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Abstract

Aim: Nitric oxide (NO) interacts with the local brain renin-angiotensin

system to modulate sympathetic outflow and cardiovascular homoeostasis.

This study investigated whether NO influenced the ability of angiotensin

AT2 receptor activation to modify the high-pressure baroreceptor regula-

tion of renal sympathetic nerve activity (RSNA) and heart rate (HR).
Methods: Anaesthetized (chloralose/urethane) rats were prepared to allow

generation of baroreflex gain curves for RSNA or HR following intracere-

broventricular (I.C.V.) CGP42112 (AT2 receptor agonist), PD123319

(AT2 receptor antagonist) or losartan (AT1 receptor antagonist), and then

in combination with L-NAME (NO synthase inhibitor).
Results: I.C.V. PD123319, CGP42112, and Losartan did not change base-

line mean arterial pressure, HR or RSNA. Baroreflex sensitivities for

RSNA and HR were increased following AT2 receptor activation with

CGP42112 by 112 and 157%, respectively, but were reduced following

PD123319 by 20% (all P < 0.05). L-NAME alone increased baroreflex

sensitivity for both RSNA and HR, by 62 and 158%, respectively, but

when co-infused with either CGP42112 or PD123319, the baroreflex sen-

sitivity fell to values comparable to those obtained during I.C.V. saline

infusion. The baroreflex sensitivities for RSNA and HR were increased by

losartan by 92% and 192%, respectively, but in the presence of L-NAME

were no different from those obtained during I.C.V. saline infusion.
Conclusion: There is an important facilitatory role for AT2 receptors in the

high-pressure baroreflex regulation of RSNA and HR which is dependent on

a functional NO/NOS system. Conversely, AT1 receptors have an inhibitory

effect on the baroreflex, an action that relies on a tonic inhibition of NO.

Keywords AT2 receptors, high-pressure baroreflex, nitric oxide.

Nitric oxide (NO) generated within the central ner-

vous system may act as a neurotransmitter or neuro-

modulator of baroreflex regulation of blood pressure

(Qadri et al. 1999, Patel et al. 2001). Injection of NO

into specific brain regions such as the paraventricular

nucleus (PVN) led to a sympathetically mediated

decrease in blood pressure (Horn et al. 1994), while

systemic blockade of neuronal nitric oxide synthase

enzyme (nNOS) was found to reduce the lower

plateau of the heart rate baroreflex curve without

affecting the renal sympathetic nerve activity (RSNA)

baroreflex control in conscious rabbits (Murakami

et al. 1998).

The colocalization of the NOS enzyme and AT1

receptor mRNA in several brain regions in rats indi-

cates a possible interaction between central NO and

angiotensin II (Ang II) at the level of AT1 receptors

(Krizanova et al. 2001). This relationship could go

part way to explaining the inhibitory action of NO on

sympathetic out flow when exogenous Ang II was
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infused intravenously in conscious rabbits (Liu et al.

1998). Immunolabeling studies have revealed that NO

production in somata and dendrites of nucleus tractus

solitarius (NTS) neurones is enhanced by AT1 recep-

tor antagonism, but, significantly, this effect was pre-

vented when AT2 receptors on these neurones were

blocked (Wang et al. 2012). Moreover, it has been

suggested that the vasodepressor effect of AT2 recep-

tor after footshock challenges in rats is dependent on

NO release in the brain as well as peripherally

(Sosa-Canache et al. 2000).

Although the impact of endogenous NO on AT1

receptor-mediated control of RSNA has been explored

(Kumagai et al. 1993, Eshima et al. 2000), there is less

known regarding the contribution of centrally gener-

ated NO on AT2 receptor activation in the baroreflex

regulatory mechanism in rats. In vitro studies have

revealed that NO synthase enzyme (NOS) blockade

using Nx-nitro-L-arginine methyl ester (L-NAME)

inhibited the facilitatory role of AT2 receptors on neu-

ronal membrane potassium currents (Kang et al. 1993,

Gao & Zucker 2010). However, a recent in vivo study

from this laboratory showed significant yet independent

roles for AT2 receptors and NO in the sympatho-inhibi-

tory reflex mechanism initiated by acute saline volume

expansion (Abdulla & Johns 2013).

The present investigation tested the hypothesis that

NO produced within the central nervous system con-

tributed to the impact of AT2 receptor activation on

the ability of the arterial baroreceptors to reflexly

regulate heart rate and renal sympathetic nerve activity.

