 

underlying implementation.

We also do not know how DMFC alone or through interactions with other brain areas 

implements an estimator. The function of the estimator is to use the state of the simulated 

motor plan at the time of feedback to update the speed command. Since the establishment of 

a suitable estimator demands learning and optimization 5,10,45, a likely substrate for 

establishing an estimator could be synaptic learning of the recurrent connections in various 

cortical areas including DMFC. The key requirement for estimation is to have a network that 

can adjust its responses to inputs (e.g., flashes) in a state-dependent manner (i.e., the state of 

the simulated plan). Recent theoretical work suggests that this computation is well within 

the capacity of recurrent neural networks 7,46,47,9, and can be mediated through suitable 

connectivity 48. If so, alternations of neural states right before the flash using precise 

perturbation techniques should lead to specific errors in updating.

Finally, our findings regarding the implementation of a simulated motor plan at the level of 

cortical population activity highlights the possibility of a novel mechanism for performing 

predictive computations. Theoretical considerations have long noted the computational 

advantages of predictive information processing 49, and computational models have 

hypothesized a number of possible mechanisms for its implementation in cortical 

microcircuits 50. Our work provides evidence for a novel mechanism for generating top 

down predictions afforded by population-level latent dynamics of cortical networks.

Online Methods

Methods

Experiments involved in-vivo extracellular recording of neural activity from the dorsomedial 

frontal cortex (DMFC) of two awake, behaving male monkeys (Macaca mulatta) trained to 

perform the 1-2-3-Go behavioral task. During experimental sessions, monkeys were seated 

comfortably in a dark and quiet room. Stimuli and behavioral contingencies were controlled 

using MWorks (https://mworks.github.io/). Visual stimuli were presented on a frontoparallel 

23-inch Acer H236HL monitor at a resolution of 1920 × 1080 at a refresh rate of 60 Hz. Eye 

positions were tracked with an infrared camera (Eyelink 1000; SR Research Ltd, Ontario, 

Canada) and sampled at 1 kHz. All experimental procedures conformed to the guidelines of 

the National Institutes of Health and were approved by the Committee of Animal Care at 

Massachusetts Institute of Technology. Randomization and blinding were not applicable at 

the level of subjects, as animals were not assigned to experimental groups. However, trials 

and conditions for each animal were randomized. When warranted, data analyses were 

subjected to blinding using cross-validation.
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Task and stimuli

Each trial began with the presentation of a central fixation point (FP; circular, red, 0.5 deg 

diameter). Following fixation (with delay selected from a uniform hazard, minimum = 100 

ms, mean = 400 ms), a saccadic target (circular, white, 1.5 deg diameter) was presented 10 

deg to the left or right of FP. Afterwards (uniform hazard, minimum = 500 ms, mean = 1000 

ms), three flashed visual stimuli (S1, S2 and S3) were presented. Each flash was presented 

for 100 ms as an annulus around FP (white, inside diameter = 2.5 deg, outer diameter = 3 

deg). The time between consecutive flashes was fixed within a trial and was drawn at 

random from a discrete uniform prior distribution across trials (Figure 1c; 5 values, 

minimum = 600 ms, maximum = 1000 ms). We refer to the time between flashes as the 

sample interval, ts. Monkeys had to maintain fixation until after S3 within an electronic 

window around FP (7 deg diameter). After S3, monkeys had to proactively initiate a saccade 

to the saccadic target to produce an interval equal to ts. The produced interval, tp, was 

measured as the time between S3 and when animal’s eye entered an electronic window (7 

deg diameter) around the saccadic target. Early fixation breaks (before 200 ms post S3) or 

extremely long production times (tp > ts + 1000 ms) were considered ‘aborted trials’ and 

were discarded. We additionally removed ‘outlier’ trials whereby the value of tp was more 

than three standard deviations from the mean tp for a given ts. Animals received trial-by-trial 

visual feedback on the magnitude and sign of error by a visual stimulus (circular, 0.5 deg 

diameter) presented immediately after the saccade along the line connecting FP to the 

saccadic target. The magnitude of the relative error (|tp-ts|/ts) was represented by the distance 

of the feedback stimulus to the saccadic target, and positive (negative) errors were associated 

with locations farther away (closer to) the FP. When the magnitude of the relative error was 

smaller than a threshold, both the saccadic target and the feedback stimulus turned green and 

the animal received juice reward. The magnitude of the reward decreased linearly with the 

magnitude of the relative error (Figure 1d). If the relative error was larger than the threshold, 

the target stimulus and analog feedback remained white and no reward was delivered. 

Performance was evaluated according to the relative error (as opposed to absolute error) to 

accommodate the scalar variability of time interval production 11. Reward threshold was 

initialized at 0.15 at the start of every session and was adjusted adaptively and on a trial-by-

trial basis in one-up one-down fashion with a fixed increment/decrement of 0.001 for 

unrewarded/rewarded trials, respectively. With this scheme, animals received reward on 

approximately 50% of the trials.

