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Summary
Background The occult lymph node metastasis (LNM) of laryngeal squamous cell carcinoma (LSCC) affects the
treatment and prognosis of patients. This study aimed to comprehensively compare the performance of the three-
dimensional and two-dimensional deep learning models, radiomics model, and the fusion models for predicting
occult LNM in LSCC.

Methods In this retrospective diagnostic study, a total of 553 patients with clinical N0 stage LSCC, who underwent
surgical treatment without distant metastasis and multiple primary cancers, were consecutively enrolled from four
Chinese medical centres between January 01, 2016 and December 30, 2020. The participant data were manually
retrieved from medical records, imaging databases, and pathology reports. The study cohort was divided into a
training set (n = 300), an internal test set (n = 89), and two external test sets (n = 120 and 44, respectively). The three-
dimensional deep learning (3D DL), two-dimensional deep learning (2D DL), and radiomics model were developed
using CT images of the primary tumor. The clinical model was constructed based on clinical and radiological
features. Two fusion strategies were utilized to develop the fusion model: the feature-based DLRad_FB model and
the decision-based DLRad_DB model. The discriminative ability and correlation of 3D DL, 2D DL and radiomics
features were analysed comprehensively. The performances of the predictive models were evaluated based on the
pathological diagnosis.

Findings The 3D DL features had superior discriminative ability and lower internal redundancy compared to 2D DL
and radiomics features. The DLRad_DB model achieved the highest AUC (0.89–0.90) among all the study sets,
significantly outperforming the clinical model (AUC = 0.73–0.78, P = 0.0001–0.042, Delong test). Compared to the
DLRad_DB model, the AUC values for the DLRad_FB, 3D DL, 2D DL, and radiomics models were 0.82–0.84
(P = 0.025–0.46), 0.86–0.89 (P = 0.75–0.97), 0.83–0.86 (P = 0.029–0.66), and 0.79–0.82 (P = 0.0072–0.10), respectively
in the study sets. Additionally, the DLRad_DB model exhibited the best sensitivity (82–88%) and specificity (79–85%)
in the test sets.

Interpretation The decision-based fusion model DLRad_DB, which combines 3D DL, 2D DL, radiomics, and clinical
data, can be utilized to predict occult LNM in LSCC. This has the potential to minimize unnecessary lymph node
dissection and prophylactic radiotherapy in patients with cN0 disease.
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Research in context

Evidence before this study
We searched PubMed on August 6, 2023 using the term
(“Laryngeal cancer” OR “Laryngeal squamous cell carcinoma”)
AND (“occult lymph node metastasis” OR “lymph node
metastasis”) AND (“Deep learning” OR “Convolutional neural
network” OR “Artificial intelligence” OR “Radiomics”), without
language restriction. We did not find any deep learning-based
models. There is only two single-centre study using
radiomics-based methods to predict lymph node metastasis
(LNM) in laryngeal cancer (not occult LNM). We performed an
updated search of PubMed on September 6, 2023 using the
term (“Head Neck Cancer” OR “HNSCC”) AND (“occult lymph
node metastasis” OR “lymph node metastasis”) AND (“Deep
learning” OR “Convolutional neural network” OR “Artificial
intelligence” OR “Radiomics”), without language restriction.
We have identified 18 studies that utilized artificial
intelligence (AI) methods based on MRI, CT, or PET for
predicting LNM in oral cancer or head and neck squamous cell
carcinoma (HNSCC). Among them, 6 studies reported on the
prediction of occult LNM using radiomics in patients with oral
cancer. These studies were all conducted in single-centre
settings, with the largest sample size being 313 cases. There
were no reports on using deep learning for predicting occult
LNM in HNSCC.

Added value of this study
This study conducted a comparative analysis of three-
dimensional and two-dimensional deep-learning, radiomics,
clinical, and fusion models for predicting occult LNM in
patients with laryngeal squamous cell carcinoma (LSCC). The
study was conducted in multi-centre cohorts and excluded
cases with obvious LNM features on radiology and physical
examination. The findings suggested that the proposed
DLRad_DB fusion model was a reasonable approach for
predicting occult LNM in LSCC. Additionally, the performance
of the multidomain fusion model could be influenced by the
fusion strategy. The early fusion strategy may be susceptible
to the correlation redundancy among features.

Implications of all the available evidence
Our study demonstrated that the proposed DLRad_DB model
enabled early prediction of occult LNM in LSCC using CT
images. This provides a foundation for clinical decision-
making, minimizing unnecessary surgical interventions or
radiotherapy. Additionally, the DLRad_DB model may have
the potential to be applied to other HNSCC cancers.
Introduction
Laryngeal squamous cell carcinoma (LSCC) is the most
prevalent type of cancer in the upper aerodigestive tract.1

In the United States, an estimated 12,380 new cases of
laryngeal cancer are projected for 2023, with 3820
deaths expected from laryngeal cancer.2 Occult lymph
node metastasis (LNM) refers to the presence of cancer
cells in the lymph nodes that cannot be detected through
routine imaging techniques or physical examination.
These metastases are typically microscopic and do not
cause visible enlargement or abnormalities. In early-
stage LSCC (T1-2), occult LNM was estimated to occur
in approximately 13–16% of cases. The rate of occult
LNM was higher in advanced-stage LSCC (T3-4),
ranging from about 20 to 25%.3,4 The presence of cer-
vical LNM had been associated with a 50% reduction in
overall survival, and regional lymph node recurrence
was considered the main cause of treatment failure in
LSCC.5,6 As a result, clinicians often perform prophy-
lactic elective neck dissection (END) and radiotherapy in
patients with cN0 LSCC, except for cases of T1-2 glottic
larynx cancers where the risk of LNM is relatively low.
However, it has been reported that prophylactic END or
radiotherapy did not significantly improve survival
compared to an observation strategy for early-stage
LSCC.7 Moreover, these treatment approaches might
lead to complications that can impair the quality of life.8

Therefore, accurate prediction of occult LNM preoper-
atively is crucial for the precise diagnosis and inter-
vention of LSCC.

