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Assessment with clinical data 
of a coupled bio‑hemodynamics 
numerical model to predict 
leukocyte adhesion in coronary 
arteries
Umberto Ciri1*, Ruth L. Bennett1, Rita Bhui2, David S. Molony3, Habib Samady3, 
Clark A. Meyer2, Heather N. Hayenga2 & Stefano Leonardi1

Numerical simulations of coupled hemodynamics and leukocyte transport and adhesion inside 
coronary arteries have been performed. Realistic artery geometries have been obtained for a set of 
four patients from intravascular ultrasound and angiography images. The numerical model computes 
unsteady three-dimensional blood hemodynamics and leukocyte concentration in the blood. Wall-
shear stress dependent leukocyte adhesion is also computed through agent-based modeling rules, 
fully coupled to the hemodynamics and leukocyte transport. Numerical results have a good correlation 
with clinical data. Regions where high adhesion is predicted by the simulations coincide to a good 
approximation with artery segments presenting plaque increase, as documented by clinical data from 
baseline and six-month follow-up exam of the same artery. In addition, it is observed that the artery 
geometry and, in particular, the tortuosity of the centerline are a primary factor in determining the 
spatial distribution of wall-shear stress, and of the resulting leukocyte adhesion patterns. Although 
further work is required to overcome the limitations of the present model and ultimately quantify 
plaque growth in the simulations, these results are encouraging towards establishing a predictive 
methodology for atherosclerosis progress.

Cardiovascular disease, one of the leading causes of death in the world, often develops as a consequence of 
atherosclerosis1. Atherosclerosis consists in the progressive build-up of plaque inside an artery. Among other 
substances, plaque is made of leukocytes, which adhere and transmigrate through the endothelium from the 
artery lumen, further increasing the plaque burden2. Local hemodynamic conditions, and in particular the 
endothelial wall shear stress ( WSS ), play a primary role in the disease development3–5.

The WSS is the frictional force per unit area applied by the blood flow on the artery wall (see sketch in Fig. 1). 
The WSS depends on the velocity gradient at the wall (shear rate) and is directly related to the hemodynamic field.

Although the shear stress is typically much smaller than other stresses acting on the vessel wall (e.g. 
pressure6,7), it has a primary importance through biological signaling which regulates either athero-prone or 
athero-proctetive gene and protein expression in the endothelial cells3,4. In particular, the wall shear stress level 
influences the rate at which leukocytes adhere to the endothelium and the strength of their chemical bond 
(Fig. 1). Previous studies have reported a good correlation between low-WSS regions and increased rate of leu-
kocyte extravasation and ultimately disease progression, or vice-versa, i.e. regions with high WSS are associated 
with little leukocyte extravasation and regression of fibrotic tissue8–13.

Spatio-temporal hemodynamics conditions, and hence wall shear stress, are significantly dependent upon the 
pulsatile nature of blood flow and the local geometry of the lumen14,15. Blood flow characteristics can be numeri-
cally reproduced with good accuracy using modern computational fluid dynamics (CFD) methods16–20. This 
accuracy provides the opportunity to develop a predictive tool for atherosclerosis growth by coupling blood-flow 
patterns obtained from CFD to the biochemical processes responsible for plaque growth. Recently, we have cou-
pled our in-house CFD code with an agent-based model (ABM) to predict leukocyte adhesion21,22. In a previous 
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study22, we investigated the effect of the instantaneous and time-averaged flow conditions throughout the cardiac 
cycle on leukocyte capture. The results emphasized the importance of accounting for the natural unsteadiness of 
blood flow: evaluating the rate of capture using only time-averaged information leads to inaccurate prediction 
of the magnitude and location along the artery of leukocyte adhesion. Our previous study22 was conducted on 
an idealized geometry, consisting of a straight pipe (artery) with a simplified hemispherical obstacle on the wall 
to represent the stenosis. The present work moves beyond this limitation.

Simulations are performed using realistic stenotic geometries reconstructed from virtual histology intravas-
cular ultrasound (VH-IVUS) frames and bi-plane angiography. Clinical images are available for the baseline 
geometry and after a 6-months follow-up of the same coronary plaque. Simulations are performed for the baseline 
geometry, and numerical results are compared with follow-up data. The objective of this work is to present an 
initial verification of the numerical approach against clinical data.