We quantified the animal’s overall bias as the root-mean square of bias for each ts:

BIAS = 1
K ∑

i = 1

K
(t pi

− tsi
)2 (1)

where tpi
 is the mean tp across trials of the i-th sample interval tsi

.

Bayesian integration model of behavior

We developed a Bayesian observer model for the 1-2-3-Go task based on a model that was 

used previously to account for behavior in a timing task with a single measurement interval 
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12,14,51. The model computed the posterior of ts from the prior, p(ts), and the likelihood 

function, λ(m|ts), from two independent measurements mS1-S2 and mS2-S3, and used the 

mean of the posterior (shown with angle brackets) as the final estimate, eS3-Go:

p(ts |mS1 − S2, mS2 − S3) =
λ(mS1 − S2 ts)λ(mS2 − S3 ts)p(ts)

p(mS1 − S2, mS2 − S3) (2)

eS3 − Go = f BLS(mS1 − S2, mS2 − S3) = p(ts mS1 − S2, mS2 − S3) (3)

Where f BLS represents the Bayes–least–squares estimator of ts. The likelihood function for 

each measurement was modeled based on the assumption that the measurement is subject to 

zero-mean Gaussian noise whose standard deviation scales with ts according the Weber 

fraction wm (Supplementary Figure 1a).

λ(m | ts) = 1
2πwm

2 ts
2e

−
(m − ts)2

2wm
2 ts

2
(4)

Finally, we assumed that the production interval, tp, is subject to zero-mean Gaussian noise 

whose standard deviation scales with eS3-Go according the Weber fraction wp 

(Supplementary Figure 1a). To fit the model to animals’ behavior, we augmented the model 

by an offset term, b, to account for stimulus- and prior-independent biases observed in 

responses as follows:

p(tp |eS3 − Go) = 1
2πwp

2eS3 − Go
2 e

−
(tp − eS3 − Go − b)2

2wp
2eS3 − Go

2
(5)

Extended Kalman filter (EKF) model of interval estimation

Following our previous efforts to model human behavior in a similar task, we developed an 

updating model of interval estimation that approximates the fully Bayesian estimate 12. The 

model implements a sequential updating scheme akin to the Kalman filter 52. According to 

EKF, at S1, the estimated duration is the mean of the prior distribution:

eS1 − S2 = ∫ tsp(ts)dts (6)

At the time of S2, the observer combines the measurement of the S1-S2 interval, mS1-S2, 

with eS1-S2 to generate a new estimate, eS2-S3:
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eS2 − S3 = eS1 − S2 + kS2 f *(mS1 − S2 − eS1 − S2) (7)

with kS2 = 1. f* is a nonlinear function based on the Bayesian model after one measurement, 

f *(mS1 − S2) = p(ts |mS1 − S2) . At the time of S3, the model combines the new measurement, 

mS2-S3 with eS2-S3 to generate a final estimate of ts

eS3 − Go = eS2 − S3 + kS3 f *(mS2 − S3 − eS2 − S3) (8)

with kS3 = 0.5. This final estimate is used to guide production, with noise in the production 

phase described by equation (5). See also Supplementary Figure 1.

Model fitting

We used a maximum likelihood procedure to fit the Bayesian and EKF models to the data. 

Assuming tp are conditionally independent across trials, the log likelihood of model 

parameters can be formulated as:

log p tp
1, tp

2, ..., tp
N ts, wm, wp, b = ∑

i = 1

N
log p tp

1 ts, wm, wp, b (9)

where the superscripts denote trial number. We found the parameters that maximize equation 

(9) with a constrained optimization function.

We used the fitted model to additionally infer the expected value of the animal’s estimate 

after each of the S1, S2, and S3 flashes, which we denote by te(S1), te(S2), and te(S3), 

respectively. Because the only information available to the animal after S1 is the prior 

distribution, p(ts), te(S1) was set to the prior mean. We derived te(S2) and te(S3) by averaging 

the EKF estimates (eS2-S3 and eS3-Go, respectively) across measurements for each ts.

Cue conflict trials

To test whether animals integrated both measurements, 33% of the trials with ts = 800 ms 

were modified such that either S1-S2 or S2-S3 were made either 50 ms longer or shorter. We 

verified that animals used both measurements in two ways. First, we tested whether tp was 

biased in direction expected under the integration hypothesis, and whether the magnitude of 

bias depended on which epoch was jittered. Second, we asked which of three models best 

explained the behavior in the cue conflict trials: (1) monkeys used both mS1-S2 and mS2-S3 to 

guide production, (2) monkeys used mS1-S2 only, or (3) monkeys used mS2-S3 only. All three 

models had the same parameters (wm, wp, b). We used a maximum-likelihood procedure to 

fit the models to the data without conflict and compared the likelihood of the conflict data 

under each model.

