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h i g h l i g h t s

� a-Synuclein (aS) is a synaptic protein
up-regulated in Parkinson’s disease.

� SH-SY5Y neuroblastoma cells were
engineered to overexpress aS at low
and high levels.

� High-aS overexpression stimulates
cell proliferation and delay
senescence.

� Low-aS overexpression causes
toxicity, oxidative stress, and
accelerates senescence.

� A fine-tuned up-regulation of aS is
critical for neuronal maintenance and
survival.
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a b s t r a c t

Alpha-Synuclein (aSyn) is a chameleon-like protein. Its overexpression and intracellular deposition
defines neurodegenerative a-synucleinopathies including Parkinson’s disease. Whether aSyn up-
regulation is the cause or the protective reaction to a-synucleinopathies remains unresolved.
Remarkably, the accumulation of aSyn is involved in cancer. Here, the neuroblastoma SH-SY5Y cell line
was genetically engineered to overexpress aSyn at low and at high levels. aSyn cytotoxicity was assessed
by the MTT and vital-dye exclusion methods, observed at the beginning of the sub-culture of low-aSyn
overexpressing neurons when cells can barely proliferate exponentially. Conversely, high-aSyn overex-
pressing cultures grew at high rates while showing enhanced colony formation compared to low-aSyn
neurons. Cytotoxicity of aSyn overexpression was indirectly revealed by the addition of pro-oxidant rote-
none. Pretreatment with partially reduced graphene oxide, an apoptotic agent, increased toxicity of rote-
none in low-aSyn neurons, but, it did not in high-aSyn neurons. Consistent with their enhanced
í, Ecuador.
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proliferation, high-aSyn neurons showed elevated levels of SMP30, a senescence-marker protein, and the
mitosis Ki-67 marker. High-aSyn overexpression conferred to the carcinogenic neurons heightened
tumorigenicity and resistance to senescence compared to low-aSyn cells, thus pointing to an inadequate
level of aSyn stimulation, rather than the aSyn overload itself, as one of the factors contributing to a-
synucleinopathy.
� 2020 Production and hosting by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Alpha-Synuclein (aSyn) is an intrinsically disordered andprimar-
ily monomeric protein in its soluble form. Usually 140 amino acids
long, it is predominantly expressed in the presynaptic terminals
and nuclei of neurons, reflected in its name synuclein [1]. This
aggregation-prone protein shows the characteristic of structural
plasticity, shifting from a disordered random coil in the cytosol to
a tetrameric a-helix [2,3] when associated with membrane phos-
pholipids [4]. The exact role of aSyn in the nervous system has not
yet been completely elucidated. Under physiological conditions,
thebulkof aSyn is present inneuronalprocesses andnerve terminals
in close proximity with the plasmaticmembrane. Accordingly, aSyn
may play a role in synaptic vesicle release, synaptic plasticity, mem-
brane trafficking [5,6], and neurotransmission [6].

aSyn came into the spotlightwhen its aggregationanddeposition
in the form of Lewy bodies (LBs) was found inside neurons and glial
cells of a group of neurodegenerative diseases called a-
synucleinopathies [7,8]. LBs are the pathological hallmark of Parkin-
son disease (PD), Parkinson disease with dementia; dementia with
LBs, multiple system atrophy, and Hallervorden-Spatz’s disease
[9]. Becausemultiplicity of the synuclein-alpha gene (i.e., the SNCA)
gene coding for aSyn causes a juvenile form of PD [10,11], it is tradi-
tionally believed that abnormal accumulation of aSyn promotes its
aggregation and neurotoxicity [12]. However, SCNA gene dosage
does not always correlate with a-synucleinopathy [13–15]. aSyn
aggregates and diffuse accumulation occurs with aging in neurolog-
ically healthy patients [16]. Although, it is presumed that aging-
induced intracellular deposits of aSyn represent a pre-clinical stage
of the synucleinopathy [8,17,18], some evidence also suggests that
aging does not have an additive role in aSyn-induced neurodegener-
ation [19]. To address this contradiction, amulti-hit hypothesis [20]
points to a combination of aSyn aggregation with several factors as
the triggering factor of a-synucleinopathy. This raises the question
of whether the formation of LBs is adaptive and neuroprotective
[21] or by contrast, it is a pathological reaction [22] to the origin of
a-synucleinopathy.