To this end, the effect of central administration of

CGP42112, a selective AT2 receptor agonist, or

PD123319, a selective AT2 receptor antagonist on

high-pressure baroreceptor function, was compared in

the presence or absence of the NOS inhibitor L-NAME.

Methods

Experiments were conducted using 275–350 g body

weight male Wistar rats purchased from Harlan

(Harlan, UK) and maintained in the Biological Service

Unit at University College Cork, Cork, Republic of Ire-

land. The rats were fed a standard rat chow and tap

water ad libitum and were under a 12:12-h dark–light

regime at 20 � 3 °C and 35% humidity. All procedures

on rats were in agreement with national guidelines and

the European Community Directive 86/609/EC and

with the endorsement of the local Animal Experimenta-

tion Ethical Committee at University College Cork.

Surgical procedure

Rats were fasted overnight and anaesthetized with an

intraperitoneal injection of a mixture of chloralose

and urethane (Sigma-Aldrich Company, Gillingham,

Dorset, UK) (16.5 and 250 mg mL�1 respectively) of

1–1.2 mL initially with supplementation of 0.05 mL

of the same anaesthetic I.V. given every 30 min. The

trachea was cannulated to allow free air passage. The

right femoral artery was cannulated (PE 50, Portex,

Kent, UK), and the cannula was connected to a fluid-

filled pressure transducer attached to a quad bridge

amplifier (ADInstruments, Hastings, UK) for continu-

ous mean arterial pressure (MAP) and heart rate (HR)

measurement, while the femoral vein was catheterized

for infusion of saline (150 mM NaCl, 3 mL h�1),

drugs and supplementary anaesthetic. For acute

implantation of the I.C.V. cannula, the rat head was

positioned in a stereotaxic frame (Kopf Instruments,

Tujunga, CA, USA) and a midline incision was made

through the skin. A small hole was drilled into the

skull, and a stainless steel cannula with diameter of

0.82 mm was inserted into the site 1.0 mm posterior

to the bregma, 2.5 mm lateral to the midline and

2.55 mm ventral to the surface of the dura as previ-

ously described (Huang & Johns 1998, Houghton

et al. 2010). Correct placement of the cannula tip

intraventricularly was established by slow extrusion of

cerebrospinal fluid from the end of the cannula (Wain-

ford & Kapusta 2009) or by Evans blue dye injection

at the end of the study to check the distribution of

dye through the ventricles (Huang & Johns 1998).

The I.C.V. cannula was connected to a PE 50 tube

(Portex) connected to a 25 lL microsyringe (Hamil-

ton, USA) fitted to a microinfusion pump (KD Scien-

tific; Linton Instruments, Norfolk, UK). The left

kidney was exposed retroperitoneally, and a renal

sympathetic nerve bundle running on or beside the

renal artery was separated from the surrounding tis-

sues, with the use of a dissecting microscope, and

sealed in place onto multi-stranded stainless steel wire

electrodes using a two-component silicon glue

(Klasse4Dental, Augsburg, Germany).

A high impedance head stage attached to a low

noise/high gain amplifier (NeuroAmp EX�, ADInstru-

ments) was used to record RSNA. The raw signals

from the amplifier were distributed between an audio

amplifier, to enable auditory evaluation of the signal

and a PowerLab data acquisition system connected to

a computer where the raw and integrated signals were

displayed. RSNA was amplified and filtered (gain

100x; high- and low-pass filters set at 100–2 KHz

respectively), digitized at 1000 Hz s�1 and stored for

later analysis. LabChart 7 software (ADInstruments)

was used to process and analyse the data. The inte-

grated signal was utilized to study the baroreceptor

regulation of renal sympathetic out flow. Raw signals

of pulsatile blood pressure were used to generate

MAP and HR.
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Protocols

A stabilization period of at least 2 h after the surgical

procedure was allowed. I.C.V. administration of saline

or drugs was initiated for 10 min at 30 lL h�1 fol-

lowed by a maintenance infusion of 7.5 lL h�1

throughout the experiment. Baseline MAP, HR and

RSNA were recorded for 5 min after which the first

baroreflex curves for RSNA and HR were generated.