Analysis of DMFC data

Electrophysiological recordings were made by one or two 16- or 24- channel laminar V-

probes (Plexon Inc.; Dallas Texas, USA) through craniotomies located above the 

dorsomedial frontal cortex (DMFC). In total, we analyzed neural activity from 16 recording 
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sessions, 12 from monkey B and 4 from monkey G. We targeted the region of interest using 

the following procedure. We started by gathering anatomical information about the regions 

of DMFC associated with the supplementary eye field (SEF) 31,53–55 and presupplementary 

area (preSMA) 55,56 using previous studies in rhesus macaques. We compiled information 

about reported stereotactic coordinates, histological plots and MRI scans to identify the 

general region of interest. We then sampled DMFC starting from the center of the identified 

region and move outward a quasi-systematic fashion looking for regions with strong 

modulation during any epoch of the task. Neural activity in monkey B was recorded from 

between 0.5 mm to 2.9 mm lateral of the midline and 2.2 mm posterior to 8.1 mm anterior of 

the genu of the arcuate sulcus. Neural activity in monkey G was recorded from between 0.9 

mm to 4.6 mm lateral of the midline and 1.8 mm to 9.3 mm anterior of the genu of the 

arcuate sulcus. Because the targeted recording sites were defined anatomically, we 

conservatively refer to the recorded region as DMFC. This anatomically defined region 

potentially comprised of the functionally defined areas referred to as SEF, preSMA, and 

dorsal SMA (i.e., outside the medial bank). Data was stored using a Blackrock Cerebus 

Neural Signal Processor (Blackrock Microsystems; Salt Lake City, USA) and analyzed 

offline using custom code in MATLAB (R2017a, The MathWorks Inc., Natick, MA, 2000).

Single- and multi-unit activity was extracted from band-pass filtered voltage traces by an 

initial threshold crossing followed by spike sorting. We used the following procedure for 

spike sorting: 1) We used a Gaussian mixture model to cluster waveforms on each channel 

that crossed a threshold. Let us assume that the data was best fit by a Gaussian mixture 

model with N clusters. 2) We used the fitted model to generate surrogate samples from each 

of the N clusters. 3) We used maximum likelihood to classify the surrogate samples (i.e., 

which cluster were they sampled from). 4) For each cluster, we used the classification results 

to quantify the probability of assigning surrogate samples from other clusters as originating 

to the current cluster, which we refer to as probability of false alarm, PFA. Note that the 

ground truth for the surrogate samples was known. 5) We only accepted units as well-

isolated if surrogate samples from the corresponding cluster were associated with PFA < 

0.05.

The spiking data for each neuron was first smoothed over time using a 150 ms boxcar, after 

alignment to different events in the task (i.e., S1, S2, S3 and Go). Trial by trial data was then 

conditioned on ts to measure PSTHs and perform PCA. We assigned all conflict trials to the 

ts = 800 ms condition for these analyses. Population analyses were based on all 181 units 

collected across the 16 individual recording sessions, after excluding units with poor signal 

to noise or that were unmodulated by the task. Single unit analysis was based on 115 well 

isolated units. No statistical methods were used to pre-determine sample size but our sample 

size are similar to those reported in previous publications 7,15,16. Supplementary analysis 

was performed on units from each monkey separately.

To characterize the firing rate profiles over time, we fit a polynomial of order n to the mean 

firing rates across ts calculated using a random half of the trials without replacement. We 

assessed the goodness of fit by measuring the correlation coefficient between the expected 

firing rate, based on the polynomial fit, and the mean firing rate calculated from the left-out 
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trials. We also assessed polynomial fits to temporally scaled firing rates using the same 

procedure.

To assess the degree of stationarity in the encoding of ts by individual neurons we first 

assigned the trial-by-trial spike counts into two groups at random (without replacement). For 

each group, we calculated the firing rate as a function of time and ts, r1(t,ts) and r2(t,ts). We 

calculated the correlation coefficient between the firing rates at two different time points, 

r1(t’,ts) and r2(t”,ts), across ts. We performed this analysis for each combination of times, t’ 
and t”, with t’ and t” between 0 and 600 ms relative to the onset of the epoch of interest. We 

used the resulting matrix of correlation coefficients to assess the degree of similarity in firing 

rates as a function of ts at different time points. This procedure enables us to measure 

similarity without making assumptions about the exact nature of encoding of ts.

Linear-Nonlinear-Poisson (LNP) model

Neural encoding of ts by individual neurons was also assessed by fitting an LNP model to 

spike count data at t = 0, 100, 200, 300, 400 or 500 ms following each flash (S1, S2 and S3). 