A neglected aspect in the analyses of a-synucleinopathies is why
aSyn is also overexpressed in CNS tumors [23,24]. Neurodegenera-
tion shares common pathways with oncogenesis [25–31] and
accordingly aSyn may be involved in both processes [32–34]. It has
been suggested that levels of soluble aSynmaybepivotal for the bal-
ance between cell viability and cell death [19,35–37]. As a proof of
concept, itwas investigated if the levelsofaSynoverexpressioncould
alter the proliferation rate and cell viability of human SH-SY5Y neu-
roblastoma cells, a cancer cell line frequently chosen to explore PD
mechanisms because of its robust dopaminergic phenotype [38].
With this goal inmind, SH-SY5Y cellswere engineered ad hoc to per-
manently overexpress different quantities of wild-type aSyn.
Material and methods

Reagents

LipofectamineTM 2000 transfection reagent, Dulbecco’s modified
Eagle minimum essential/Ham’s F-12 (DMEM/F12) plus Gluta-
maxTM media, fetal bovine serum (FBS), sodium pyruvate, L-
glutamine, penicillin G/streptomycin mix, RIPA buffer, and
enzyme-free PBS-based cell dissociation buffer were purchased
from Gibco (Carlsbad, CA, USA). Noble agar, Crystal Violet dye,
and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bro-
mide (MTT); non-essential amino acids and protease inhibitor
cocktail were acquired from Roche (Palo Alto, CA, USA). b-
Mercaptoethanol and rotenone (Rot) were purchased to Sigma-
Aldrich (St Louis, MO, USA). Partially reduced graphene oxide
(PRGO) was prepared by Abalonyx AS (Oslo, Norway). Graphene
oxide (GO) was prepared from natural graphite powder following
the modification of the hummers method as follows. An aqueous
slurry of GO was dried on a plastic substrate to prepare a GO film.
This film was then heated slowly (1 �C/min) to 300 �C in open air to
obtain the PRGO film.
Human SH-SY5Y neuroblastoma cell cultures

In-house stock of the human neuroblastoma SH-SY5Y cell line
was routinely grown to reach the necessary confluence (over
80%) in DMEM/F12 + glutamaxTM medium containing 10% fetal
bovine serum (FBS), 4% non-essential amino acids, 1% penicillin/
streptomycin, 4.5 g/l glucose, 0.1% amphotericin B, and sodium
pyruvate. Cell cultures were maintained at 37 �C in normoxia (5%
of CO2). Medium was exchanged every 3 days during cell growth,
and cultures were passed when confluent once or twice per week.
Cells were harvested using enzyme-free PBS-based cell dissocia-
tion buffer. A collection of images was taken from living cell cul-
tures after 2 weeks under a contrast phase filter using an
inverted microscope (PrimoVert; Zeiss GmbH; Overkochen; Ger-
many) and digital imaging software (Axiovision 40 V 4.2.8.0; Zeiss
GmbH) when indicated.
Generation of stably aSyn-transfected cell lines

Untagged, full-length human aSyn (SNCA GenBank ID:
BC108275) cDNA (Clone ID: 6147966), inserted into pcDNATM

3.1Zeo (+) plasmid was a generous gift from Prof. José González-
Castaño (Universidad Autónoma de Madrid). SH-SY5Y cells that
underwent less than 5 passages after thawing of a stock culture
were transfected with the wild-type human SNCA gene using the
transfection reagent LipofectamineTM 2000 according to the manu-
facturer’s protocol. A selection of aSyn stably-transfected SH-SY5Y
cells was made with Zeocin (200 ng/mL) according to manufac-
turer instructions. Zeocine resistant clones were picked up and ver-
ified for aSyn overexpression by immunoblotting using empty
pcDNATM 3.1Zeo (+) plasmid-transfected SH-SY5Y cells as a control.
The abundant bibliography on the subject focuses on the SNCA-
gene transfection as a means to overexpress aSyn and mimic the
pathological cellular environment that is characteristic of PD
[20]. Herein it was made an ad hoc selection of those clones with
the highest (high-aSyn) and the lowest (low-aSyn) expression of
aSyn, which significantly differed from the basal aSyn expression
found in empty plasmid-transfected cells.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Western blotting