This was performed using a slow ramp increase and

decrease in arterial blood pressure by 50–60 mmHg,

following an I.V. infusion of phenylephrine (PE) or

sodium nitroprusside (SNP), respectively, at a dose of

10 lg in a volume of 0.2 mL of saline for each which

was infused at a rate of 18 mL h�1 over 40 s. A time

period of 10–15 min was allowed following the infu-

sion of phenylephrine and sodium nitroprusside for all

the variables to return to baseline. Following the first

baroreflex curve generation, a recovery period of at

least 2 h was allowed before the second I.C.V. drug

administration and baroreflex curve generation for

RSNA and HR was repeated in a similar fashion. The

I.C.V. maintenance infusion of saline or drug was con-

tinued throughout the 30 min baroreflex curve genera-

tion period, and haemodynamic and RSNA data were

continuously collected throughout the study. A 5-min

recording of baseline MAP, HR and RSNA was taken

before and after the first and second I.C.V. infusion.

The rats were killed at the end of the experimental pro-

tocol using an overdose of anaesthetic, and 30 min

later, the background noise was recorded. The back-

ground noise value was subtracted from all original

RSNA recordings and used during data analysis.

Experimental groups

Nine groups of rats were used.

Group 1 (Saline/saline) (n = 5): This group served

as a time control which received saline in the first

I.C.V. infusion throughout the baroreflex curve

generation. The second I.C.V. saline infusion was

administered in a similar pattern to the first one.

Group 2 (Saline/L-NAME) (n = 7): In this group,

saline was infused I.C.V. throughout the first baro-

reflex curve generation. The I.C.V infusion was

then changed to nitro-L-arginine methyl ester, an

NO synthase enzyme inhibitor (L-NAME,

150 lg kg�1 min�1) at 30 lL h�1 for 10 min

loading followed by 7.5 lL h�1 to deliver one-

quarter of the dose as maintenance throughout the

second baroreflex curve generation (Abdulla &

Johns 2013). This dosage level was comparable to

that used previously and reported to non-selectively

inhibit brain NOS (Moore et al. 1991, Kadekaro

et al. 1998, Dobrucki et al. 2001, Raimondi et al.

2007).

Group 3 (Saline/CGP) (n = 6): This group received

a saline I.C.V. infusion throughout the first barore-

flex curve generation. In the second I.C.V. infusion,

a selective AT2 receptor agonist CGP42112 (CGP,

50 lg kg�1 min�1) was given at 30 lL h�1 for

10 min loading followed by a 7.5 lL h�1 to deliver

one-quarter of the dose as maintenance (Gao et al.

2008, Abdulla & Johns 2013) throughout the

second baroreflex curve generation.

Group 4 (Saline/PD) (n = 7): Similar to the previ-

ous groups, saline in this group was infused in the

first I.C.V. infusion throughout the baroreflex

curve generation. Thereafter, the I.C.V. infusion

was changed to a selective AT2 receptor antago-

nist, PD123319 (de Gasparo et al. 1995) (PD,

50 lg kg�1 min�1) delivered at 30 lL h�1 for

10 min loading followed by 7.5 lL h�1 to deliver

one-quarter of the dose as maintenance (Gao et al.

2008, Abdulla & Johns 2013) throughout the sec-

ond baroreflex curve generation.

Group 5 (Saline/losartan) (n = 7): Saline was

infused I.C.V during the first baroreflex curve gen-

eration after which the I.C.V. infusion was changed

to one containing a selective AT1 receptor antago-

nist (7.5 lg kg�1 min�1), losartan, that was deliv-

ered at 30 lL h�1 for 10 min loading followed by

7.5 lL h�1 maintenance dose (Huang & Johns

2001, Abdulla & Johns 2013) throughout the sec-

ond baroreflex curve generation.

Group 6 (PD/PD+L-NAME) (n = 7): This group

received I.C.V. an infusion of PD (50 lg kg�1 min�1)

throughout the first baroreflex curve generation.

The I.C.V. infusion was then switched to PD plus

L-NAME (50 + 150 lg kg�1 min�1 respectively) at

30 lL h�1 for 10 min loading followed by

7.5 lL h�1 to deliver one-quarter of the dose as

maintenance throughout the second baroreflex

curve generation (Abdulla & Johns 2013).

Group 7 (L-NAME/L-NAME+PD) (n = 7):

L-NAME (150 lg kg�1 min�1) was infused I.C.V.

for the generation of the first baroreflex curve, and

L-NAME and PD (150 + 50 lg kg�1 min�1) were

delivered I.C.V. during the generation of the sec-

ond baroreflex curve.