We modeled spike count data as a nonhomogeneous Poisson process with a ts-dependent rate 

function as follows:

λn(t) = e
β(t)ts + c

(10)

With β(t) parameterizing the sensitivity of the neuron to ts at time t. The probability of a 

given spike count on a particular trial is:

p rn(t) λn(t) =
λn(t)

rn(t)
e

−λn(t)

rn(t)!
(11)

To fit the parameters of the model and assess goodness of fit, we split the data into training 

and validation sets, designating every other trial as training data. We fit the model by 

maximizing the log likelihood of model parameters given ts and the observed spike count, 

rn
i(t), of the nth neuron across i=1,..,M training trials at time t:

ℒ β(t), c = ∑
i = 1

M
rn

i (t)logλn(t) − λn(t) (12)

We assessed the significance of sensitivity to ts by comparing the LNP model with the ts-
dependent rate function (above) to another model with a ts-independent rate function:

λn(t) = c (13)

We compared the models using Bayesian information criterion (BIC) and took BIC>10 in 

favor of the ts-dependent model as evidence for significant sensitivity to ts.
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Decoding ts using the LNP model

We used the LNP model fits to the training data to compute the maximum likelihood 

estimate of ts, t s
i , on validation trial i, assuming the firing of the N neurons is conditionally 

independent:

ℒ ts
i = ∑

n = 1

N
rn

i (t)logλn(t) − λn(t) (14)

t s
i = arg maxts

ℒ ts
i

(15)

We assessed decoding performance by calculating the correlation coefficient between the 

actual and decoded values of ts. We also considered the performance of a decoder that 

assumes the representation of ts is stationary following each flash. To do so, we held β(t) at 

the value fit at the time of S1, S2, or S3 for decoding ts during the S1-S2, S2-S3, and S3-Go 

epochs, respectively.

Principal component analysis (PCA)

To perform PCA, we averaged spike times by a 150 ms boxcar filter and used the square root 

of spike counts to reduce the effect of Poisson noise on analyses 57. Data from each unit was 

then trial-averaged and z-scored by removing the mean and normalizing by the standard 

deviation calculated across time and conditions. Finally, z-scored data over time was 

arranged in a data matrix to perform PCA, with rows of the data matrix concatenating data 

across time and ts condition and columns corresponded to units collected across the 16 

individual recording sessions. To visualize activity patterns from S1 to Go (Figure 6a) within 

a single coordinate system, we applied PCA to neural activity from S1 to Go. We also 

performed PCA on activity within each epoch.

Kinematic analysis of neural trajectories (KiNeT)

We developed an analysis technique to infer the relative position and speed of multiple low-

dimensional neural trajectories based on the organization of sets of points along those 

trajectories. KiNeT can be broken down to the following 6 steps: 1) Choose a subspace to 

perform the analysis. In our case, we focused on the projection of the neural activity onto the 

first 10 PCs, which captured more than 93% of variance in the data. 2) Designate one of the 

trajectories as a reference trajectory. In our case, we designated the median ts (800 ms) as the 

reference. 3) Sample the reference trajectory at a given time resolution and compute a vector 

of associated time points. In our case, we used a time resolution of 1 ms and denoted the 

resulting vector of time points by t[800]. 4) For each element of t[800], find the corresponding 

neural state vector on Ω[800], r[800]. The set of state vectors was arranged in a matrix, R[800], 

with each column associated with a time point in t[800]. 5) For each neural state in R[800], 

find the nearest point (minimum Euclidean distance) on all the other (non-reference) 

trajectories. This provides a corresponding matrix of states on each non-reference trajectory, 

which we denoted by R
[ts]

 (the superscript is a reference to the trajectory associated with ts). 
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6) Find the time when the neural state reaches each state in R
[ts]

. This furnishes a 

corresponding set of times, which we denoted by t
[ts]

. The four arrays, t[800], R[800], t
[ts]

, 

and R
[ts]

 can then be used to evaluate the relative geometry and speed of the neural 

trajectories.

We estimated the relative position of neural trajectories by measuring the distance between 

each r
[ts]

 and the corresponding reference state r[800] along the direction defined by the local 

vector connecting r[1000] to r[600]. Mathematically, this is equivalent to finding the 

projection of the difference vector δ
ts = r

ts − r 800  onto the base vector, d = r[1000]−r[600], 

according to δ
ts = dTδ

ts/ | |d | |. Repeating the process for each state in R
[ts]

 results in a scalar 

quantity for each point in t[800]. The result of this analysis was robust to the choice of the 

base vector so long as it captured the dimension along which trajectories differed (e.g., the 

base vector cannot be orthogonal to the difference vectors).

Confidence intervals for the various hypotheses tested by the KiNeT analysis were computed 

by resampling the data 100 times. To assess the significance of our distance metric, we 

compared the bootstrap distribution of δ
ts for ts = 700 and 900 ms, the two values of ts that 

were held out of the distance metric. Significance was computed by a t-test.