De-attached cells were homogenized in ice-cold RIPA buffer
containing sodium orthovanadate (1 mM) and the protease inhibi-
tor cocktail (1% NP-40; 0.5% Na deoxycholate; 0.1% SDS; PMSF
100 lg/mL; aprotinin 30 ll/mL; Na orthovanadate 1 mM; 1% Vol/
Vol), incubated on ice for 30 min, and cleared by centrifugation
(8000g for 10 min at 4 �C). Protein content was determined using
the BCA assay (Bio-Rad, Hercules, CA; USA). Cell extract was heated
at 95 �C for 10 min in the Laemmli buffer and b-mercaptoethanol,
then loaded onto a 10% dodecyl sulfate (SDS)-polyacrylamide elec-
trophoresis gel (40 mg protein/lane), electrophoresed with TRIS-
glycine running buffer at 15 V/cm for 1 h, and finally transferred
to a polyvinylidene difluoride membrane (Bio-Rad, Hercules, CA;
USA). This membrane was incubated at room temperature in
blocking buffer (0.1% of Tween 20 and 2.5% of bovine serum albu-
min or BSA in Tris-Buffered Saline (TBS) containing 5% of non-fat
dry milk for 4 h. Subsequently, the membrane was incubated at
4 �C overnight with the primary antibodies for each antigen diluted
in TBS containing 2.5% of BSA. As the primary antibodies rabbit
anti-aSyn (1:1000; Millipore; AB5038P) was used; mouse mono-
clonal anti-SMP30 (1:500; Santa Cruz Biotechnology, G-10); and
polyclonal rabbit anti-Ki-67 (1:5000; Millipore; AB9260). Rabbit
anti-b-actin (1:5000; Santa Cruz, sc-130656) was used as the load-
ing control.

Incubation with secondary antibodies was performed for 1 h at
room temperature in TBS solution supplemented with 2.5% of BSA.
The horseradish-peroxidase (HRP)-coupled anti-rabbit and anti-
mouse IgG (1:10,000 in TBS plus 2.5% of BSA; Abcam) was used
for secondary antibodies. Protein bands on the membrane were
detected by the chemiluminescence method using the horseradish
peroxidase SuperSignalTM WEST Dura Extended Duration Substrate
(Gibco, Carlsbad, CA, USA). The analysis of bands relied on the opti-
cal densitometry using the ChemiDocTM detector and the Image
LabTM software (Bio-Rad, Hercules, CA; USA). Image analysis and
quantification of bands were conducted using the Fiji-ImageJ soft-
ware (htpp://imagej.nih.gov/ij/).

Cytotoxic effects assessment

Harvested cells were seeded at a density of 5 � 104 cells per cm2

in 48-well microplates and their viability measured 24 h later. The
reduction of the thiazolyl blue tetrazolium bromide (MTT) dye to
formazan was taken as the initial indicator of cell viability [39].
A stock (5 mg/mL in PBS) of the MTT salt was diluted 10 folds in
the cell culture medium. After a 2-hour incubation at 37 �C, the yel-
low MTT salt was reduced to purple formazan by active mitochon-
drial reductase enzymes of the living cells. The medium was then
aspirated and formazan precipitate dissolved in 100 ml of pure
DMSO. Aliquots were transferred to a 48-well microplate, and opti-
cal density read at 560 nm with DMSO as a blank using a micro-
plate reader (BioTEK analyzer, Izasa Scientific, Barcelona, Spain).
Cell viability was also evaluated by the vital-dye (Trypan blue)
exclusion test when necessary. Trypan blue was dissolved directly
into the culture medium (0.02% Vol/Vol) to evaluate the fraction of
dead (Trypan blue-tangible) cells vs. total cell counts at 200-fold
magnification under the light of an inverted microscope
(PrimoVert; Zeiss GmbH; Overkochen; Germany). Individual
cell counts were conducted using the Fiji-ImageJ software
(htpp://imagej.nih.gov/ij/).

Rotenone (Rot) and partially reduced graphene oxide (PRGO)
treatments

SH-SY5Y transfected clones were seeded in 96-well microplates
at a concentration of 5 � 103 cells per well in phenol red-free
DMEM/F12 medium supplemented with FBS (10%) and sodium
pyruvate (100 mM). Half of the plates were pretreated with PRGO,
which was added fresh to the medium (50 mg/mL). PRGO was cho-
sen because it is a form of graphene that differentiates cells into
neuronal lineages [40,41]. After incubating the cells for 7 days,
the medium was removed and the cells treated with Rot, which
was diluted from a freshly made stock solution (0.5 mg/mL of pure
DMSO) into the medium at 0; 0.1; 0.2; 0.4; and 1.2 mM concentra-
tions (the final concentration of DMSO was 0.1%). After a 24-hour
incubation, a stock of MTT reagent (5 mg/mL of PBS) was diluted
10 folds into the medium, the cells were incubated overnight,
and the formazan precipitate solubilized in pure DMSO and quan-
tified by colorimetry. Absorbance of wells having either medium or
PRGO was set equal to 100% for each cell clone to normalize absor-
bance values of wells within the experimental treatments.