Various approaches have been proposed to predict
occult LNM in LSCC, including clinical models, mo-
lecular markers, and sentinel lymph node biopsy.9–11

However, their performances and practicalities have
been less satisfactory. In recent years, radiomics and
deep learning (DL) techniques have demonstrated
remarkable capabilities in disease diagnosis, molecular
typing, and predicting therapeutic responses.12–14 Zhang
et al. conducted a study using radiomics and DL
methods to analyse CT of 276 patients with cervical
enlarged lymph nodes. The study achieved a high pre-
dicted area under the curve (AUC) of 0.92 for metastatic
www.thelancet.com Vol 67 January, 2024
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lymph nodes.15 While studies demonstrated impressive
performances, they primarily focused on analyzing
lymph node images that typically displayed structurally
abnormal characteristics in cases of metastasis.16 Few
studies have focused on the challenge of predicting
pathological LNM that cannot be visualized through
imaging techniques. Previous studies have shown a
correlation between radiological characteristics of pri-
mary tumors and LNM.17,18 Building on this knowledge,
we hypothesized that artificial intelligence (AI) image
analysis of primary sites may be a reasonable method
for predicting occult LNM.

Medical images, such as CT and MRI, exist in three-
dimensional (3D) spaces, and using a 2D method to
address 3D tasks may result in the loss of crucial
structural information. Training a 3D DCNN often re-
quires larger datasets compared to a 2D DCNN, which
poses a challenge for medical research due to limited
data availability.19 Additionally, deep learning features
may exhibit sensitivity to global translation, rotation,
and scaling of images, while radiomics features do not
possess such susceptibility.20 Consequently, the 3D/2D
deep learning features and radiomics features may be
complementary. Recent studies have shown that the
multidomain fusion model of radiomics and deep
learning outperforms individual models.21 Despite the
promising perspective shown by the multidomain
fusion approach, previous studies have mostly relied on
a single fusion strategy or either 3D or 2D deep learning
techniques.22,23 The combination of 2D and 3D deep
learning and the impact of different fusion strategies on
model performance have not been explored explicitly.

Collectively, our research aimed to compare the roles
of 3D and 2D deep learning, radiomics, and fusion
models in predicting occult LNM in LSCC. We
employed two model fusion strategies: feature-based
early fusion and decision-based late fusion. Further-
more, we investigated the intrinsic connections and
distinctions among 3D/2D deep learning and radiomics
features, which may help explain the performance dif-
ferences between model fusion strategies.
Methods
Study cohort
A total of 533 patients with cN0 LSCC from four Chi-
nese hospitals were retrospectively collected (Fig. 1). The
training set included 300 patients who were consecu-
tively treated at Qilu Hospital of Shandong University
(known as Qilu) from January 1 2016 to April 30, 2019.
The internal test set included 89 patients who were
consecutively treated at Qilu from May 1, 2019 to
December 30, 2020. The external test set 1 included 120
patients who were consecutively treated at West China
Hospital of Sichuan University (known as Huaxi,
n = 62) and Peking University People’s Hospital (known
as PKUPH, n = 58) from January 1, 2019 to December
www.thelancet.com Vol 67 January, 2024
30, 2020. The external test set 2 included 44 patients
who were consecutively treated at the Shandong Pro-
vincial Qianfoshan Hospital (known as QFS) from
January 1, 2019 to December 30, 2020. The inclusion
criteria were as follows: (1) Clinical examination, B-ul-
trasonography, and CT/MRI confirmed lymph node
stage cN0; (2) Pathological verification of laryngeal
squamous cell carcinoma; (3) Enhanced CT examination
performed within one week prior to surgery; (4) Initial
treatment involved surgery without neoadjuvant che-
moradiotherapy; (5) No evidence of distant metastasis or
multiple primary cancers. The study followed the
STARD reporting guideline. Detailed information about
treatment protocols and clinical information were
described in the Supplementary Methods. The overall
workflow of this study is illustrated in Fig. 2.

Our study was approved by the ethics committee of
Qilu Hospital, Shandong University (KYLL-2020(KS)-
320). Since it was a retrospective study, informed con-
sent was waived.

CT examination and image preprocessing
All patients included in the study underwent preopera-
tive CT scans using a multi-slice CT system while in the
supine position. The CT scans were performed from the
skull base to the sternoclavicular joint. During the
scanning process, patients were instructed to maintain
calm respiration and avoid swallowing to minimize
motion artifacts. Intravenous contrast-enhanced images
were acquired with a delay of 60–65 s after the injection
of the contrast agent. To achieve clear visualization of
tissues in the head and neck region, the CT images were
standardized using a window width of 350 and a win-
dow level of 50. The Hounsfield Unit (HU) values were
adjusted to range from −125 to 225. Bi-cubic spline
interpolation was used to resample the CT images to a
voxel size of 1 mm*1 mm*1 mm.