Group 8 (CGP/CGP+L-NAME) (n = 7): CGP

(50 lg kg�1 min�1) at 30 lL h�1 was infused

throughout the first baroreflex curve generation,

and then, the I.C.V. infusion was switched to CGP

plus L-NAME (50 + 150 lg kg�1 min�1) for the

second baroreflex curve generation.

Group 9 (Losartan/losartan+L-NAME) (n = 7):

During the generation of the baroreflex curves in
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this group, losartan (7.5 lg kg�1 min�1) was

infused as in the first I.C.V. infusion and then lo-

sartan plus L-NAME (7.5 + 150 lg kg�1 min�1)

for the second infusion before the production of

the baroreflex curves.

Materials

The chemicals used included the following: phenyleph-

rine hydrochloride, sodium nitroferricyanide (III)

dehydrate (sodium nitroprusside), Nx-nitro-L-arginine

methyl ester (L-NAME), CGP42112, PD123319,

losartan potassium, chloralose and urethane (Sigma-

Aldrich Company).

Data analysis

The averaged background noise (30 min after killing

the animal) for integrated RSNA was calculated and

subtracted from all RSNA recordings prior to any

analysis. The baseline values of MAP, HR and inte-

grated RSNA were recorded for 5 min immediately

prior to the start of the I.C.V. injections and then over

the final 5 min of the infusion were presented as the

actual values and were compared using a paired Stu-

dent’s t-test. The analysis of the baroreflex curves for

the relationship between MAP and integrated RSNA or

HR was performed by fitting data to a logistic sigmoid

function [y = A1/(1 + exp(A2(x�A3))) + A4] (Kent

et al. 1972, Matsumura et al. 1998b, Nagura et al.

2004) whereby y is the RSNA, A1 is the range over

which the baroreflex curve operates, A2 is the sensitiv-

ity, A3 is the value of x at mid-point of the curve and

A4 is the lowest point to which RSNA or HR could be

driven. Average values of RSNA and HR were calcu-

lated for each 5-mmHg change in blood pressure using

averaged parameters of the equation for all the rats per

group (Kopp et al. 2008). To detect the differences

between each of the parameters (A1-A4) in the first and

second baroreflex curves, a two-tailed paired Student’s

t-test was utilized. Data in Figure 5 were analysed using

one-way ANOVA followed by a Bonferroni post hoc test

and unpaired t-test for specific group comparisons

(GraphPad Prism software, GraphPad Prism� 5.0 for

Windows, San Diego, CA, USA). Data were analysed

offline and presented as mean � SEM, and P values of

<5% were accepted as statistically significant.

Results

Baseline haemodynamic and RSNA values

The baseline values of MAP, HR and RSNA were

similar before and after saline infusion in the time

control group except for the significant reduction

(P < 0.05) in baseline HR in the Saline/PD group

(Table 1). Similarly, the I.C.V. infusion of PD, CGP

and losartan resulted in no significant change in the

baseline values of MAP, HR or RSNA except for the

significant decrease (P < 0.05) in baseline HR values

in the CGP/CGP+L-NAME group.

Baroreflex curves of RSNA and HR

Figure 1 illustrates the raw and integrated RSNA, and

HR recordings at baseline and when ramp changes in

arterial pressure were triggered by PE and SNP infu-

sion in one time control rat. PE induced an increase in

MAP by almost 50 mmHg which was accompanied

by a corresponding decrease in RSNA and HR. On

the other hand, SNP produced a marked drop in MAP

by almost 60 mmHg which triggered a parallel

increase in RSNA and HR.

Figures 3–5 contain the baroreflex curves for the

relationship between RSNA or HR and MAP following

I.C.V. administration of saline during the control phase

and then following I.C.V. L-NAME, CGP, PD and

losartan. In the time control group (saline/saline), the

sensitivity (A2) of RSNA (Fig. 2a) and HR (Fig. 2b)

baroreflex curves following I.C.V. saline in the first

phase was comparable to those recorded following

I.C.V. saline administration in the second phase.

Figure 8 summarizes the percentage change in the

sensitivity (A2) of the baroreflex curve of RSNA or

HR in all experimental groups. The second saline

phase of saline/saline group was utilized as a baseline

level, and the percentage increase or decrease in the

sensitivity (A2) of the second baroreflex curve from

this baseline in each group was calculated.

