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Abstract

Stem respiration is a critical and uncertain component of ecosystem carbon cycle. Few studies reported diurnal change in
stem respiration as well as its linkage with climate. In this study, we investigated the diurnal and seasonal change in stem
respiration and its linkage with environmental factors, in larch plantations of northern China from 2010 to 2012. The stem
respiration per unit surface area (RS) showed clear diurnal cycles, ranging from 1.6560.10 to 2.6960.15 mmol m22 s21,
increased after 6:00, peaked at 15:00 and then decreased. Both stem temperature and air temperature show similar diurnal
pattern, while the diurnal pattern of air relative humidity is just the opposite to Rs. Similar to the diurnal cycles, seasonal
change in RS followed the pattern of stem temperature. RS increased from May (1.2860.07 mmol m22 s21) when the stem
temperature was relatively low and peaked in July (3.0260.10 mmol m22 s21) when the stem temperature was also the
highest. Further regression analyses show that RS exponentially increases with increasing temperature, and the Q10 of Rs at
mid daytime (1.9760.17 at 12:00 and 1.9660.10 at 15:00) is significantly lower than that of mid nighttime (2.6060.14 at
00:00 and 2.7160.25 at 03:00) Q10. This result not only implies that Rs is more sensitive to night than day warming, but also
highlights that temperature responses of Rs estimated by only daytime measurement can lead to underestimated stem
respiration increase under global warming, especially considering that temperature increase is faster during nighttime.
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Introduction

Rising atmospheric carbon dioxide (CO2) is considered to have

significant impacts on the climate system [1], which has triggered

strong scientific interests in understanding the global carbon cycle.

Forests play a key role in the global carbon cycle. They cover

approximately one-third of the earth’s land surface, and store

about 861666 Pg of the total carbon [2]. Current terrestrial

carbon sink has also been suggested to be mainly contributed by

the forest sink [2]. Accordingly, accurate information on processes

related to forest carbon cycle is essential to predict future evolution

of the global carbon cycle and climate change. As a major pathway

of carbon loss from terrestrial ecosystems, ecosystem respiration is

critical to regulating forest ecosystem carbon fluxes and thus

important to forest carbon balance. Ecosystem respiration is

composed of two dominant fluxes, (i) soil respiration including

heterotrophic respiration of decomposing microbes, respiration of

plant roots and soil fauna, and (ii) above-ground respiration of

plant woody tissues and leaves. Compared with soil respiration

[3–5], our understanding of the linkage between above-ground

respiration and climate is very limited [6,7].

As an important part of woody tissues, stem respiration

contributes 9% of the total ecosystem respiration in boreal forest

[8,9], 9% in dry Mediterranean forests [10], about 14% in

Neotropical rainforests [11] and up to 21% in temperate forests

[12]. Both environmental and biotic factors can influence stem

respiration [13–20]. Among them, temperature is well known to

be a dominant environmental driver [6,9,21–23], and is often used

to predict stem respiration [24–26]. Therefore, it is critical to

accurately quantifying the temperature sensitivity of stem respira-

tion, which may reduce the uncertainties in assessing the positive

feedbacks between the carbon cycle and climate predicted by

coupled carbon-climate models [27,28].

Temperature sensitivity of stem respiration is usually expressed

in terms of Q10 (the rate of change in respiration resulting from a

10uC increase in temperature). Numerous studies on temperature

sensitivity of stem respiration have been conducted across different

forest types of the world and reported different Q10 values of stem

respiration for different forests, varying from 1.00 to 6.40 [26,29–

32]. It should be noted, however, that most of these previous

studies estimated Q10 values based on the measurement of daytime

stem respiration [33], and few studies measured diurnal change in

stem respiration as well as its linkage with climate [34]. Since stem

respiration is also influenced by other environmental and

physiological processes [16,23,35–39], such as photosynthesis that

occurs only during the daytime, it is possible that stem respiration

responds to temperature changes in daytime and nighttime

differently. Furthermore, both observations and model projection

have showed that global warming is faster during the nighttime

than that during the daytime [1]. Thus, understanding the possible

differential responses of stem respiration to day and night warming

will be helpful to improve the projection of future carbon cycle

evolution as well as its feedback to climate.
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In this study, we have conducted field measurement to

investigate the diurnal and seasonal change in stem respiration

and its linkage with environmental factors, in larch plantations of

northern China since 2010. The primary object of this paper is to

test the hypothesis that temperature sensitivity of stem respiration

is different during daytime and nighttime.

Materials and Methods

Study Site and Experimental Design
This study was conducted at Saihanba ecological station

(42u24.7239N, 117u14.8449E, 1505 m a.s.l) of Peking University,

situated in Saihanba National Forest Park, Hebei Province (Fig. 1).