Two experienced radiologists, in a blinded manner,
utilized ITK-Snap software (v.3.6.0) to independently
delineate tumor boundaries, creating regions of interest
(ROI). Radiologists could refer to images from flexible
nasopharyngoscopy to determine the boundaries of a
tumor. These ROIs encompassed the primary tumor
areas as well as areas susceptible to infiltration and
inflammation. To assess the reliability and consistency
of the ROI delineations, two months later, all patients’
ROIs were re-annotated, and this data was used for
intraclass correlation coefficient (ICC) analysis.

Radiomics feature extraction
In our study, we utilized PyRadiomics to extract the
radiomics features.24 A total of 1834 radiomics features
were extracted, including first-order features, shape-
based features, and texture features. The detailed pa-
rameters regarding radiomics feature extraction are
described in the Supplementary Methods and the PyR-
adiomics website (https://pyradiomics.readthedocs.io/
3
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cN0 LSCC patients underwent laryngeal surgery and 
elective neck dissection

Inclusion criteria: 
(a)  Patients underwent enchanced CT within one week 
prior to surgery 
(b) Available of clinical data
(c) Pathology diagnosis of LSCC 
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(c) Radiotherapy or neoadjuvant therapy before surgery, 

n=156
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Exclusions:
(a) The tumor was too small to be identfied on CT,

 n=25
(c) Radiotherapy or neoadjuvant therapy before surgery, 

n=36
(b) Presence of distant metastasis or mutiple primary tumor, 

n=10
(d) Pathological N status unknown, n=5

 

Fig. 1: Flowchart diagram shows the patient selection process from four medical centres. LSCC indicates laryngeal squamous cell carcinoma;
PKUPH, Peking University People’s Hospital; QFS, Shandong Provincial Qianfoshan Hospital; pN (+), pathological lymph node positive; pN (−),
pathological lymph node negative; and cN0, clinical N0 stage.
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en/latest/). The configuration file for feature extraction
is provided in the Supplementary File.

Feature selection and model construction
The radiomics features were standardized using z-score
normalization. To handle strong correlations between
features (Spearman correlation coefficient ≥ 0.9), we
employed a greedy recursive feature deletion strategy for
feature filtering. This strategy entails iteratively
removing the feature with the highest redundancy
within the current feature set, until the current set no
longer contains features with a correlation coefficient
greater than 0.9. Next, features with high stability, as
determined by intraobserver and interobserver ICC
values exceeding 0.75, were also preserved.

To further refine the features, the multivariate least
absolute shrinkage and selection operator (LASSO)
regression was employed. The SVM (support vector
machine) algorithm, known for its ability to identify
optimal hyperplanes for distinguishing between
different targets, has been used in many studies.25 We
trained the SVM classifier to construct the predictive
models. The five-fold cross-validation strategy was uti-
lized in selecting the optimal model configuration and
hyperparameter settings (Supplementary Methods). The
SVM classifier received the training dataset as input,
where each sample consisted of a set of features and a
corresponding label indicating the presence of LNM.
The output was a trained classifier model for predicting
patients in the test set. The model output represented
the probability (ranging from 0 to 1) of LNM in the
tested patient.

Clinical model construction
The clinical characteristics and radiological features in
Table 1 were used to construct the clinical model. These
features were standardized using z-score normalization.
Next, feature selection was performed using LASSO
regression, followed by training an SVM classifier for
classification prediction. Detailed procedures were
described in the above section of "Feature Selection and
Model Construction".

2D DL model development and feature extraction
In 2D DL, a bounding box referred to the bounding
rectangle of the largest tumor cross-section. It was
used to crop the maximum tumor ROI and its adja-
cent six slices. Consequently, each patient comprised
the maximum ROI of the primary tumor, as well as up
to six adjacent patches above and below it. For small
tumors, the number of adjacent CT slices may be
fewer than six. After the cropping process, the images
were resized to a standardized 256 × 256 pixel size
using the linear interpolation method. Data
enhancement strategies were employed, including
random horizontal and vertical flips, and random
cropping to a size of 224 × 224 pixels. The input image
size was set to 224 × 224 pixels. The ResNet50
network was pre-trained using the ImageNet dataset,
and transfer learning was subsequently performed on
the training set. ImageNet is a large-scale image
database that contains millions of labeled images
across thousands of categories. ImageNet-based
transfer learning has been used in many medical
studies.14,26 We employed a global fine-tuning strategy
to update the parameters, thereby adapting the
ResNet50 for prediction of LNM.

Multiple patches from one patient were assigned
identical labels indicating the presence of LNM. The
images of primary tumors along with labels were used
as input for the 2D DCNN. During the training process,
the ResNet50 parameters were updated iteratively using
www.thelancet.com Vol 67 January, 2024
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Fig. 2: Workflow diagram for the development of the predictive models. Tumor segmentation and region of interest (ROI) delineation are
performed by experienced radiologists. The Radiomics model is developed using PyRadiomics. For the two-dimensional deep learning (2D DL)
model, the pre-trained ImageNet ResNet50 is fine-tuned based on our training data. The tumor’s maximal ROI cross-section and six adjacent CT
slices above and below it, are cropped as the input for ResNet50. The patient-level probability is calculated by averaging the probabilities of all
CT slices belonging to one patient. For the three-dimensional deep learning (3D DL) model, the pre-trained 3D ResNet50 backbone is retained
and transferred to optimize parameters in our training data. The clinical data and radiological features are used to construct the clinical model.
For the early fusion model, the extracted features from four basic models are combined to train an SVM classifier. For the late fusion model, the
output probabilities from four basic models are used to develop a stacking model with a random forest classifier.
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backpropagation, and the cross-entropy loss function
was employed, considering the output probability and
pathology tags. The learning rate was set to 1 × 10−4, and
the Adam optimizer was used to update the parameters.
A batch size of 64 was utilized, and L2 regularization
and early stop strategies were implemented to prevent
overfitting (Supplementary Methods). The trained 2D
DCNN could be used to predict the probability of LNM
for each CT patch. The patient-level probability was then
obtained by averaging the probabilities of all CT patches
from one patient.27