Role of NO

To investigate the impact of central NO on the baro-

reflex control mechanism of RSNA and HR, baroreflex

curves were generated before and then after L-NAME

administration. Infusion of L-NAME I.C.V. resulted in

a significant increase of 50–60% in the RSNA (Figs 3a

and 8a) and approx. 150–160% in HR (Figs 3b and

8b) baroreflex curve sensitivities (A2) compared with

those when saline was given I.C.V. respectively. How-

ever, the mid-point (A3) and the lower plateau (A4) of

these curves remained unchanged except for the range

(A1) of HR baroreflex which decreased significantly by

some 43% (P < 0.05) following NOS blockade with

L-NAME.

Role of AT2 receptors

The role of central AT2 receptors on the baroreflex

mechanism of RSNA and HR was investigated by

© 2013 The Authors. Acta Physiologica published by John Wiley & Sons Ltd on behalf of
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generation of baroreflex curves before and following

the I.C.V. administration of CGP or PD. Infusion of

CGP I.C.V. resulted in a significant increase of

90–110 and 150% (all P < 0.05) in the sensitivity

(A2) of the RSNA (Figs 4a and 8a) and HR (Figs 4b

and 8b) baroreflex curves, respectively, compared with

those obtained when saline was administered I.C.V.

Conversely, I.C.V. administration of PD decreased the

1 min 1 s 1 min Noise

Phenylephrine Sodium nitroprusside

Figure 1 Representative recording from

an individual rat of systemic arterial

pressure (AP), mean arterial blood pres-

sure (MAP), heart rate (HR), integrated

renal sympathetic nerve activity (RSNA)

and row RSNA signal. Ramp changes in

AP were established by bolus intrave-

nous infusions of phenylephrine

(50 lg kg�1) to increase AP and sodium

nitroprusside (50 lg kg�1) to decrease

AP. Data are presented at two different

recording speeds.
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Figure 2 The baroreflex curve for renal

sympathetic nerve activity (a) and heart

rate (b) following ramp changes in mean

arterial blood pressure in the time con-

trol group whereby a first I.C.V. saline

infusion was followed by a second

I.C.V. saline infusion. RSNA, renal sym-

pathetic nerve activity; MAP, mean arte-

rial blood pressure; and HR, heart rate.
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RSNA (Figs 4c and 8a) and HR (Figs 4d and 8b)

baroreflex sensitivities, A2, (all P < 0.05) by some

20%. The administration of either CGP or PD

resulted in no significant change in the range (A1),

mid-point (A3) or lower plateau (A4) of the RSNA

(Fig. 4a, c) or HR (Fig. 4b, d) curves compared with

saline I.C.V. administration.

Role of AT1 receptors

The impact of central AT1 receptor blockade on the

baroreflex control of RSNA and HR was examined by

studying the baroreflex curves before and following

the I.C.V. administration of AT1 antagonist, losartan.

The administration of losartan I.C.V. significantly

increased the sensitivity (A2) of the RSNA baroreflex

by about 80–90% (Fig. 5a, Fig. 8a) and for HR

baroreflex by 150–190% (Figs 5b and 8b) (both

P < 0.05), respectively, compared with saline I.C.V.

administration without change to any other of the

parameters.

The effect of NOS blockade on central AT2 receptors

L-NAME was co-infused with CGP or PD to deter-

mine the effect of central NOS blockade on AT2

receptor-mediated impact on the baroreflex mecha-

nism. The administration of L-NAME in combination

with CGP I.C.V. in CGP/CGP+L-NAME group

decreased the sensitivity (A2) of the baroreflex curve

significantly to values not different from saline control

values for RSNA (Figs 6a and 8a) and HR (Figs 6b

and 8b) (both P < 0.05). The other parameters of the

baroreflex curve remained the same following
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Figure 3 The baroreflex curve for renal

sympathetic nerve activity (a) and heart

rate (b) following ramp changes in mean

arterial blood pressure in I.C.V. saline

infused rats followed by L-NAME.

*P < 0.05, baroreflex sensitivity of the

second phase compared with the first

phase. LNM, L-NAME; RSNA, renal

sympathetic nerve activity; MAP, mean

arterial blood pressure; and HR, heart

rate.
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Figure 4 The baroreflex curve for renal

sympathetic nerve activity and heart rate

following ramp changes in mean arterial

blood pressure in I.C.V. saline infused

rats followed by CGP (a, b) or PD (c, d).