Comparison of KiNeT results to behavior

The time it takes for the state variable to reach a point in r
[ts]

 is inversely proportional to the 

speed with which it changes with time. Using this relationship and denoting the speed of the 

reference and non-reference trajectories by V[800] and V
ts , we approximated the relative 

speed, V
ts /V 800  by t[800]/t

[ts]
; i.e., the slope of the regression line relating t

[ts]
 to t[800] that 

passes through the origin.

We also asked whether V
ts  used by the simulator was governed by the experimentally 

controlled ts or the EKF estimate, te, inferred from the animal’s behavior (Figure 8b). These 

two possibilities can be written in terms of the following two hypotheses, respectively:

H1: V
ts te ≈ V 800 800 (16)

H2: V
ts ts ≈ V 800 800 (17)

Rearranging, and exploiting the inverse relationship between speed and time, we can write:
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H1: t e = 800t
ts /t 800 (18)

H2: ts = 800t
ts /t 800 (19)

We evaluated these hypotheses by comparing the RMSE under the two hypotheses.

We asked whether relative position of neural trajectories was organized in neural state space 

according to the experimentally controlled ts or the EKF estimate, te, inferred from the 

animal’s behavior (Figure 8c). Using a linear model, we asked whether the relative position 

was more directly associated with ts or te:

H1: t e = α δ
ts t 800 + ξ (20)

H2: ts = α δ
ts t 800 + ξ (21)

Where δ
ts t 800  is the average of δ

ts over all t[800]. We evaluated these hypotheses by fitting 

the parameters α and ξ under the two hypotheses and compared the goodness of fit using 

RMSE.

To determine if the second interval was integrated into the speed of the population response, 

we compared the overall bias in t e estimated from speeds during S2-S3 and S3-Go. We 

measured the overall bias as:

BIAS = 1
K ∑

i = 1

K
t ei

− tsi

2
(22)

with i indexing the sample interval.

We also used the average distance between trajectories to test whether animals integrated the 

second measurement. The sigmoidal bias observed in behavior predicts that the inter-

trajectory distances should exhibit a compressive nonlinearity; i.e. distances between 

consecutive trajectories should become smaller for ts values that are farther away from the 

middle values of 800 ms. We inferred the bias in each epoch from the average inter-

trajectory distances using the following formulation:

BIAS = 1 −
δ600 − δ700 + δ900 − δ1000

δ700 − δ900 (23)
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In this formulation, positive values reflect the presence of the aforementioned compressive 

nonlinearity. Since the integration of the second measurement should reduce this 

nonlinearity, we asked whether the BIAS computed based on Equation 23 was smaller in the 

S3-Go epoch relative to the S2-S3 epoch.

Statistics

The significance of the differences in slope from zero or unity of the linear model fit to 

animal behavior was assessed by a two tailed t-test (Figure 4e). We tested the increase in 

variance with tp by resampling the data 100 times with replacement to generate an estimate 

of the variance in each associated with each ts. We then fit a linear model to the data and 

tested the significance of the difference from zero with a two tailed t-test. The significance 

of the BAIS in behavior was determined by resampling to generate 100 estimates of the 

statistic followed by a two tailed t-test. Determination of the significance of differences in 

responses to different conflict conditions was determined by one tailed t-tests (Figure 2f). 

Significance of the difference in the degree of scaling of individual neuron responses 

between task epochs was assessed with one tailed Mann-Whitney-Wilcoxon test for equal 

medians (Figure 4d). For population analyses (Figures 7 and 8), we tested statistical 

significance by resampling trials to generate 100 bootstrap estimates of the statistic of 

interest. A t statistic, estimated from the mean and standard deviation of the bootstrap 

distribution, was then used to perform either one or two tailed sample tests depending the 

assumptions associated with the test of interest. For all t-tests, assumptions of normality 

were not formally tested.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The 1-2-3-Go task, behavior, and a sequential updating model.
a) Internal-model based control. The controller drives the output. In the presence of delays 

and variability, the output control would benefit from a simulator and a state estimator. The 

simulator predicts the output and the estimator integrates the prediction with sensory inputs 

to update the controller. b) Sequence of events during a trial of 1-2-3-Go. The monkey 

fixates a central spot (Fix on). After the presentation of a saccadic target (Target on), three 

isochronous flashed annuli (S1, S2, and S3) are presented around the fixation point. The 

animal measures the sample interval (ts), between consecutive flashes and aims to produce a 
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matching interval (tp) after S3 (Go). c) Sample interval distribution, p(ts). Across trials, ts 

was randomly drawn from a discrete uniform prior distribution with 5 values ranging 

between 600 and 1000 ms. d) Reward schedule. Maximum reward was delivered for tp=ts. 
Reward amount decreased linearly to zero with increasing relative error (|(tp - ts)/ts|). e) 