After completing the training of ResNet50, we uti-
lized the ResNet50 to extract 2048 deep learning fea-
tures of each patch from the penultimate average
pooling layer in ResNet50. The features were then
compressed to a set of 256 features using PCA.
www.thelancet.com Vol 67 January, 2024
3D DL model development and feature extraction
Recognizing the limitations of 2D DCNNs in capturing
the full extent of 3D structures, 3D ResNet was devel-
oped as an improvement over ResNet. 3D ResNet le-
verages automatic parameter learning to extract
contextual features while preserving stereoscopic
information.28

To address the scarcity of pretrained models on
medical 3D images, the Med3D dataset, a multi-modal,
multi-organ medical image segmentation dataset, was
introduced.29 In our study, we employed the 3D
ResNet50 pretrained on Med3D as our backbone. We
replaced the decoder layers with fully connected layers.30

All layers in the 3D ResNet50 backbone were initialized
using pre-trained weights and fine-tuned using our
training set.
5
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In 3D DL, the bounding box referred to the bounding
cube of the tumor ROI. All ROI cubes were resized to a
dimension of 96*96*96 using linear interpolation.
Additionally, data augmentation techniques such as X,
Y, and Z axis inversion strategies were employed to
enhance the dataset. The 3D images of primary tumor
along with their corresponding labels were then utilized
as input for the 3D DCNN. The network parameters
were updated through backpropagation and optimized
using the Adam optimizer. We conducted 300 epochs of
training, with a learning rate set to 0.02. Finally, the
LNM of a patient could be predicted by the trained 3D
DCNN.

To obtain the 3D DL features of an individual pa-
tient, a total of 2048 features of the tumor image were
extracted from the penultimate averaging pooling layer
of the 3D ResNet50 model. The features were then
compressed to a set of 256 features using PCA.

Construction of the fusion model
The current study employed two fusion strategies to
establish the fusion model.31

Feature-level fusion, also known as early fusion, in-
volves connecting all features from different modalities
into a single feature vector. The radiomics features of the
primary tumor were extracted using PyRadiomics, while
the 2D/3D DL features were obtained through DCNNs,
as described above. These features, along with clinical
and radiological characteristics, were standardized using
z-score normalization. Subsequently, Spearman correla-
tion analysis, ICC analysis, and LASSO analysis were
performed to select the features. Finally, the SVM clas-
sifier was trained to construct the feature-based fusion
model, known as DLRad_FB. Detailed methods are
described in the above section “Feature selection and
model construction”.

Decision-level fusion, also known as late fusion,
combines the output probabilities of different models.
We employed the stacking ensemble learning strategy to
integrate the output probabilities from the four basic
models.32 We evaluated the performance of three
stacking models–Random Forest, Support Vector Ma-
chine, and Gradient Boosting Decision Tree–on the
training set. After comparing their results (data not
shown), we chose to use Random Forest classifier for
further analysis. The optimal hyperparameters of the
classifier were determined through a five-fold cross-
validation method applied to the training set. Finally, the
trained best stacking model “DLRad_DB” was evaluated
in both the internal and external test sets.

Statistical analysis
Chi-square test or Fischer test was used to compare
between categorical variables, Mann–Whitney U test or
independent T-test was used for continuous variables.
Receiver operating characteristic (ROC) curves and
AUC, accuracy, sensitivity, and specificity were used to
assess the performance of the predictive model. To
determine the 95% Confidence Interval (CI) for the
AUC, we employed the ci.auc function from the pROC
R package. The Delong test was used to compare AUCs.
P < 0.05 was considered statistically significant. All
statistical analyses were performed using the R language
(version 3.4.3) and the scikit-learn package (version:
0.18) in Python 3.70.

Role of the funding source
The funders of the study had no role in study design,
data collection, data analysis, data interpretation, or
writing of the report. DPL, JL, and LHZ had access to
the dataset and had the final responsibility for the de-
cision to submit for publication.
Results
Patient characteristics
This study analysed a total of 553 patients (mean age, 61
years ±8 [SD]; 532 male) with cN0 LSCC, including 300
patients in the training set, 89 patients in the internal
test set, 120 patients in the external test set 1, and 44
patients in the external test set 2. Regarding the 2D DL
process, this study produced 7026 CT slices, with 3817
from the training set, 1150 from the internal test set,
1512 from the external test set 1, and 547 from the
external test set 2. Detailed information is summarized
in Table 1. Compared to the training set (glottic 15%,
44/300; supraglottic 85%, 256/300) and internal test set
(glottic 12%, 11/89; supraglottic 88%, 78/89), both the
external test set 1 (glottic 30%, 36/120; supraglottic 70%,
84/120) and external test set 2 (glottic 39%, 17/44;
supraglottic 61%, 27/44) had a greater proportion of
patients with glottic cancer (P < 0.05, pairwise compar-
ison of Chi-square test). Additionally, the external test
set 2 had a higher percentage of advanced T3-4 tumors
(82%, 36/44) compared to the training set (29%, 87/
300), internal test set (27%, 25/89), and external test set
1 (29%, 35/120, P < 0.05 after pairwise comparison of
Chi-square test). There were no significant differences
in the rate of occult LNM across all the study sets
(P = 0.17).