*P < 0.05, baroreflex sensitivity of the

second phase compared with the first

phase. PD, PD123319; RSNA, renal

sympathetic nerve activity; MAP, mean

arterial blood pressure; and HR, heart

rate.
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combined administration of L-NAME plus CGP

except for the effect of L-NAME on the mid-point

(A3) of the RSNA baroreflex gain curve which

increased significantly by some 15% (from 75.6 � 5.2

to 84.7 � 5.9, P < 0.05) (Fig. 6a).

The combined administration of L-NAME with PD

I.C.V. in PD/PD+L-NAME or L-NAME/PD+L-NAME

group produced a significantly lower (P < 0.05) sensi-

tivity (A2) in both groups (Figs 6c,e and 8a) for

RSNA some 13% and 57% for HR (Figs 6d,f and 8b)

compared with I.C.V. infusion of PD or L-NAME

which were values very similar to those obtained

when saline alone was infused. There was no effect on

the range (A1), the mid-point (A3) or the lower pla-

teau (A4) of the curve except that the mid-point of

HR baroreflex curve (A3) increased by almost 25%

(from 80.5 � 4.9 to 100.6 � 5.9, P < 0.05) following

L-NAME I.C.V. administration in the L-NAME/L-

NAME+PD group.

The effect of central NOS and AT1 receptors blockade

To investigate the effects of combined blockade of

NOS and AT1 receptors on the baroreflex mechanism,

L-NAME was co-infused with losartan and the baro-

reflex curves for RSNA or HR was generated. The

sensitivity (A2) of the baroreflex curves for RSNA

(Figs 7a, and 8a) and HR (Figs 7b and 8b) was signifi-

cantly blunted (all P < 0.05), respectively, following

the I.C.V. infusion of L-NAME in combination with

losartan compared with losartan I.C.V. infusion. In

addition, L-NAME administration increased the mid-

point (A3) of the RSNA or HR baroreflex curves by

some 11% and 17% respectively (all P < 0.05). There

was no significant change in any other parameter of

the baroreflex curve following combined administra-

tion of L-NAME plus losartan (Fig. 7).

Discussion

The aim of the present study was to investigate

whether there was a contribution of NO to the

high-pressure baroreceptor reflex regulation of RSNA

and HR mediated through central AT2 receptors. The

approach taken was to generate baroreflex curves to

determine the relationship between MAP and RSNA

or HR before and after AT2 receptor stimulation or

blockade with NOS active or inhibited with L-NAME.

The contribution of AT1 receptors was similarly

examined. Several novel findings were revealed; firstly,

under basal conditions, both the renin-angiotensin and

NO systems contributed significantly to the high-pres-

sure baroreceptor control of RSNA and HR; secondly,

exogenous stimulation of AT2 receptors by CGP

increased the sensitivity of the baroreceptor reflex

which was dependent, in large part, on an intact NO

system, whereas blockade of AT2 receptors with PD

caused a small decrease in sensitivity which was mar-

ginally increased by subsequent blockade of the NO

system; thirdly, a similar pattern of responses was

observed when the counterbalancing AT1 receptors

were blocked with losartan. In this regard, there was

a significant increase in the sensitivity of RSNA or HR

baroreflexes following AT1 receptor blockade, but

when central NOS was blocked with L-NAME, this

increase in baroreflex sensitivity was reversed.

The rats in the current study were subjected to two

I.C.V. injections of either vehicle, agonist or antago-

nist, and during each of the two I.C.V. administra-

tions, baroreflex curves for RSNA and HR were

generated. Previous studies have indicated that I.C.V.

administration of substances could have different sites

of action and therefore different effects on the barore-

flex mechanism (Ferguson & Washburn 1998, Chen

& Toney 2003, Fletcher et al. 2006). For example,

Ang II was suggested to blunt the baroreflex mecha-

nism due to its effect on a subpopulation of NTS neu-

rones (Kasparov & Paton 1999). However, in another

study, the effect of Ang II on RVLM neurones was

described as sympatho-excitatory (Head 1996). In a

similar fashion, NO within the RVLM was found to

exert a GABA-mediated tonic inhibitory effect on

RSNA (Zhang & Patel 1998). Furthermore, the NO

effect on PVN was such that it produced a decrease in
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Figure 5 The baroreflex curve for renal

sympathetic nerve activity (a) and heart

rate (b) following ramp changes in mean

arterial blood pressure in I.C.V. saline

infused rats followed by losartan.

*P < 0.05, baroreflex sensitivity of the

second phase compared with the first

phase. LOS, losartan; RSNA, renal sym-

pathetic nerve activity; MAP, mean arte-

rial blood pressure; and HR, heart rate.
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RSNA, MAP and HR in rats (Zhang et al. 1997).