Saihanba has a mean annual precipitation of approximately

450 mm, 70% of which occurs from June to August, and mean

annual temperature of 21.4uC [40] with a long cold winter and a

short growing season (May-September). The soils are predomi-

nantly sand. Soil bulk density is 1.47 g cm23, C:N ratio is 8.960.3,

and soil pH (soil:water, 1:2.5) is 6.360.2 [41].

The experiment was carried out in three 20620 m plots located

within a 45-year-old larch plantation (Larix principis-rupprechtii). The

topography of the plots is nearly flat and the stem density is

870648 stem?ha21 with an average diameter at breast height

(DBH) of 19.962.8 cm and an average height of 15.861.6 m.

Two larch trees were chosen randomly in each plot, and all

together 6 trees were selected in the study area with an average

DBH of 2062 cm and an average height of 1661.5 m. Although

the experiment plots and individuals were very homogeneous, it

should be reminded that the limited sample size (6 trees in total)

might introduce biases originated from inter-individual differences

and the effect of micro-topography. In this study, 3-hourly stem

respiration measurements were made for a whole day, twice a

month in growing season from 2010 to 2012, using a LI-6400-09

(Li-Cor, Lincoln, Nebraska, USA). In order to capture the CO2

released by stems, a technique called horizontally oriented soil

chamber (HOSC) [12,42] was exploited: the CO2 chamber

(9.9 cm in diameter) was connected to stem collars (10.1 cm in

diameter), which completely enclosed a 10.1 cm segment of the

tree stem at 1.3 m above ground and were fixed tightly onto the

stems with nylon straps. To ensure an airtight seal between stem

collars and stem surfaces, loose barks at two ends of the enclosed

stem segment, which might leak air, were removed at first. Then

the collars made of polyvinyl chloride (PVC) pipe were polished to

fit the curvature of the stem surface. Finally the small gaps between

the collars and stem surfaces were sealed completely with silicon

sealant. Meanwhile, stem temperatures were measured with

copper-constantan thermocouples at the depth of 5 mm from

the stem surface with tree bark.

Data Analyses
To eliminate the influence of plant size, the measured stem

respiration was firstly normalized by the surface area enclosed,

which was calculated using the following equation [43]

Figure 1. Location of study site in Saihanba National Forest Park, Hebei Province, China.
doi:10.1371/journal.pone.0089294.g001
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A~
pD1D2

4
arcsin (

D1

D2

) ð1Þ

where A is the stem surface area enclosed by the collar (m2), D1 is

the diameter of the chamber (m), D2 is the diameter of the

enclosed stem segment (m). Then the stem respiration per unit

surface area RS (mmol?m22?s21) should be the measurement

results divided by the area A for each plant.

The relationship between stem respiration and corresponding

stem temperature can be described by an exponential function

RS~R0ebT ð2Þ

where T is the measured stem temperature (uC); RS is the stem

respiration per unit surface area (mmol?m22?s21) at temperature T;

R0 is the potential stem respiration rate at 0uC and b is a fitting

parameter, which indicates the temperature sensitivity of respira-

tion [44]. The temperature sensitivity is often expressed by Q10,

which describes the proportional change in stem respiration rate

for a 10uC increase in sapwood temperature). According to Eq.2,

the Q10 values can be calculated as

Q10~e10b ð3Þ

For each plant individual, three-hourly R0 and b were acquired

by fitting stem respiration (R) and stem temperature (T) measured

throughout the sampling period to Eq.2 and three-hourly Q10

values were calculated according to Eq.3. Then they are averaged

for all six larch individuals. All the statistical analyses were

performed in PASW statistic 18 (SPSS Inc., Chicago, IL, USA).

Results

Diurnal Variation
The measured stem respiration per unit surface area (RS) and

environmental factors showed clear diurnal cycles (Fig. 2),

averaged over the whole sampling period. RS, ranging from

1.6560.10 to 2.6960.15 mmol m22 s21, increased after 6:00,

peaked at 15:00 and then decreased. Both stem temperature and

air temperature showed similar diurnal pattern. Nevertheless, stem

temperature experienced a plateau after mid-day (12:00–15:00)

and then decreased more quickly than RS. As shown in Fig. 2A

and C, the stem temperature values were comparable between

09:00 and 18:00 but the RS value was much larger at 18:00. Air

temperature had a similar fast afternoon decrease pattern as stem

temperature did, but the amplitude of air temperature diurnal

change (12.75uC) was larger than that of stem temperature

(9.02uC). The diurnal pattern of air relative humidity was just the

opposite to that of air temperature (Fig. 2B and D), ranging from

46.6462.21% at 12:00 to 89.4562.13% at 3:00.