In the training and internal test sets from Qilu
centre, a total of 7284 lymph nodes were collected from
389 patients, revealing 416 lymph nodes to be patho-
logically positive for metastasis. The overall rate of
occult LNM was 40.4% (157 of 389), with 98.1% (154 of
157) of these cases exhibiting ipsilateral or bilateral level
II metastasis (Supplementary Table S1), suggesting that
level II was the primary site for LSCC metastasis. In the
external test set 1, there was 35% (42 of 120) of patients
with occult lymph node metastasis, with 100% (42 of 42)
of these cases exhibiting ipsilateral or bilateral level II
metastasis. The rate of occult LNM was 25% (11 of 44)
in the external test set 2. The information of metastatic
region was not available from the external test set 2.
www.thelancet.com Vol 67 January, 2024
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Characteristics Training set
(n = 300)

Internal test set
(n = 89)

External test set 1
(n = 120)

External test set 2
(n = 44)

P valuec

Age (years)b 62 (56–68) 62 (55–67) 62 (55–66) 62 (57–68) 0.82

Sex 0.063

Female 11 (4) 5 (6) 1 (1) 4 (9)

Male 289 (96) 84 (94) 119 (99) 40 (91)

Primary site <0.0001

Glottic 44 (15) 11 (12) 36 (30) 17 (39)

Supraglottic 256 (85) 78 (88) 84 (70) 27 (61)

T stage <0.0001

T1 96 (32) 31 (35) 33 (28) 2 (5)

T2 117 (39) 34 (38) 52 (43) 6 (13)

T3 67 (22) 19 (21) 29 (24) 15 (34)

T4 20 (7) 6 (6) 6 (5) 21 (48)

Differentiation status 0.082

Well 84 (28) 33 (37) 36 (30) 7 (16)

Moderate 179 (60) 46 (52) 61 (51) 28 (64)

Poor or undifferentiated 37 (12) 10 (11) 23 (19) 9 (20)

Radiological features-paraglottic/preepiglottic space invasion 0.072

None 259 (86) 67 (75) 96 (80) 37 (84)

Yes 41 (14) 22 (25) 24 (20) 7 (16)

Radiological features-cartilage invasion 0.47

None 292 (97) 85 (96) 108 (90) 42 (95)

Yes 8 (3) 4 (4) 12 (10) 2 (5)

Radiological features-maximum tumor diameter (cm)b 3.2 (0.7–5.7) 3.6 (1.2–6.6) 3.7 (1.3–6.5) 4.6 (0.5–8.1) 0.22

Radiological features-enhancement pattern 0.55

Homogenous enhancement 231 (77) 72 (81) 90 (75) 32 (73)

Inhomogeneous enhancement 69 (23) 17 (19) 30 (25) 12 (27)

Pathological LNM 124 (41) 33 (37) 42 (35) 11 (25) 0.17

Abbreviation: LNM, lymph node metastasis. aUnless otherwise indicated, data are numbers of patients, and data in parentheses are percentage. bData are means, with IQRs
in parentheses. cP value was calculated by Chi-square test or t-test.

Table 1: Baseline characteristics of study sets.a

Articles
Comprehensive analysis of radiomics, 2D and 3D
deep learning features
After conducting LASSO feature selection, we identified
21 key features out of 1834 radiomics features. Addi-
tionally, seven 2D DL features and six 3D DL features
were found to have significantly high weights, and were
considered as the top features (Supplementary
Figure S1). T-SNE dimension reduction was used for
visualization of these features. As shown in Fig. 3A–C
and Supplementary Figure S2, compared with radio-
mics and 2D DL features, 3D DL features had better
discriminative capabilities. The hierarchical clustering
heatmap indicated that 3D DL features were more
effective in distinguishing different LNM statuses
(Fig. 3D–F and Supplementary Figure S3). The
Spearman correlation analysis revealed a high degree of
redundancy among the radiomics features (Fig. 3G),
while there was practically no intrinsic correlation
among the 3D DL features. Radiomics features exhibi-
ted partial correlations with both the 2D and 3D DL
features; a few correlations were also observed between
the latter two.
www.thelancet.com Vol 67 January, 2024
Performance analysis of the clinical, radiomics, 2D/
3D deep learning models and the fusion models
The diagnostic indicators of the predictive models in
study sets are described in Table 2. The DLRad_DB
model achieved the highest AUC (0.89–0.90) among all
the study sets, significantly outperforming the clinical
model (AUC = 0.73–0.78, P = 0.0001–0.042) (Fig. 4).
Compared with the DLRad_DB model, the AUCs for
the DLRad_FB, 3D DL, 2D DL, and radiomics models
were 0.82–0.84 (P = 0.025–0.46), 0.86–0.89
(P = 0.75–0.97), 0.83–0.86 (P = 0.029–0.66), and
0.79–0.82 (P = 0.0072–0.10), respectively in the study
sets. Furthermore, the 3D DL model demonstrated a
satisfactory AUC of 0.89 in the training set, surpassing
that of the 2D DL (AUC = 0.83, P = 0.042), radiomics
(AUC = 0.82, P = 0.013), and clinical models
(AUC = 0.76, P < 0.0001). In the test sets, no significant
differences were observed in AUC between the 3D DL
model (AUC = 0.86–0.89) and both the 2D DL model
(AUC = 0.83–0.86, P = 0.30–0.91) and the radiomics
model (AUC = 0.79, P = 0.062–0.40). The feature-based
fusion model DLRad_FB did not demonstrate
7