However, in the NTS neurones, NO was shown to

have a facilitatory role on the baroreflex mechanism

in rats (Dias et al. 2005). The time control group

showed similar baseline haemodynamic and RSNA

parameters, and baroreflex curves in the first and sec-

ond phases of the protocol, indicating that there was

no effect of time on either the baseline RSNA, MAP

or HR values or the baroreceptor reflex regulation of

these variables. It is important to emphasize that these

studies were performed in an anaesthetized prepara-

tion and that the changes in RSNA and HR in

response to the vasopressor and vasodepressor com-

pounds were relatively blunted compared with those
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Figure 7 The baroreflex curve for renal

sympathetic nerve activity (a) and heart

rate (b) following ramp changes in mean

arterial blood pressure in losartan/losar-

tan+L-NAME. *P < 0.05, baroreflex

sensitivity of the second phase compared

with the first phase. LOS, losartan;

LNM, L-NAME; RSNA, renal sympa-

thetic nerve activity; MAP, mean arterial

blood pressure; and HR, heart rate.
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Figure 6 The baroreflex curve for renal

sympathetic nerve activity and heart rate

following ramp changes in mean arterial

blood pressure in PD/PD+L-NAME

(a, b), L-NAME/L-NAME+PD (c, d) and

CGP/CGP+L-NAME (e, f). *P < 0.05,

baroreflex sensitivity of the second phase

compared with the first phase. LNM,

L-NAME; PD, PD123319; RSNA, renal

sympathetic nerve activity; MAP, mean

arterial blood pressure; and HR, heart

rate.
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obtained in conscious preparations (M.H. Abdulla &

E.J. Johns, unpublished observations).

The baseline values of RSNA, MAP and HR in all

groups did not change following the central adminis-

tration of PD, CGP or losartan which agrees with pre-

vious reports from this laboratory and from others

(Bunting & Widdop 1995, Oliveira et al. 1996,

Abdulla & Johns 2013). In the present study, the

I.C.V. administration of L-NAME into the lateral ven-

tricle caused no significant change in RSNA, MAP or

HR which was similar to that previously reported in

the mouse using comparable doses of L-NAME I.C.V.

(Moore et al. 1991) although it has been reported that

central injection of the NOS inhibitor, L-NAME

resulted in a higher level of RSNA (Togashi et al.

1992). In terms of the AT1 receptor blocker, losartan

had no significant effect on baseline levels of MAP,

HR or RSNA which was consistent with previous

studies in rats (Huang et al. 2006) and rabbits (Bado-

er et al. 2000) given a dose of losartan close to that

used in the present study.

An important novel finding from the present study

was that inhibition of NO production in the central

nervous system with L-NAME enhanced baroreflex

sensitivity to RSNA as well as to HR. This would sug-

gest that NO normally exerts a tonic inhibitory action

at the level of baroreflex regulation of both RSNA

and HR. These findings support those of other groups

in that NO was found to attenuate the baroreceptor-

mediated reflex regulation of RSNA and HR in

conscious rabbits (Matsumura et al. 1998a). There-

fore, this study as well as previous reports indicate

that central NO possesses an important cardiovascular

regulatory role which may reflect its action as a neuro-

transmitter or neuromodulator (Togashi et al. 1992).

Following the I.C.V. administration of PD to block

AT2 receptors, the baroreflex control of RSNA and

HR was suppressed. This finding would indicate that

under basal conditions, AT2 receptor activation by

angiotensin II contributed to the baroreflex regulation

of RSNA and HR. Indeed, there are reports demon-

strating that AT2 receptors are expressed in brain

areas related to sympathetic control such as rostral

ventrolateral medulla (RVLM), NTS and the subforni-

cal organ (Lenkei et al. 1997, Roulston et al. 2003,

Gao et al. 2008). In addition, AT2 receptor activation

produced a sympatho-inhibition which was postulated

to be related to central NO production (Gao et al.

2008, Gao & Zucker 2010). Although these studies

defined the effect on basal levels of renal sympathetic

nerve activity, what was not tested was their action

on baroreflex sensitivity.

A second novel and important observation was that

I.C.V. administration of CGP in the current study

increased baroreflex sensitivity for RSNA and HR

compared with the vehicle. These findings are at vari-

ance with previous studies which showed a tendency

for CGP I.C.V. to decrease the slope of the HR baro-

reflex sensitivity in normotensive rats (Oliveira et al.