Proliferation assay

Cells were seeded in 96-well microplates (2 � 103 cells/well)
and incubated at 37 �C. Cell proliferation was quantified by the
MTT method at 0, 24, 48, and 72 h after seeding cells as described
above. Assuming that the metabolic activity of cells is stable within
short periods of time, as we determined it to be the case, an
increase in the absorbance should accurately reflect changes in cell
proliferation. Absorbance at the seeding time (0 h) was therefore
set equal to 100% to estimate cell growth at the times set above.

Adherent colony formation assay

Thismethod assesses the reproductive viability (clonogenicity) of
single cells. It is based on the capacity of adherent cells to produce
progeny in a monolayer; i.e., a colony of approximately 50 cells
derived from a single cell [42]. For each experimental condition, a
total of three Petri plates, containing 103 cells in 10 mL of medium
each, were incubated in triplicate for 10 days at 37 �C in an atmo-
sphere of 5% of CO2 and protected from light. Some of the cells were
incubatedwith a conditionedmedium (Cm) obtained after a 24-hour
incubationwithSH-SY5Ycells showingmaximumoverexpressionof
aSyn (i.e., high-aSyn). Prior to the incubation, the mediumwas cen-
trifugedandfilteredusing a 0.2mmMinisart�. Syringefilter (Biotech,
Goettingen, Germany). At the end of incubation, plateswerewashed
with PBS, incubated in 4%-paraformaldehyde saline buffer for
30 min, washed with PBS, and stained with crystal violet for
15 min. Once the stain was removed and plates were washed with
distilled water, colonies were counted using a Colony Counter 560
(Suntex Instruments Co., Taiwan).

Soft agar colony formation assay

The soft agar assay for tumorigenicity is based on the ability of
cells toproliferate ina semi-solidmatrix [43].Akeyadvantageof this
technique over the conventional 2Dmonolayer assay (the clonogenic
assay) is that, under conditions of isolation, the lack of anchorage
challenges the tumorigenic potential of cells. The plasmid or the
SNCA-gene transfected SH-SY5Y cells were mixed with Noble agar
prepared at 0.3% in fresh culturing medium or conditioned (Cm)
medium when indicated, and seeded into 6-well plates containing
a solidified bottom layer (Noble agar dissolved at 0.6% in fresh cul-
turingmedium) at a density of 104 cells/well. After 3 weeks of incu-
bation, colonies were stained with crystal violet and counted using
the Colony Counter 560 (Suntex Instruments Co., Taiwan).

Statistics

Statistical analyses were carried out using SPSS 16.0 for Win-
dows. One-way ANOVA followed by Bonferroni post hoc test were

http://htpp%3a//imagej.nih.gov/ij/
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used to determine protein differences in the WB assays. Viability
(MTT) results were assessed by a two-way factorial
(clone � passage) ANOVA. Student’s t-test was applied to Vital
Dye Exclusion data. Two-way (clone � incubation time) ANOVA
was used to analyze cell proliferation. Data from tumorigenicity
and clonogenicity assays were analyzed by using one-way ANOVA.
Neurotoxic treatments were scrutinized by a two-way factorial
ANOVA followed by the Bonferroni test for planned post-hoc com-
parisons, with clone (plasmid vs. low-aSyn and high-aSyn) and
treatment (vehicle & PRGO vs. Rot & Rot + PRGO) as between-
subject factors. Alpha value was set at P < 0.05.

Results

Characterization of aSyn-overexpressing SH-SY5Y neurons

Fig. 1 shows the overexpression levels of aSyn in lysates of
SNCA-transgenic SH-SY5Y cells (the aSyn clones) as a percentage
Fig. 1. aSyn-overexpression in SCNA-gene transfected SH-SY5Y neurons. (a)
Representative Western blots of positively SCNA gene transfected clones (lanes 3
and 4, low-aSyn; lanes 5 and 6, high-aSyn) compared to the empty plasmid-
transfected clone (lanes 1 and 2, Plasmid). (b) aSyn expression was quantified by
optical densitometry, then normalized with loading (b-actin) controls, and finally
represented like the percentage of the plasmid value (100%): Values are expressed
as the mean ± SD of 5 independent experiments with Bonferroni post hoc tests:
**P < 0.01, ***P < 0.0001 vs. Plasmid; +++P < 0.0001 vs. low-aSyn.