www.thelancet.com/digital-health


Fig. 3: Discrimination ability and correlation analysis of radiomics and deep learning (DL) features in the external test set 1. T-distributed
stochastic neighbour embedding (t-SNE) visualizations for the radiomics features (A), two-dimensional (2D) DL features (B), and three-
dimensional (3D) DL features (C) in the external test set 1. Each dot represents a patient. Blue dots indicate patients with lymph node
metastasis (LNM), and red dots indicate patients without LNM. Hierarchical clustering heatmap for key radiomics features (D), top 2D DL
features (E), and top 3D DL features (F) in the external test set 1. The x-axis represents the IDs of radiomics and DL features, and the y-axis
represents 120 patients. Patients belong to the same cluster (adjacent rows) share similar features in the Euclidean space. The status of LNM is
displayed on the white-green bar located on the left side next to the y-axis. Supplementary Table S2 provides the descriptions of the key
radiomics features. (G) The correlation heatmap of key radiomics features, top 2D and 3D DL features in external test set 1, where the color
represents the magnitude of the spearmen correlation coefficient, and the asterisks indicate P < 0.05. Red indicates radiomics.
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Model and metric AUCb Accuracy (%) Sensitivity (%) Specificity (%) P valuec P valuec P valuec P valuec

Training set (n = 300)

DLRad_DB 0.90 (0.86–0.93) 82 (245/300) 86 (107/124) 78 (138/176) Reference 0.025 0.86 <0.0001

DLRad_FB 0.83 (0.79–0.89) 75 (225/300) 82 (102/124) 70 (123/176) 0.025 Reference 0.039 0.028

3D DL 0.89 (0.86–0.93) 80 (239/300) 82 (102/124) 78 (137/176) 0.86 0.039 Reference <0.0001

2D DL 0.83 (0.79–0.88) 77 (231/300) 74 (92/124) 79 (139/176) 0.029 0.99 0.042 0.031

Radiomics 0.82 (0.77–0.86) 75 (224/300) 73 (91/124) 76 (133/176) 0.0072 0.61 0.013 0.10

Clinical 0.76 (0.70–0.81) 63 (190/300) 67 (83/124) 61 (107/176) <0.0001 0.028 <0.0001 Reference

Internal test set (n = 89)

DLRad_DB 0.89 (0.82–0.96) 82 (73/89) 88 (29/33) 79 (44/56) Reference 0.34 0.97 0.042

DLRad_FB 0.84 (0.75–0.92) 78 (69/89) 79 (26/33) 77 (43/56) 0.34 Reference 0.36 0.29

3D DL 0.89 (0.82–0.96) 80 (71/89) 85 (28/33) 77 (43/56) 0.97 0.36 Reference 0.043

2D DL 0.83 (0.75–0.92) 76 (68/89) 76 (25/33) 77 (43/56) 0.28 0.91 0.30 0.35

Radiomics 0.79 (0.70–0.89) 70 (62/89) 73 (24/33) 68 (38/56) 0.10 0.50 0.11 0.69

Clinical 0.77 (0.66–0.85) 67 (60/89) 70 (23/33) 66 (37/56) 0.042 0.29 0.043 Reference

External test set 1 (n = 120)

DLRad_DB 0.89 (0.83–0.95) 83 (100/120) 88 (37/42) 81 (63/78) Reference 0.16 0.95 0.0042

DLRad_FB 0.82 (0.73–0.90) 76 (91/120) 74 (31/42) 77 (60/78) 0.16 Reference 0.17 0.15

3D DL 0.89 (0.83–0.94) 81 (97/120) 83 (35/42) 79 (62/78) 0.95 0.17 Reference 0.0041

2D DL 0.85 (0.77–0.92) 78 (93/120) 76 (32/42) 78 (61/78) 0.39 0.58 0.41 0.04

Radiomics 0.79 (0.71–0.87) 70 (84/120) 74 (31/42) 68 (53/78) 0.062 0.66 0.062 0.31

Clinical 0.73 (0.64–0.82) 67 (80/120) 69 (29/42) 65 (51/78) 0.0042 0.15 0.0041 Reference

External test set 2 (n = 44)

DLRad_DB 0.89 (0.81–0.98) 84 (37/44) 82 (9/11) 85 (28/33) Reference 0.46 0.75 0.042

DLRad_FB 0.83 (0.71–0.95) 73 (32/44) 64 (7/11) 76 (25/33) 0.46 Reference 0.67 0.62

3D DL 0.86 (0.76–0.97) 77 (34/44) 82 (9/11) 76 (25/33) 0.75 0.67 Reference 0.40

2D DL 0.86 (0.74–0.97) 75 (33/44) 73 (8/11) 76 (25/33) 0.66 0.75 0.91 0.43

Radiomics 0.79 (0.66–0.88) 68 (30/44) 73 (8/11) 67 (22/33) 0.083 0.67 0.40 0.83

Clinical 0.78 (0.66–0.85) 73 (32/44) 64 (7/11) 76 (25/33) 0.042 0.62 0.40 Reference

Abbreviations: AUC, area under the curve; DL, deep learning; 3D, three-dimensional; 2D, two-dimensional. Bold text indicates that the P-value is less than 0.05. aUnless
otherwise specified, data are percentages, with proportions of patients (numerator/denominator) in parentheses. bData in parentheses are 95% CIs. cP value was calculated
by the Delong test.