Methodology
For prediction of atherosclerosis progress we have developed an in-house bio-hemodynamic numerical model. 
Arterial hemodynamics is calculated using incompressible Navier–Stokes equations as the governing equa-
tions. The equations are discretised with a second-order conservative finite-difference approximation23. Three-
dimensional spatio-temporal variations of the blood flow velocity UUU and pressure p inside the artery are obtained 
from the numerical solver.

The velocity field also determines the transport of leukocyte dispersed in the blood. An advection equation 
for each species ‘l’ of leukocyte is used to track the spatio-temporal leukocyte concentration in the blood ρl:

The UUU · ∇ρl term on the left-hand side of Eq. (1) represents the advection of leukocyte by the blood flow. On 
the right-hand side, the ‘sink’ term ( −Rl(WSS) ) indicates the rate at which leukocytes adhere and transmigrate 
into the arterial wall, thereby reducing the concentration of free-flowing leukocytes in the blood. The rate of 
adhesion depends on the instantaneous blood WSS , which is computed from the velocity field UUU . As reviewed in 
the introduction, leukocyte adhesion is associated with low levels of WSS . A large magnitude of wall-shear stress 
overcomes the bonds formed with endothelial cells and ‘washes‘ particles downstream, impeding transmigration. 
Thus, the rate of adhesion can quantitatively be expressed as:

where WSSth is a threshold level, dependent on the leukocyte type, above which no adhesion occurs. The explicit 
functional dependence of Rl upon WSS can be found in our previous work21. In Eqs. (1) and (2), the instanta-
neous value of WSS is used to compute Rl , which thus varies in time and space. In the following, unless stated 
otherwise, the results are analyzed by averaging the instantaneous value Rl in the cross-sectional area and in time 
(throughout the cardiac period). This average rate of adhesion is indicated with an overline, Rl . As analyzed in a 
previous work22, Rl is different than computing the adhesion using the average wall shear stress, WSS , in Eq. (2).

Figure 2 illustrates the leukocyte transport and adhesion processes. The visualizations in panel a show neutro-
phil concentration computed from Eq. (1) for the blood flow inside an ideal stenotic artery. This configuration, 
which reproduces the one used in our previous work22, consists of a straight circular pipe with an axisymmetric 
constriction to model the stenosis.

(1)
∂ρl

∂t
+UUU · ∇ρl = −Rl(WSS).

(2)Rl =

{

fl(WSS) |WSS| ≤ WSSth
0 otherwise

,

Figure 1.   Schematic of the blood hemodynamics and leukocyte adhesion process. The wall shear stress ( WSS ) 
is the (tangential) force which blood flow applies on the artery wall and depends on the fluid viscosity µ and the 
shear rate ( ∂U/∂n where n is the normal to the arterial wall). If the WSS is large, blood will wash away leukocytes 
from the endothelium and impede adhesion, whereas in presence of low WSS chance of adhesion is greater. 
After adhesion, leukocytes transmigrate inside the arterial wall increasing the plaque area (red, green and white 
regions in the intravascular ultrasound image). Umean = 0.384m/s is the mean bulk velocity throughout the 
cardiac cycle.
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The visualizations in Fig. 2 are taken at different instants during the cardiac cycle and emphasize the depend-
ence upon the instantaneous blood flow rate. The leukocyte concentration tends to decrease downstream of the 
minimum lumen area, where the flow is recirculating and the WSS tends to be low22. The spatial variations in the 
concentration eventually affect the leukoctye rate of adhesion. Compared to our previous results22, where leu-
kocyte transport is not modeled and the concentration was assumed to be uniform everywhere, the downstream 
peak in adhesion (at x/D ≈ 5 , Fig. 2b, c) is reduced. This reduction occurs because in the present simulations 
the supply of leukocytes to the wall at a location x̄ depends on the hemodynamics and is decreased by adhesion 
taking place upstream x < x̄.

In our simulations, the physiological conditions are completed by imposing a triphasic pulsating waveform 
as a boundary condition to reproduce the cardiac cycle24. The waveform is shown in Fig. 2a. A parabolic veloc-
ity profile is used at the inlet of the computational domain to enforce the flow rate across a circular cross sec-
tion. A straight inflow channel with a length of about 5D (D being the mean lumen diameter across the artery, 
D ≈ 2mm ) smoothly blends the circular inlet cross section with the first frame extracted from the clinical images 
(VH-IVUS). The radius of the inlet circular cross-section is set equal to the mean radius of the first VH-IVUS 
frame. Similarly, an outflow channel with a length of approximately 8D is appended to the last VH-IVUS frame. 
The outflow channel smoothly bends the centerline parallel to the x axis to accommodate the radiative outlet 
boundary conditions25.