1996). One reason for this difference is possibly due
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Figure 8 The percentage change in

baroreflex sensitivity (A2) of RSNA

(a) and HR (b) baroreflex gain curves

from control (saline) in the presence and

absence of L-NAME. The data are for

the percentage difference of the slope

values (A2) of the second baroreflex

curves in all groups with reference to

the slope of second saline phase in

saline/saline group as a baseline value.

*P < 0.05, with L-NAME compared to

without L-NAME; #P < 0.05,

PD+L-NAME compared with L-NAME.

LNM, L-NAME; PD, PD123319; and

LOS, losartan.
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to the different sites at which this agonist may be act-

ing along the baroreflex pathway as emphasized

above. However, the microinjection of CGP into the

RVLM produced a sympatho-inhibitory response in

rats using a dose comparable to that utilized in the

present study (Gao et al. 2008). This sympatho-inhibi-

tory response was also accompanied by a decrease in

MAP, HR and RSNA. In addition, data from mice

with deleted AT2 receptor gene demonstrated a

depressor response to central AT2 receptor stimula-

tion buffering an AT1 receptor-mediated pressor

response (Gross et al. 2002). The I.C.V. administra-

tion of CGP in the current study as well as in that of

Oliveira et al. (1996) had no effect on baseline MAP.

However, in these studies, either the AT2 receptor-

mediated alterations in baseline levels of sympathetic

outflow were measured or an indirect measure of

baroreflex sensitivity based on heart rate and blood

pressure changes was utilized but baroreflex control of

sympathetic nerve activity was not evaluated. The

increase in baroreflex sensitivity due to CGP was sig-

nificantly reversed following the co-infusion of

L-NAME and the response was shifted to a higher

blood pressure level. This would be compatible with

the view that exogenous activation of central AT2

receptors exerts its effect, to a large degree, through a

pathway involving NO production.

It was also evident that losartan increased the

RSNA and HR baroreflex sensitivity. This finding is

similar to previous reports from this laboratory and

others who found that injection of losartan either

I.C.V. or onto the NTS enhanced the sensitivity of the

high-pressure baroreflex control of RSNA or HR in

conscious and anaesthetized rats (Oliveira et al. 1996,

Huang et al. 2006, Wang et al. 2007). Moreover, an

enhanced sympatho-inhibitory response to volume

expansion was reported following I.C.V. administra-

tion of losartan in rats (Dibona et al. 1998, Abdulla

& Johns 2013). These findings may indicate an impor-

tant AT2 receptor-mediated role for endogenous

angiotensin II to enhance the baroreflex regulation of

RSNA and HR. This suggestion is based on the notion

that AT2 receptor function becomes apparent only

when the AT1 receptors are blocked (Israel et al.

2000). The AT2 receptor-mediated effect on the baro-

reflex regulatory mechanisms is dependent on a func-

tional NO system within the brain. This suggestion is

supported by the present observation that L-NAME

co-administration with losartan reversed the effect of

losartan on the RSNA and HR baroreceptor reflex.

The magnitude of the decrease in baroreflex sensitivity

in response to co-infusion of losartan with L-NAME

was comparable to the decrease in baroreflex sensitiv-

ity following CGP infusion in the presence of NOS

blockade. However, this relationship is only for the

high-pressure baroreflex mechanism but not the sym-

patho-inhibitory response mediated by the low-pres-

sure cardiopulmonary baroreceptors as recently shown

using a similar manipulation of central AT1 and AT2

receptors (Abdulla & Johns 2013).

In conclusion, the findings from the current study

suggest that a functional NO system within the brain

has an important regulatory role in the normal barore-

flex regulation of RSNA and HR which is initiated by

the activation of central AT2 receptors. That is, when

AT2 receptors were exogenously activated or when

the counterbalancing actions of AT1 receptors were

blocked, an augmented sensitivity of the high-pressure

baroreceptors became evident. Part of this response is

dependent on AT2-mediated NO production as when

L-NAME was given the AT2 receptor-induced

increase in the baroreflex sensitivity was blunted. The

outcome of this study provides a clearer insight as to

the significance of AT2 receptors in the brain in regu-

lating sympathetic outflow to the kidneys. This rela-

tionship may become important when attempting to

understand the impaired baroreflex mechanisms exist-

ing in renal failure and hypertension.
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