Table 2: Performances of the predictive models in the training and test sets.a

Articles
superiority in the study sets (Fig. 5). The performance
of DLRad_FB (AUC = 0.83) in the training set was
inferior to that of the 3D DL model (AUC = 0.89,
P = 0.039) and the DLRad_DB model (AUC = 0.90,
P = 0.025). In the test sets, there was no significant
difference in performance between the DLRad_FB
model (AUC = 0.82–0.84) and either the 3D DL model
(AUC = 0.86–0.89, P = 0.17–0.67) or the DLRad_DB
model (AUC = 0.89, P = 0.16–0.46). The calibration
curves of the DLRad_DB model exhibited good con-
sistency across a wider range of probabilities in the
study sets (Supplementary Figure S4A–D). DCA curves
demonstrated that the DLRad_DB model provided
greater net benefit (Supplementary Figure S4E).

The optimal cutoff value of the predictive model
was determined based on the maximum Youden in-
dex calculated in the training set. The optimal cutoff
values were 0.555, 0.612, 0.512, 0.572, 0.645, and
0.672 for the DLRad_DB, DLRad_FB, 3D DL, 2D DL,
radiomics, and clinical models, respectively. Based on
the optimal cutoff values, the DLRad_DB exhibited
www.thelancet.com Vol 67 January, 2024
the best sensitivity (82–88%) and specificity (79–85%)
in the test sets (Table 2).

Stratification analysis of the model performances
It has been reported that the invasion depth and primary
site of LSCC were related to LNM. We further per-
formed stratification analysis of the performance of the
predictive models. Overall, the T stage (T1-2 vs T3-4,
Supplementary Figure S5) and primary tumor site
(glottic vs supraglottic, Supplementary Figure S6) did
not significantly affect performances of the predictive
models. The radiomics, 2D DL, 3D DL, and DLRad_DB
models exhibited stable performances among different
clinical settings.
Discussion
Currently, there is no ideal method to predict the pres-
ence of occult LNM in LSCC.9,10 In this study, we
developed radiomics, 2D and 3D DL models based on
the CT images of primary tumor, alongside a clinical
9
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Fig. 4: Performances for occult lymph node metastasis (LNM) prediction. The receiver operating characteristic (ROC) curves of the DLRad_DB
model, three-dimensional (3D) deep learning (DL) model, two-dimensional (2D) DL model, radiomics model, and clinical model in the training
set (A), internal test set (B), external test set 1 (C), and external test set 2 (D). AUC indicates area under the curve.
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model, for the prediction of occult LNM. Two fusion
strategies were employed to construct the multidomain
fusion model: the feature-based DLRad_FB model and
the decision-based DLRad_DB model. The results
showed that the DLRad_DB model exhibited the best
performance, with an AUC of 0.89 in test sets. The
feature-based analysis indicated that 3D DL features
exhibited the lowest internal redundancy and possessed
superior discriminative ability. On the other hand,
radiomics features demonstrated significant intrinsic
redundancy and displayed multiple correlations with
both 2D and 3D DL features.

The assessment of occult LNM in head and neck
squamous cell carcinoma (HNSCC) has attracted much
attention for a long time. Meler et al. examined the
transcriptional expression of SEMA3F and NRP2 in
patients with cN0 HNSCC, and found that the expres-
sions of SEMA3F and NRP2 were independent risk
factors for occult LNM.33 PET-CT can provide valuable
information about the morphology and metabolic
activity of lymph nodes, aiding in the detection of LNM.
PET-CT has been shown to have a high negative pre-
dictive value ranging from 87% to 95%.34,35 However,
PET sensitivity was compromised when it came to
detecting sub-centimeter or micrometastasis LNM.36

Additionally, PET false positives were common due to
the presence of inflammatory and infectious lymph
nodes, which could interfere with accurate interpreta-
tion of PET scans.37

Using deep learning and radiomics to predict LNM is
promising. This approach primarily relied on analyzing
images of lymph nodes or primary tumors.15,16 In reality,
radiological examinations often failed to show patho-
logical lymph nodes measuring less than 3 mm in size.38

Additionally, the segmentation of lymph nodes is a
time-intensive task that heavily relies on the expertise of
radiologists. These limitations hinder the practical
implementation of AI models that rely on lymph node
imaging for accurate metastasis prediction. Yuan and
Ren et al. utilized radiomics features derived from the
www.thelancet.com Vol 67 January, 2024
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Fig. 5: Performances for occult lymph node metastasis (LNM) prediction. The receiver operator characteristic (ROC) curves of the DLRad_DB
model and the DLRad_FB model in the training set (A), internal test set (B), external test set 1 (C), and external test set 2 (D). AUC indicates area
under the curve. P was calculated through the Delong test.
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primary tumor to predict occult LNM in tongue cancer.
Their methods yielded promising results, with accu-
racies ranging from 0.74 to 0.82.39,40 Currently, there is a
lack of studies utilizing deep learning techniques to
predict occult LNM of HNSCC. In this study, cases with
obvious signs of LNM on radiological and physical ex-
amination were excluded. Our findings indicated that
the artificial intelligence model based on the primary
tumor was a reasonable approach for predicting occult
LNM in LSCC. In fact, occult LNM of LSCC was closely
related to the primary tumor site and volume.41 Our
clinical model also showed a relatively high AUC value
of 0.73–0.78 in test sets.