Seasonal Variation
Figure 3 illustrated the seasonal changes of RS, air relative

humidity, stem temperature, and air temperature from May to

September. Similar to the diurnal cycles, RS followed the pattern

of stem temperature (Fig. 3A and C). RS increased from May

(1.2860.07 mmol m22 s21) when the stem temperature was

relatively low (13.7060.47uC) and peaked in July

(3.0260.10 mmol m22 s21) when the stem temperature was also

the highest (17.7360.30uC). Both of them decreased afterwards to

the lowest point in September, with RS as 1.1960.05 mmol

m22 s21 and stem temperature as 9.1360.56uC. It is also

noteworthy that the RS values did not differ very much between

the start and the end of the growing season, while there was a

significant gap between the stem temperature values (near 14uC in

May but around 9uC in September). Similarly, the air temperature

reached its peak value in June and July (Fig. 3D), and the

minimum value occurred in September. Consistent with diurnal

changes, seasonal maximum air temperatures were higher than

maximum stem temperatures in June and July, meanwhile,

seasonal minimum stem temperature was 8.80uC, lower than that

of air temperature (9.13uC) in September. The seasonal pattern of

air relative humidity was no longer the opposite to that of air

temperature (Fig. 3B), which increased in early growing season,

decreased a little in July, peaked in August and then dropped in

September.

Diurnal Change in Q10

To gain further understanding of how environmental factors

influence stem respiration activity, the stem respiration rates and

temperature measured in the sampling period were fitted to Eq.2

(Fig. 4A and B) and stem respiration rates were also linearly

regressed against the air relatively humidity (Fig. 4C). In general,

RS showed a good exponential relationship with both stem

temperature (Fig. 4A, R2 = 0.47, P,0.001) and air temperature

(Fig. 4B, R2 = 0.39, P,0.001). There was no good linear

relationship between RS and air relative humidity (Fig. 4C,

R2 = 0.00).

In order to investigate diurnal variations of temperate sensitivity

of RS, Q10 values were further calculated based on the seasonal

variation in RS for each time during one day. There was

statistically significant difference between daytime (1.9760.17 at

12:00 and 1.9660.10 at 15:00) and nighttime (2.6060.14 at 00:00

and 2.7160.25 at 03:00) Q10 (Fig. 5). Q10 values in other time

intervals fell in between and were not significantly different from

each other.

Discussion

The magnitude of our RS values (0.33–6.59 mmol m22 s21) is

similar with previous studies on mature conifer forests. For

example, Wang et al. [43] found that stem respiration rates in a

33-year-old larch forest varied from approximately 0.9 mmol

m22 s21 to 6.6 mmol m22 s21 in June, 2001 and Acosta et al. [8]

documented that the RS range of a 22-year-old Norway spruce

forest stand during the growing season from 1999 to 2002 was

0.34–6.52 mmol m22 s21. Meanwhile, the mean stem respiration

(2.15 mmol m22 s21) was lower than that of soil respiration rate

(3.22 mmol m22 s21) [41] at the same plot. Bolstad et al. [45]

showed that the stem respiration was lower than the soil

respiration which was typically more than 60% of total ecosystem

respiration during the growing season while Clinton et al. [46]

showed that the mean stem CO2 efflux (2.6060.17 mmol m21 s22)

was slightly higher than that of soil CO2 efflux (2.5360.11 mmol

m21 s22).

Stem respiration rates can respond to temperature changes and

plant activities like photosynthesis, plant growth, etc. [47,48]. Our

results show that variations of stem respiration rates in larch forests

were largely influenced by diurnal and seasonal changes of stem

temperature. During the study period, the maximum of the stem

respiration occurred in the afternoon while the minimum occurred

in the early morning within one day and stem respiration rates

peaked in July in growing season, which is consistent with previous

studies [9,18,23,31,42,49]. For example, Zha et al. [9] found that

stem respiration of Scots pine peaked at around 16 h and was

Diurnal and Seasonal Change in Stem Respiration
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highest in July. Acosta et al. [8] indicated that stem respiration of

Norway spruce reached maximum between 13 h and 16 h and the

highest rate occurred in June and July. Zhu et al. [23] suggested

that stem respiration of Schima superba also followed a similar

diurnal pattern, reaching the highest in the afternoon and the

lowest at about 8:00 in the early morning.