Fig. 2. Viability of aSyn-overexpressing SH-SY5Y neurons during subculturing. Moderate
passage. High-aSyn overexpression increased cell viability regardless the passage. Values
hoc tests: ***P < 0.0001 vs. Plasmid; +++P < 0.0001 vs. low-passage aSyn counterparts.
of the basal expression shown by control cells transfected with
empty plasmids (the plasmid clone). Based on the immunoblots
(Fig. 1a), it was confirmed that SH-SY5Y cells were positively trans-
fected with the SNCA gene (F(2,13) = 150.43, P < 0.0001; Fig. 1b).
The intensity of the aSyn band changed from moderate to substan-
tial as seen in the low-aSyn clone (125% of the plasmid clone,
P < 0.05) and the high-aSyn clone (750% of the plasmid clone,
P < 0.0001), respectively. Differences between both aSyn-
overexpressing clones were statistically significant (P < 0.0001).

Viability of aSyn-overexpressing SH-SY5Y neurons

The interest was to know to what extent differences in the
levels of aSyn overexpression may affect cell viability and how
the period of culturing impacted cell cultures, as the wellbeing of
cultured cells may decline as a result of the progressive culture
aging. Fig. 2a represents the viability, as determined by the MTT
method, of aSyn clones at low passage (a second sub-culture fol-
lowing 1 freeze/thaw cycle) as well as at high passage (over 10
sub-cultures following at least two freeze/thaw cycles) compared
to the plasmid clone. The two-way ANOVA revealed a statistically
significant clone effect (F(2,97) = 64.98, P < 0.0001), passage effect
(F(1,97) = 147.55, P < 0.0001), and passage-clone interaction (F
(2,97) = 65.5, P < 0.0001). Cell viability of the low-aSyn clone was
reduced by 50%, but only at low passage (P < 0.0001 compared to
plasmid). Moderate aSyn expression damaged cells just at low pas-
sage as confirmed in a separate set of experiments, where the ratio
of Trypan blue-tangible (dead) cells was higher than plasmid-
transfected cells (t (45) = 2.58; P < 0.0001; Fig. 2b). Nevertheless,
viability of the low-aSyn clone in the MTT test improved as the
number of culture passages increased (the high-passage condition)
to the point of overcoming the viability of plasmid-transfected
cells (P < 0.0001, Fig. 2a). Culture time was a determinant factor
of the cytotoxicity of aSyn overexpression.

aSyn overexpression enhanced the proliferation rates of SH-SY5Y
neurons

Next, it was measured the time-dependent variability in prolif-
eration rates of the SCNA-gene and plasmid transfected clones.
Fig. 3 shows the increment (%) of cell population during a 3-day
incubation after one freeze/thaw cycle and two sub-culture
rounds. The two-way factorial (clone � incubation time) ANOVA
was preferred over the repeated-measures ANOVA analysis
because sphericity was not assumed (Mauchly’s test of spehericity:
P < 0.05). A two-way ANOVA showed significant differences in the
levels of aSyn overexpression provoked cytotoxicity at low passage, but not at high
are expressed as the mean ± SD of 24 independent experiments with Bonferroni post



Fig. 3. Proliferation of aSyn-overexpressing SH-SY5Y neurons. (a) Proliferation of plasmid and aSyn cells at 0, 24, 48 and 72 h after seeding. Data represent the mean ± SD of
12 independent experiments with Bonferroni post hoc tests: ***P < 0.0001 vs. Plasmid at the same-time. (b) Phase contrast microscopy images (magnification 10�) of non-
transfected, plasmid-transfected, aSyn-overexpressing (low-aSyn and high-aSyn) neurons after a 3-day incubation. Note that aSyn-overexpressing cells adhere easily in larger
clusters.
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growth rates of clones over time (clone � incubation time interac-
tion, F(6,62) = 10.127, P < 0.0001). Differences were observed fol-
lowing a 48-hour incubation when high-aSyn clone began to
proliferate faster than low-aSyn and plasmid clones (P < 0.0001),
whereas levels of proliferation of the low-aSyn clone approached
those of the high-aSyn clone after a 72-hour incubation
(P < 0.0001 compared to plasmid). A delayed proliferating response
and subsequent amelioration of the low-aSyn clone during the
culture time was thus confirmed.