Produced interval (tp) as a function of sample interval (ts). tp increased monotonically with ts 

(mean: colored circles; standard deviation: error bars; monkey B: n = 1412, 1326, 407, 1336, 

1326 total trials for ts = 600, 700, 800, 900, and 1000 ms, respectively; monkey G: n = 699, 

724, 243, 685, 643 trials for ts = 600, 700, 800, 900, 1000 ms, respectively). Responses were 

biased toward the median ts and away from the unity line (dashed). Black traces and gray 

shadings are the mean and standard deviation predicted by the Extended Kalman Filter 

(EKF) model fit to the behavior. f) Analysis of behavior under the four cue conflict 

conditions. Histograms show the distribution of tp in different cue conflict conditions 

(colors) for the two animals (top and bottom). Monkey B: n = 215, 216, 224, and 206 trials 

(left to right). Monkey G: n = 117, 83, 111, and 104 trials (left to right). Solid lines are the 

predicted distribution under the EKF model. Pairs of nearby histograms (e.g., tS1-S2 = 800 

ms, tS2-S3 = 750 ms versus tS1-S2 = 750 ms, tS2-S3 = 800 ms) correspond to conflict 

conditions with the same mean ts. Colored circles show the mean tp for different cue conflict 

conditions. Black circle shows the mean tp across conflict conditions with the same mean ts. 
Purple circles corresponds to the mean tp for tS1-S2 = tS2-S3 = 800 ms trials. Dashed lines are 

added to aid comparison between mean values (ns: not significant; **: p < 0.01; ****: p < 

0.0001; two-sided t-test). g) The EKF model. At the time of S1, the model uses the mean of 

the prior as its initial estimate of ts (te(S1): light gray). At S2, the model derives an updated 

estimate (te(S2): medium gray) by applying a nonlinear function to the difference between 

te(S1) and the current measurement, denoted mS1-S2 (green). At S3, the model further updates 

the estimate (te(S3): dark gray) by applying the same nonlinearity to the difference between 

te(S2) and the second measurement, denoted mS2-S3 (orange). The model uses te(S3) as its 

final estimate, and produces tp (red), which is corrupted by production noise (see Online 

Methods, Supplementary Figure 1). Open and filled circles correspond to unobserved and 

observable variables, respectively. h) Log likelihood of different variants of the EKF model 

that either use tS1-S2, or tS2-S3, or both. Larger values indicate more support for a given 

model. n = 861 and 415 total trials for monkeys B and G, respectively. See also 

Supplementary Figure 1.
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Figure 2. Predictions of the open-loop and internal model hypothesis in the 1-2-3-Go task.
a) Activity profile of two hypothetical populations, r1 and r2, under the open-loop 

hypothesis. Predictions are shown for each of the three epochs. r1 provides the clock and r2 

integrates the clock to track elapsed time. During both the first and second epochs (light and 

medium gray boxes), the clock signal is independent of ts. Therefore, r2 at S2 or S3 

represent the measured interval (different colored squares). These measurements set the 

clock speed (output of r1) according to te(S3), and, as a consequence, r2 ramps to threshold 

(horizontal black line) at a rate that depends on ts from S3 to Go (dark gray box). b) Activity 

profile under the internal model hypothesis. r1 and r2 represent the control signal and 

simulation, respectively. During the first epoch (light gray box), the r1 population supplies a 

constant speed command according to the mean of the prior. The r2 population integrates 

this speed command and produces ramping activity that terminates at different points 

depending on the sample interval, ts (different colored squares). The difference between the 

terminal point of r2 and the predicted terminal point based on the mean of the prior 

(horizontal line) provides an error that allows r1 to encode an interval-dependent speed 

command in the subsequent epoch (medium gray box, top). The corresponding r2 population 

integrates the updated speed to generate ramping activity whose slope varies with ts 
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(bottom). The same process is repeated in the third epoch (dark gray box). Dashed red line 

highlights the key differences between the two hypotheses.
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Figure 3. Example response profiles of individual DMFC neurons during 1-2-3-Go task.
a) Recording locations. Left: illustration of the dorsal aspect of the right hemisphere, 

showing major sulci (black lines) and the location of recordings across monkeys (red). 