3D CNNs require a larger dataset to effectively learn
complex spatial features. Insufficient data can lead to
suboptimal performance or overfitting.19 Kim et al.
constructed a 2D Desnet model (they called 2.5D Des-
net) by analyzing the axial, coronal and sagittal sections
of pulmonary CT.42 The performance of the model for
predicting lung cancer surpassed that of the 3D Desnet
model. Chen et al. reported the advantages of 3D
www.thelancet.com Vol 67 January, 2024
transfer learning.29 By utilizing the 3D ResNet backbone
pretrained on Med3D, they achieved significant im-
provements in both speed and accuracy compared to de
novo training. In the present study, we employed the
Med3D database to pretrain 3D Resnet50. The 3D DL
features demonstrated superior discriminative ability in
comparison to 2D DL and radiomics features. In the
training set, the 3D DL model also outperformed the 2D
DL and radiomics models. In this study, the radiomics
features exhibited significant internal correlations,
whereas the 3D DL features showed low internal cor-
relations. This observation could also be attributed to the
utilization of PCA during the selection process of 3D DL
features, which effectively reduced data dimensions and
generated uncorrelated features.

A recent systematic review compared the perfor-
mance of the radiomics model, DL model, and multi-
domain fusion model in medical researches.43 The
findings revealed that the fusion model outperformed in
63% of the examined studies, underperformed in 25%
of the studies, and had comparable performance in 13%
11
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of the studies. Our results suggested that the perfor-
mance of the fusion model could be impacted by the
fusion strategies. The majority of biomedical researches
employed the early fusion strategy.44 However, the early
fusion approach does not necessarily constitute the best
practice. Huang et al. utilized a CT-based CNN and
clinical data to detect pulmonary embolism, and
compared seven fusion architectures.45 They found that
the late fusion strategy yielded the most optimal per-
formance, which was similar with our results. In this
study, the correlation between deep learning features
and radiomics features may lead to estimate instability,
potentially compromising the performance of the
feature-based DLRad_FB model. Therefore, when
selecting a fusion approach for a specific medical issue,
it is not advisable to solely rely on experience; con-
ducting preliminary experiments for multiple ap-
proaches and selecting the most optimal one is
recommended.

Our study presented a noninvasive preoperative
approach utilizing an AI-based model to predict occult
LNM in laryngeal cancer, thereby providing diag-
nostic assistance and facilitating informed treatment
decisions. For high-risk patients predicted by the
model, END or elective neck irradiation (ENI) was
recommended, while minimizing the potential for
surgical trauma and complications in low-risk pa-
tients. The AI model can also assist physicians in
post-treatment surveillance, facilitating prompt iden-
tification of potential metastatic lesions and enabling
timely implementation of appropriate therapeutic in-
terventions. Furthermore, our model has the potential
to be used for continuous learning and optimizing
parameters in other types of HNSCC.46 A recent phase
II clinical study predicted the metastasis of lymph
nodes in HNSCC based on an AI algorithm, and
strictly treated the affected and suspicious lymph
nodes with intensive-modulated radiation therapy
instead of ENI. They found that the AI-guided radio-
therapy was oncological reasonable.47 This study
offered valuable insights into the validation of AI-
assisted diagnosis for LNM and the improvement of
treatment strategies. However, the AI algorithm uti-
lized in this single-centre study (n = 68) was based on
lymph node images, thus failing to address the chal-
lenge of occult LNM. Consequently, in order to
ascertain whether AI-driven diagnosis of occult LNM
can effectively translate into therapeutic survival
benefits, it is imperative to conduct additional pro-
spective multicentre intervention trials that yield
more compelling evidence.

It is important to consider the limitations of our
study when interpreting the results. Firstly, this was a
retrospective analysis, and prospective multicentre cases
are needed to confirm our findings. Secondly, our study
had a relatively high proportion of patients with T3-4
diseases. However, the prediction of occult LNM holds
greater significance in early-stage LSCC. This is because
END is more controversial in early-stage cases, whereas
it is considered the standard treatment for advanced
laryngeal cancer. Due to the small size of the primary
tumor in early-stage LSCC and the limited number of
cases with LNM labels, it was challenging to train an
effective predictive model. Although our study included
T3-4 LSCC, which may potentially impact the model’s
performance in the T1-2 stages, our hierarchical analysis
based on T stage did not support this claim. The models
demonstrated comparable performance in both T1-2
and T3-4 stages. Additionally, the inclusion of addi-
tional T3-4 LSCC cases could potentially improve the
generalizability of our predictive model in other types of
HNSCC, assuming these cancers share similar imaging
characteristics.

Another limitation of our model was that our model
was unable to locate the region of occult LNM. However,
our data indicated that the ipsilateral cervical level II was
the most common site of LSCC metastasis (98.1%),
which was consistent with previous studies (75%–

95%).6,48 Therefore, for patients with high risk of LNM
predicted by the model, we recommend performing a
prophylactic END involving minimal ipsilateral level II-
III.

In conclusion, the proposed multidomain fusion
model DLRad_DB could be used for predicting occult
LNM in LSCC based on pretreatment CT images.
Although additional evidence is required before
implementing the DLRad_DB model in a clinical
setting, our study facilitates accurate preoperative
diagnosis and informed treatment decision-making for
LSCC.
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