The solid geometry is modeled using the immersed boundary method26, which provides an accurate represen-
tation of rigid yet complex geometry boundaries within computationally efficient Cartesian grids. This in-house 
code has been previously validated against a commercial software22, showing good accuracy in reproducing the 
flow inside an idealised stenotic artery. Additional details on the simulation setup (computational domain, mesh 
resolution and boundary conditions) are reported in the Supplementary material.

The numerical methodology is assessed against clinical data obtained from a subset of four patients with 
coronary artery disease11,27,28. Patients were randomly selected out of a previously investigated larger cohort at 
Emory University Hospital11. Briefly, patients were enrolled between December 2007 and January 2009 who 
presented to the cardiac catherization laboratory with an abnormal non-invasive stress test or stable angina, 
and a non-obstructive lesion requiring physiological evaluation. Exclusion criteria included myocardial infarc-
tion, cardiogenic shock or hemodynamic instability, lesion requiring percutaneous or surgical revascularization, 
coronary artery bypass surgery, severe valvular heart disease, presence of visual coronary collaterals, inability 
to provide informed consent, serum creatinine > 1.5 mg/dL, liver disease, or significant hematologic disease. 
Patients underwent baseline and six-month follow-up biplane angiographic and IVUS imaging (phased-array 
20 MHz Eagle Eye Gold Catheter; Volcano Corp., San Diego, CA, USA). Electrocardiogram-gated IVUS data 
were continuously acquired ( 0.5mm motorized pullback) from the distal left anterior descending (LAD) coro-
nary artery up to the guide catheter in the aorta. Doppler derived velocity data were acquired in the left main 
(LM) coronary arteries with a 0.014′′ ( 0.355mm ) monitoring guidewire (ComboWire; Volcano Corp.). Patients 
underwent lipid assessment at baseline and follow-up, and received 80 mg atorvastatin daily. Emory University’s 
Institutional Review Board approved the study and each patient provided informed consent. In addition, patient 
data was de-identified and a non-disclosure agreement was approved between Emory and University of Texas 
at Dallas. All methods were performed in accordance with the relevant guidelines and regulations. In this study, 
VH-IVUS frames have been used to reconstruct the cross-stream artery lumen contour from each image. The 

Figure 2.   Leukocyte transport and adhesion inside an ideal stenotic artery. (a) Blood flow velocity Ubulk and 
visualizations of neutrophil concentration ρn (normalized by the reference value, 4.34× 109/l ) throughout 
the cardiac cycle (T is the cardiac period). The inset in the cardiac cycle panel shows the three-dimensional 
geometry of the ideal artery. (b,c) adhesion of leukocytes (b, neutrophils; c lymphocytes) as a function of the 
distance along the artery ( x = 0 is the axial location of the minimum lumen area, D the diameter of the healthy 
tract): — without tracking the particle concentration22; - - - - - with concentration tracking (Eq. 1, present 
simulations).
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full three-dimensional artery geometry has been obtained by stacking each frame along the artery centerline 
extracted from the angiography images. Any rotational movement or axial displacement of each frame during 
clinical acquisition was quantified previously11,28. The numerical simulations have been performed using the 
geometry extracted from the baseline exam. The follow-up exam data are used to evaluate the change in lumen 
area in the six-month period for each patient.

Simulation results are quantitatively compared with clinical data by correlating the change in lumen area with 
the computed rate of adhesion. The correlation coefficient is defined as:

where N is the number of IVUS frames available for each patient, �Alumen

(

sj
)

 is the difference in lumen area 
between baseline and follow-up for the jth frame, Rl

(

sj
)

 is the predicted rate of adhesion at the corresponding 
location ( sj is the distance along the centerline of the jth frame). For the adhesion, the mean µ and the standard 
deviation σ are computed as:

Corresponding formulas are used for �Alumen . By definition, the correlation coefficient ̺ l in Eq. (3) varies con-
tinually from ̺ = 1 , if the two variables ( Rl  and �Alumen ) are perfectly correlated, to ̺ = 0 , if the two variables 
are not correlated at all. Negative values, up to ̺ = −1 , indicate anti-correlation.