Right: Magnetic resonance image showing a sagittal section (dashed line, Left) of the right 

hemisphere in monkey G; mean across two image acquisitions with similar results. Red 

indicates the rostral-caudal extent of recordings. b) Average response profiles for 4 example 

neurons aligned to S1 (left) and Go (right) sorted according to ts (colors). Shading indicates 

standard errors. Vertical dashed lines indicate flash and saccade times. Trial number for ts = 
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600, 700, 800, 900, and 1000 ms: G.7.7 – 185, 206, 72, 193, and 148; G.8.43 – 156, 169, 51, 

138, and 133; G.9.11 – 178, 172, 49, 157, and 151; B.21.16 – 210, 168, 47, 176, and 173.
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Figure 4. Temporal scaling of non-monotonic firing rates across individual DMFC neurons.
a) Firing rates of two example neurons (rows) as a function of task epoch (columns) for 

different values of ts (colors). Black lines are the fit of a 6th order polynomial to the first 600 

ms of each epoch and neuron. From left to right, firing rates were aligned to S1, S2, and S3 

flashes, respectively (black dashed line). Colored dashed lines represent the time of the 

subsequent flash. Insets: firing rates aligned to Go (black dashed line). b) Histograms of the 

difference in the fraction of variance explained, R2, between the 6th and 1st order 

polynomial fit to the data. Negative and positive values correspond to neurons that favored 

the 1st and 6th order polynomial, respectively. Insets on the negative and positive sides of 

the abscissa illustrate example 1st and 6th order polynomials. Arrows indicate the mean of 

the distributions. Different gray levels correspond to different task epochs. c) Example 

scaled temporal responses. Left: firing rate of the second neuron in panel a during the S2-S3 

epoch, temporally scaled by the animals’ estimate in the S2-S3 epoch. The estimate was 

inferred from the model fits to the behavior. Right: firing rate profile for the S3-Go epoch of 

the first neuron in panel a temporally scaled by the animals’ estimate in the S3-Go epoch. 

Black lines show the 6th order polynomial that best fit the scaled data. Dashed lines as in 

panel a, but appropriately scaled. d) Scatter plot showing the change of explanatory power 

(ΔR2) of the 6th order polynomial fit to the scaled versus unscaled data across neurons. Top: 
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ΔR2 in the S2-S3 epoch compared to the S1-S2 epoch. Bottom: ΔR2 in the S3-Go epoch 

compared to the S1-S2 epoch. Vertical and horizontal dashed lines indicate ΔR2 = 0 and the 

diagonal in the unity line. See also Supplementary Figures 2 and 3.
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Figure 5. A representation of the sample interval by individual DMFC neurons.
a) Top: Firing rate of two example neurons with the same format as in Figure 4a. Triangles 

indicate time points of analysis in panels b and e. b) The relationship between ts and firing 

rates +/− standard error (circles and error bars; n = 30 trials for each ts, sampled with 

replacement from test data set) at S1, S2, and S3 for the example neuron in panel a (bottom 

row). Firing rates were computed from spike counts within a 150 ms window centered on S1 

(light gray), S2 (medium gray), and S3 (dark gray). Lines are fits of the linear-nonlinear-

Poisson (LNP) model (functional form shown on top). c) Histogram showing the sensitivity 

of individual neurons at the time of each flash to ts. Sensitivity values (βS1, βS2, and βS3) 

were derived from the LNP model fits as shown for an example neuron in panel b. White 

bars include neurons for which LNP provided a superior fit to a constant firing rate model 

(see Online Methods). d) Scatter plot of sensitivity to ts at S3 versus S2 across the 

population based on βS2 and βS3 parameters. White circles represent neurons that were 

significantly tuned to ts at either S2 or S3. e) Pearson’s correlation coefficient between firing 

rates, conditioned on ts, at the time of S2 (x-axis) and 500 ms afterwards (y-axis) for the 
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example neuron in a (middle column, bottom row). Mean values for the 0 ms time point 

were found from a random selection of half the total trials (n = 156, 169, 51, 138, and 133 

for ts = 600, 700, 800, 900, and 1000 ms, respectively); mean values for the 500 ms time 

point were found from the remaining trials. f) Average correlation between firing rates, 

conditioned on ts, computed for different pairs of time points. The average is taken across all 

individual neurons (n = 115). Left, middle, and right correspond to the analysis performed at 

time points relative to S1, S2, and S3, respectively. See also Supplementary Figures 4, 5, 6, 

and 7.
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Figure 6. Neural trajectories and a technique for analyzing their kinematics.
a) Neural trajectories plotted in a subspace spanned by the first three principal components 

(PCs) computed from patterns of activity of n = 181 units across time, from S1 to Go. 