aSyn overexpression stimulates the formation of adherent cell colonies

It could be argued that the MTT assay captures cell metabolic
activity better than cell proliferation. Therefore, effects of aSyn
Fig. 4. Colony formation in aSyn-overexpressing SH-SY5Y neurons. Colony counting in (a
(tumorigenicity) conditions. Cm: conditioned medium from high-aSyn culture. Data repre
with Bonferroni post hoc test ***P < 0.001 compared to Plasmid; ++P < 0.01, +++P < 0.00
different clones as observed in agar plates.
overexpression in cell viability was reevaluated by measuring the
formation of adherent colonies (clonogenicity, Fig. 4a). Conditioned
medium (Cm) from high-aSyn cell cultures was introduced as an
additional treatment to investigate whether the proliferative
effects of high-aSyn overexpression could be controlled by para-
crine ways. In attachment-dependent conditions, clonogenicity
was linked to the aSyn overexpression in the SH-SY5Y clones
(F(4,14) = 184.1, P < 0.0001; low-aSyn and high-aSyn clones were
higher compared to plasmid; P < 0.0001). These effects, however,
were not specific because replication viability of the low-aSyn
clone was moderately higher compared to the high-aSyn clone
(P < 0.01), a difference that was even larger after incubation with
Cm (low-aSyn clone + Cm compared to the low-aSyn clone;
P < 0.01).
) attachment-dependent (clonogenicity) conditions and (b) attachment-independent
sent the mean ± SD of 3 (clonogenicity) to 4 (tumorigenicity) different experiments
1 compared to low-aSyn. (c) Images of crystal violet-stained colonies grown from
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Effects of aSyn overexpression in colony formation in agar (CFA)

To assess tumorigenicity, cell cultures were grown on agar to
measure proliferation in attachment-independent conditions. The
CFA assay rigorously tests cell proliferation and migration, which
depend on floating cancer stem cells. This assay confirmed that
aSyn overexpression stimulated the production of colony forma-
tion units (Fig. 4b; F(4,19) = 140.45, P < 0.0001; low-aSyn and
high-aSyn clones compared to the plasmid clone; P < 0.0001). In
contrast to clonogenicity, tumorigenicity in the high-aSyn clone
was higher than in the low-aSyn clone (P < 0.0001). Likewise clono-
genicity, culturing with Cm, increased the tumorigenicity of low-
aSyn (the highest CFA rate), and the plasmid clone (P < 0.0001
vs. non-conditioned counterparts) probably by paracrine action.
aSyn overexpression precipitates Rot toxicity in SH-SY5Y neurons

Viability of the transfected clones was challenged with Rot, a
complex I inhibitor and potent pro-oxidant agent. Pretreatment
with PRGO is deemed to promote cell aging. Fig. 5 represents the
cytotoxic effects of (a) increasing concentrations of Rot and (b)
the effects of 50 mg/mL of PRGO pretreatment in the cytotoxicity
produced by Rot. As shown in Fig. 5a, there was a statistically sig-
nificant clone effect (F(2,302) = 15.32, P < 0.0001), a treatment
effect (F(3,302) = 57.63, P < 0.0001), and a clone � treatment inter-
action (F(6,302) = 15.53, P < 0.0001). The treatment with Rot signif-
icantly damaged the low-aSyn clone (P < 0.0001 compared to
Vehicle, P < 0.0001 compared to plasmid) and the high-aSyn clone
(P < 0.001 compared to Vehicle, P < 0.0001 compared to plasmid),
whereas the plasmid clone was not affected.

The combination of the Rot with PRGO treatments (Fig. 5b)
exhibited synergy and exacerbated cytotoxicity in the low-aSyn
clone (P < 0.0001 compared to the PRGO, plasmid, and high-aSyn
groups), as well as it finally caused damage to the plasmid clone
(P < 0.0001 compared to PRGO). The Rot + PRGO treatment, how-
Fig. 5. Rotenone-induced neurotoxicity in aSyn overexpressing neurons and worsening
treatment with Rot damaged only aSyn-overexpressing neurons. (b) Pretreatment with
plasmid-transfected cells while worsening the conditions for low-aSyn cells. Grey bars r
percentage of vehicle control of each clone type. Data represent the mean ± SD of 8 in
Plasmid; +++P < 0.001 compared to low-aSyn.
ever, showed no evident changes in the viability of the high-aSyn
clone compared to the Rot treatment. Absence of a clear dose-
toxicity relationship was likely due to floor effects.