Nevertheless, stem temperature can’t fully explain all of the

variations of RS [9]. In our study, the RS values of afternoon

(18:00) and late growing season (Aug) were higher than those in

Figure 2. Diurnal changes in (A) stem respiration per unit surface area (RS), (B) air relative humidity, (C) stem temperature and (D)
air temperature. For each 3-hourly interval, measurements were averaged for the six sample trees in the whole growing season (May to Sep) from
2010 to 2012. The resulting standard errors are represented by the bars.
doi:10.1371/journal.pone.0089294.g002

Figure 3. Seasonal changes in (A) stem respiration per unit surface area (RS), (B) air relative humidity, (C) stem temperature and (D)
air temperature. For each month, all the 3-hourly measurements were averaged for the six sample trees from 2010 to 2012. The resulting standard
errors are represented by the bars.
doi:10.1371/journal.pone.0089294.g003
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the morning (09:00) and early growing season (May) while the

stem temperature were comparable (Fig. 2A and C, Fig. 3A and

C). This phenomenon suggests that plant activities like photosyn-

thesis and cambium activity probably play an important role in

regulating stem respiration changes. Martin et al. [50] found that

when temperature and transpiration are constant, RS appears to

be positively correlated with substrate supply. The diurnal change

of respiratory substrate, supplied by photosynthesis, may also

influence the respiration rates [48,51]. At seasonal scale, plant

growth activities can’t be ignored. The stem respiration mainly

consists of maintenance respiration and growth respiration [52].

Maintenance respiration varies primarily with changes in temper-

ature and is also reported to increase with relative growth rate

[37,53]. Meanwhile, growth respiration is controlled by the timing

and magnitude of plant growth [54]. That is to say, the stem

respiration varies throughout the growing season, following not

only the change of temperature, but also the change of phenology

and environmental factors that control growth.

Accurate understanding of temperature response of respiration

is critical in estimating global carbon balance and its response to

current climate change. Our results show that Q10 values of Rs

vary from 1.96 to 2.71, which are within the range reported by

previous studies [9,17,31,34,42,55,56]. In growing season average

diurnal cycle, Q10 values were lowest in mid-day (12:00–15:00),

which may be partly explained by the acclimation of respiration to

rising temperature. Both theory and observations have suggested a

decline temperature sensitivity of rates of respiratory CO2 efflux

from plants [52,57,58] and soils [5,59]. For example, Tjoelker

et al. [57] reported that Q10 value of foliar respiration decline by

0.04 in response to 1uC increase in mean ambient temperature. In

deed, highest stem temperature is observed during the mid-day.

Another possible explanation of the suppressed temperature

sensitivity of stem respiration in mid-day (12:00–15:00) may be

midday depression of photosynthesis, particularly during summer

with stem temperature approaching 30uC and air temperature

above 30uC (Fig. 4A&B). High midday temperature is considered

to be able to induce stomata closure and photosynthesis depression

in water-limited regions by both observations (pine forest in

Canary Islands) [60] and theoretical models. Reduced stomatal

conductance and photosynthesis rates in midday during summer

may further decline Rs, and thus influencing Q10 values derived

from seasonal variation of RS. Often in models [14,31,61], Q10 is

set to be a constant value of 2, similar to the midday values and

lower than the nighttime values from our study. This can lead to

underestimated stem respiration increase under global warming,

especially considering that temperature increase is faster during

nighttime [1].

Vegetation activities have been shown to respond negatively to

nighttime temperature increase in cold and mesic regions [65],

probably due to increased carbon loss through respiration.

Combined with stronger nighttime warming [1,62,63], our results

imply that the carbon loss through respiration might increase more

than former model projections [14,31,61], and might further

cancel out the increased photosynthesis driven by daytime

warming in those areas. In contrast, ecosystems in arid and

semi-arid regions are thought to respond to night time temper-

ature change in a more complex way [65]. A manipulative

experiment study in a temperate steppe ecosystem in north China

reported that daytime warming induced reduction in gross

ecosystem productivity (GEP), and night-time warming stimulated

photosynthesis and GEP in the following day because enhanced

respiration drew down the leaf carbohydrates concentration [64].

With higher stem respiration sensitivity at night, the stimulation

effect might be strengthened in the future, while it is also possible

that the carbon loss through enhanced nighttime respiration goes

up even faster and cancels out the stimulating effect. Thus, more

experimental researches as well as modelling efforts are necessary

to accurately quantify the temperature sensitivity of stem

respiration and to better address its implications on future

vegetation dynamics.

Conclusion

Temperature responses of rates of respiratory CO2 efflux from

plants and soils are generally modelled using exponential functions

with a constant Q10 near 2.0, similar to the midday values and

lower than the nighttime values from our study. This result has

important implications for the predictions of forest responses to

warming. Current carbon cycle models must consider diurnal

change in temperature sensitivity of Rs to accurately predict

ecosystem C cycling under climate warming. In the future,

additional experiments with larger sample size need to be

performed in other ecosystems in order to draw a more

generalized conclusion and to further address detailed mechanisms

responsible for diurnal change in Q10 of Rs.

Figure 4. Relationship of the stem respiration per unit surface area (RS)
with (A) stem temperature, (B) air temperature and (C) air relative
humidity.
doi:10.1371/journal.pone.0089294.g004
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