Results
Simulations were performed for a set of four patient-specific artery geometries. Leukocyte adhesion along the 
artery wall, fully coupled to the instantaneous three-dimensional hemodynamics, was computed with the numeri-
cal methodology described in the previous section. Figure 3 compares simulation results with clinical data for 
one representative patient (Patient 1; results for the other patients can be found in the Supplementary material 
online, Supplementary Figs. S2–S4).

The top two plots (a and b) reports the lumen area retrieved from the VH-IVUS frames as a function of s 
(the distance along the artery centerline). The abscissa s is normalized by the mean artery diameter D = 2mm 
and is positive in the streamwise direction (forward blood flow). In patient 1, the lumen area does not change 
significantly over the six months except for a localized region at 7 � s/D � 12 . As evident from Fig. 3b, a strong 
reduction in lumen area ( �Alumen = Abaseline − Afollow−up > 0 ) has occurred over this segment of the artery, 
suggesting local plaque growth and atherosclerosis progress. This characterization is supported by clinical data 
from the virtual histology, which showed physiological indicators of atherosclerosis such as increase of necrotic 
core and fibro-fatty tissue in this area.

Simulation results in Fig. 3c report the predicted rate of adhesion as function of the distance along the cen-
terline for the three species of leukocytes considered in this study (neutrophils, monocytes and lymphocytes). 
The trend for all species shows a peak in adhesion around 5 � s/D � 15 , in correspondence of the observed 
reduction in lumen area from the clinical data. It is reasonable to assume that an artery segment presenting a 
high rate of leukocyte adhesion will experience local atherogenesis. Therefore, even though the numerical model 
does not directly compute plaque growth or geometry remodeling, the correspondence between the predicted 
areas of maximum adhesion and the observed areas of significant lumen reduction suggests that the numerical 
simulations are in good agreement with the clinical data.

The correlation coefficient between the rate of adhesion and �Alumen for the case in Fig. 3 is reported in 
Table 1 (Patient 1). The value is about 0.5–0.6 for each species of leukocyte ( ̺ l , ̺m, ̺n ) which indicates a good 
level of correlation. This confirms that the numerical results are consistent with the expectation that plaque 
growth occurs in segments with large leukocyte adhesion. It should also be noted that, according to Eq. (3), the 
correlation coefficient is computed using data points for the total length of the artery. Therefore, the values in 
Table 1 are a conservative estimate of the agreement between R and �Alumen in the region where locally plaque 
growth occurs. The correlation coefficients for the other patients considered in this study are reported in Table 1. 
The weakest correlation is observed on patient 3 (overall ̺ ≈ 0.2 ). Clinical data for this patient do not show a 
significant change in lumen area conditions between the baseline and follow-up exams (the registered average 
change in lumen area �Alumen and the maximum change �Amax are the lowest among the set of patients, Table 1). 
This partly explains the smaller correlations values with respect to the other cases. Overall, the correlation values 
suggest a general good agreement with clinical data.

In the following discussion, the results refer to the Patient 1 case (Fig. 3), unless otherwise specified. The 
results for the other patients generally exhibit the same qualitative features and trends.

(3)
̺l =

1

N

N
∑
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Rl
(
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Discussion
The numerical methodology does not compute plaque growth. However, it is reasonable to assume that artery 
segments presenting increased plaque burden will also experience significant leukocyte adhesion. The results 
suggest that, in spite of the modeling limitations, the current numerical framework provides a fairly accurate 
physiological description of the adhesion progress. The main factor in the present model is the endothelial wall 
shear stress ( WSS ), which activates leukocyte adhesion as the local WSS falls below a threshold level (Eq. 2).