Cell senescence is retarded in high-aSyn SH-SY5Y neurons

Finally, aSyn overexpression effects in specific markers of
senescence (SMP30) and mitosis (Ki-67) were investigated. At the
same time, it was double checked if both aSyn clones kept overex-
pressing the transfected SCNA gene. As shown in the Fig. 6a and b,
aSyn transgenesis was not lost throughout freeze/thaw cycling
(clone effect; F(2,37) = 15.74, P < 0.0001; high-aSyn: P < 0.01 com-
pared to plasmid; low-aSyn: P < 0.05 compared to plasmid; and
high-aSyn: P < 0.01 compared to low-aSyn). aSyn overload
increased the expression of SMP30, a protein deemed to be
decreased by aging (clone effect: F(2,20) = 6.02, P < 0.05; high-
aSyn: P < 0.01 compared to plasmid; low-aSyn: P = 0.089 compared
to plasmid). In parallel, the cell proliferation marker Ki-67 differed
across clones (F(2,26) = 3.773, P < 0.05) and its expression was
increased in high-aSyn neurons (P < 0.05 compared to plasmid).
Discussion

This research showed the dual consequences (cell toxicity and
cell proliferation) of aSyn overexpression in the same in vitro
model of human dopaminergic-like SH-SY5Y neurons. While aSyn
overexpression made cells be more susceptible to oxidative stress,
especially at moderate increments of aSyn, a larger amount of pro-
tein stimulated tumorigenicity of this cancer cell line, thus rejuve-
nating the culture. Dependence of the above effects on aSyn
levels implies a critical role for aSyn overexpression in neuronal
regenerative vigor and aging.

SNCA (or PARK1) was the first gene linked to autosomal-
dominant PD [44]. Up-regulation of the wild-type aSyn as a result
of abnormal gene dosage contributes to PD [10]. Point-mutations
effects of PRGO. (a) Cytotoxity of rotetone (Rot) in SH-SY5Y neurons. The 24-hour
50 mg/mL of partially reduced graphene oxide (PRGO) triggers Rot cytotoxicity in
epresent the viability (100%) in vehicle control. Cell viability was calculated as the
dependent experiments with Bonferroni post hoc tests: ***P < 0.001 compared to



Fig. 6. SMP30 and Ki-67 protein levels in aSyn overexpressing neurons. (a) Representative Western blots of aSyn, SMP30, and Ki-67 proteins. Note that Western blot for Ki-67
has 10 instead of 9 lanes. Lanes are as follows: 1–3 were plasmid cells, 4–6 (4–7 in Ki-67 western blot) were high-aSyn cells, and lanes 7–9 (8–10 in Ki-67 western blot) were
low-aSyn cells. (b) Differences in aSyn expression across clones were replicated. (c) Expression of the senescence SPM30 marker which increased mainly in high-aSyn cells.
(d) Expression of the mitosis Ki-67 marker that was also significantly increased in high-aSyn cells. Data represent the mean ± SD of 6–12 independent experiments with
Bonferroni post hoc tests tests: *P < 0.05; **P < 0.01 compared to Plasmid; ++P < 0.01 compared to low-aSyn.
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in the SNCA gene (A53T and A30P) linked to idiopathic PD, consis-
tently yield neurotoxicity [45] and increased aSyn fibril formation
[46] when overexpressed in SH-SY5Y cells. In contrast, the viability
of cells overexpressing wild-type aSyn hardly differs from non-
transgenic cells [45]. Likewise, wild-type aSyn overexpression in
transgenic mice cannot efficiently mimic synucleinopathies
[47,48]. Only doxyclycline-inducible gene expression and transient
transfection [49–51] with the SCNA gene in SH-SY5Y cells, and
adenovirus-mediated SCNA gene delivery in whole animals [52]
reliably induce neurotoxicity, but only after switching on the
expression of the wild-type aSyn. In agreement with Kanda et al.
[45], we found that wild-type aSyn overexpression was not directly
neurotoxic. Moderate aSyn overexpression triggered levels of cell
death (~20% of the total cells) similar to those of other reports
[49–51,53], but only when cells were still recovering from thawing.
In this vein, low-aSyn and plasmid-transfected cells showed
delayed growth at logarithmic rate with respect to high-aSyn cells
(the proliferation assay), likely because they fell short of releasing
enough growth factor to the culture medium.