Circles indicate state at S1, S2, or S3 and squares denote state 100 ms before the correct tp 

for each ts. (b-d) Schematic illustration of KiNeT. b) Simulated neural trajectories generated 

under the internal model hypothesis and embedded in three-dimensional space by a 

nonlinear transformation. Gray and black markers correspond to the set of states, r
ts , 

nearest to r[800] at t[800] = 300 ms and t[800] = 500 ms, respectively. Small circles connected 

by thin black lines are states on the trajectories at 400 ms or 550 ms after the starting point. 

c) The time required for Ω
[ts]

 to reach r
ts , denoted t

[ts]
, depends on the speed along each 

trajectory (top). Using this relationship, we can map t
[ts]

 to t[800] for each trajectory 

(bottom). Black points illustrate t
[ts]

 for t[800] = 500 ms. The application of KiNeT on Ω
ts

with different speeds is illustrated by the dashed lines. Gray points illustrate t
[ts]

 for t[800] = 

300 ms. d) KiNeT to infer the relative positions of trajectories. Each colored line represents 

the trajectories corresponding to different values of ts unraveled into two dimensions using 

KiNeT (panels b and c). KiNeT provides an estimate of the distance between Ω
ts  and Ω[800] 

at different time points. δ
ts is a vector that connects corresponding states on Ω

ts  and Ω[800]. 

d is a vector that connects corresponding states on the first and last trajectories. Distance 

was measured by the projection of δ
ts on d. Black and gray circles correspond to the nearby 

states as in panel a. See also Supplementary Figures 8 and 9.
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Figure 7. Relative speed and distance between neural trajectories during 1-2-3-Go.
a) ts-independent (top) or ts-dependent (bottom) representation of speed. b) Speed of each 

neural trajectory, Ω
ts , compared to the speed of the reference trajectory, Ω[800]. Colored 

lines show the progression of elapsed time on Ω
ts  t

[ts]
 as a function of elapsed time on 

Ω[800] (t[800]) for different ts. Shadings indicate median +/− 95% confidence intervals 

computed from n = 100 bootstrap resamples. Unity line corresponds to no difference in 

speed. Dashed lines represent the expected relationship between t
[ts]

 and t[800] under the 

internal model hypothesis for an observer with perfect knowledge of ts. Insets: difference in 

RMSE under the assumption of ts-independent speed (left of zero) versus ts-dependent speed 

(right of zero). In S1-S2 epoch, both the open-loop and internal hypotheses (HOL and HIM) 

predict ts-independent speed; ts-dependent predictions were based on fits of EKF to 

behavior. In S2-S3 epoch, HOL predicts ts-independent speed, and HIM predicts ts-dependent 

speed; the data supports HIM (red dashed line). In S2-S3 epoch, both hypotheses predict ts-
dependent speed. c) ts-independent (top) or ts-dependent (bottom) representation of the 

speed command. d) Distance (δ
ts) between nearby states on Ω

ts  and Ω[800] as a function of 

time. Horizontal dashed line δ
ts = 0  corresponds to overlapping trajectories. The data 

supports HIM (red dashed line). Shadings indicate median +/− 95% confidence intervals 

computed from n = 100 bootstrap resamples. See also Supplementary Figures 10, 11, and 

12.
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Figure 8. Speed and distance between neural trajectories reflect animals’ internal estimates.
a) Interval estimates derived from EKF model (same format as in Figure 1g). b) Interval 

estimate inferred from the speed of neural trajectories t e  as a function of ts. Left: the 

procedure for inferring t e for each ts. The colored traces show t
ts  as a function of t[800] for 

a random draw from the bootstrap distribution (see Online Methods). To infer t e for each ts, 

we measured the slope of the regression line relating t
ts  to t[800] Δt

ts /Δt[800]  and then 

scaled the slope by the duration of the reference interval (800 ms). The dotted line is the 

regression slope for ts=900 ms. Middle and right: t e as a function of ts inferred from the 

speed of neural trajectories in the S2-S3 and S3-Go epochs. The colored dots show multiple 

estimates of t e derived from bootstrapping (n=100). The solid curves show interval estimates 

derived from EKF model fits (te(S2) in the middle panel and te(S3) in the right panel). Unity 

indicates perfect estimates of ts and the horizontal line represents the mean of the prior. 

Insets: difference in RMSE between models that assume that the speed of neural trajectories 

reflects ts versus te(S2) (middle) or te(S3) (right). Positive values indicate neural data more 

accurately captured by EKF. c) The value of t e inferred from the distance between neural 

trajectories as a function of ts. Left: the procedure for inferring t e for each ts. The colored 

traces show δ
ts as a function of time for a random draw from the bootstrap distribution (see 

Online Methods). We inferred t e for each ts using a linear transformation of the average 
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distance α δ
ts + ξ . The dotted line shows the average distance, δ

ts , for ts=900 ms. Middle 

and right: t e as a function of ts inferred from the distances between neural trajectories in the 

S2-S3 and S3-Go epochs (same format as panel b). Insets: differences in RMSE between 

models assuming the distances of neural trajectories reflect ts versus te(S2) (middle) or te(S3) 

(right). d) Comparison of the degree of BIAS in speed (top) and distance (bottom) during the 

S2-S3 and S3-Go epochs. Dashed lines are unity. See also Supplementary Figure 13.
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