This hypothesis was confirmed in the tumorigenicity experi-
ment, in which low-aSyn and plasmid-transfected cells responded
to the medium drawn from actively growing high-aSyn cells.
Although, replication viability (clonogenicity) was not directly pro-
portional to the levels of aSyn overexpression, pro-invasive capac-
ity (tumorigenicity) of high-aSyn cells support the role of enhanced
aSyn via paracrine, in tumorigenic progression found in some
human malignancies [31,54–56]. The discrepancies in the effects
of aSyn overexpression across clonogenicity (low-aSyn > high-aSy
n) and tumorigenicity (high-aSyn > low-aSyn) assays may imply
different forms of aSyn fibrils, depending on its concentration,
which is important to aSyn cytotoxicity [7,57]. aSyn possesses
chaperone activity, which is greater in the fibrillary form [58]. A
limited overexpression of aSyn could then alter the dynamics of
the protein and its chaperone activity. Characterization of aggre-
gated forms of aSyn needs further research.

Up-regulation of wo proteins may explain why cell proliferation
and senesce occurred at the same time in high-aSyn overexpress-
ing cells, the Ki-67 protein, which is strictly associated with cell
proliferation [59] and the senescence marker protein-30 (SMP30
or regucalcin) and which is down-regulated by aging [60]. Simi-
larly, to aSyn, both proteins can be found in membranes [61,62]
and they play regulatory roles in intracellular calcium signaling
[61,63]. Because of the augmented Ki-67 expression and tumori-
genicity of the high-aSyn cell lineage, and to a somewhat lesser
extent in low-aSyn cells, aSyn may stimulate mitosis in neuroblas-
toma stem cells in the same way it does in neural stem cells in the
adult brain [64]. SMP30 and aSyn share some functional features.
Extracellular aSyn, which is not always lethal to neurons [57], pro-
motes dopaminergic neuronal survival [65] whereas SMP30 pre-
vents cells from senescing [60]. Similarly, aSyn overexpression
favored tumorigenesis, and to a lesser degree clonogenicity, of neu-
roblastoma cells, probably by paracrine control. There is evidence
that aSyn is secreted to the extracellular milieu [66,67] by means
of exosomes [68]. Our results therefore agree with the hypothesis
that a rise in aSyn expression over basal levels could have a protec-
tive effect against aging, rather than being its detrimental conse-
quence [25,65,69,70]. Our results also are in accordance with
evidence that suggests that aging-induced accumulation of aSyn
is not linked to the progression of PD [16].

To confirm that aSyn overexpression represents a two-edged
sword to neural survival, the neurotoxicity of the pro-oxidant Rot
was evaluated [71], either alone or in combination with PRGO, a
graphene-based nanomaterial known to be a potent accelerator
and inductor of neuronal differentiation [72]. aSyn overexpression
reduces intracellular antioxidant-defense systems [73] making SH-
SY5Y cells more vulnerable to oxidative stress and cell aging
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[45,74–76]. Cytotoxicity by Rot [71,77] only affected aSyn-
transgenic cells. While Rot works by interfering with the electron
transport chain in mitochondria, aSyn overexpression could also
have a direct impact on mitochondrial integrity and the cellular
energy status [78]. GO and its reduced form PRGO induce apoptosis
in cancer stem cells [40,79] and neuronal cell lines [41] by arrest-
ing the cell cycle at the G0/G1 phase. The PRGO treatment prior to
the addition of Rot severely worsened the viability of the low-aSyn
cells, but not of the high-aSyn cells, a finding accounted for by the
protective role of wild-type aSyn against cell senescence in the
presence of oxidative stress [48,80–85]. Indeed, the inhibition of
aSyn basal production can even kill SH-SY5Y cells [86]. The neuro-
toxic consequences of the aSyn overexpression in PD may not be as
direct as initially thought [13–15,86–88].
Conclusion

The present study demonstrates that aSyn overexpressed at dif-
ferent levels produce different effects in the same model of human
dopaminergic-like SH-SY5Y neurons. It is suggested that the main-
tenance of adequate levels of aSyn overexpression with aging
rather than aSyn up-regulation itself should be the target in PD
research.
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