Figure 3.   Comparison between clinical data for patient 1 and simulation predictions. (a) Lumen area from 
VH-IVUS scans as a function of the distance along the centerline s. (b) Reduction in lumen area from baseline 
to follow-up, �Alumen = Abaseline − Afollow−up . A positive value indicates reduction of lumen area (hence plaque 
growth and disease progression). (c) Predicted mean rate of adhesion for three different species of leukocytes. T 
indicates the cardiac cycle ( T = 0.8 s in this study), R is the adhesion rate. The vertical dashed red lines indicates 
the location of maximum lumen area change from the baseline to the follow-up exam.
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In a previous study for an idealised stenotic artery22, we emphasized the importance of the temporal charac-
terisation of WSS and adhesion. In this study, the transition from an ideal to a realistic geometry also shows the 
importance of the spatial distribution (in addition to the temporal one) of WSS and the artery topology. To analyze 
this aspect, a set of simulations were performed by stacking the lumen contour extracted from the VH-IVUS 
along a straight axis, rather than the actual curved centerline. This intermediate geometry (between the straight 
‘pipe’ and the real case) is shown in the inset in Fig. 4b for illustration purposes. Panel a of the figure compares 
the wall-shear stress (averaged in time and in each cross-section) between the real and straight centerline case. 
The wall shear stress is averaged in time and along the azimuthal direction in each cross-section normal to the 
centerline ( WSS ). Generally, the two geometries present a similar WSS value along the artery. The geometries 
consist of the same IVUS frames, and, to the first approximation, the wall shear stress is mainly determined by 
the lumen dimension: WSS ∝ R−3 , where R is the mean lumen radius27. However, the leukocyte adhesion (Fig. 4b) 
is different between the geometries. This difference is explained by recalling that the wall shear stress value in 
Fig. 4a is an average in time and in the cross-section. In a cross-section, the wall shear stress may vary along 
the lumen contour, as shown, for example, in Fig. 5a (here θ is the azimuthal angle, defined in Fig. 5b). The wall 
shear stress in Fig. 5 was averaged only in time (denoted with angle brackets as opposed to the overline for the 
average in time and the azimuthal direction), and:

Table 1.   Correlation coefficient between observed change in lumen area from baseline to follow-up exam and 
computed rate of leukocyte adhesion. The correlation coefficient is provided for different species of leukocytes: 
n = neutrophils; m = monocytes; and l = lymphocytes. The table also shows the average (along the centerline) 
and maximum change of lumen area observed from clinical data, �Alumen and �Amax , respectively.

Patient �Alumen [mm
2] �Amax [mm

2] ̺n ̺m ̺l

1 0.09 1.21 0.418 0.509 0.590

2 0.90 1.33 0.493 0.309 0.126

3 −0.02 0.31 0.289 0.199 0.163

4 0.08 0.50 0.363 0.396 0.420

Figure 4.   Comparison between simulation results using realistic centerline data and ideal straight centerline: 
(a) WSS normalized by the ideal reference value WSS0 ≈ 4 Pa ; (b) rate of adhesion for neutrophils. Solid lines, 
realistic centerline; dashed lines, straight centerline.
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where C indicates the perimeter of the lumen contour, r the radial distance of endothelial wall from the center-
line. The contour in Fig. 5 are taken at the cross section s/D = 12.5 . At this location, the realistic and straight 
centerline geometries present about the same value of WSS ≈ 2.4 Pa , but different level of adhesion (Fig. 4).

The variations in the shear stress along the contour are due to the asymmetries in the flow distribution. The 
blood flow velocity in Fig. 5b, for the realistic centerline case at s/D = 12.5 , is not axisymmetric, but the maxi-
mum velocity is skewed towards the quadrant 0◦ < θ < 90◦ . As a result, the wall-shear stress 〈WSS〉 in this sector 
is relatively large (Fig. 5a), reducing chances of adhesion. On the other hand, for 180◦ � θ � 315◦ , the 〈WSS〉 for 
the realistic centerline geometry is significantly lower and falls below the adhesion threshold in this sector of the 
lumen contour. For the straight centerline case, the 〈WSS〉 remains above the adhesion threshold along the lumen 
contour. Because of the tortuosity of the centerline, the amplitude of the 〈WSS〉 variations is larger than for the 
straight centerline case. Although the two geometries consist of the exact same frames and, thus, have similar 
values of WSS , the adhesion rate is different because of the centerline tridimensionality. An analogous influence 
of the centerline on wall-shear stress heterogeneity has been observed in stented segments of coronary arteries 
by Chen et al.29 They compared different stent geometries in a curved circular bend and found that low-WSS 
stress regions concentrate on the inner bend rather than the outer portion of the wall, whereas a straight stented 
artery does not show this asymmetry in the WSS distribution.

This comparison emphasizes the role of the three-dimensional arterial geometry on adhesion. As leuko-
cytes transmigrate through the endothelium, vascular remodeling takes place, eventually modifying the lumen 
geometry. In turn, this will change the flow pattern and hence wall-shear stress and adhesion distributions. 
Therefore, prediction of long-term plaque growth will in general require evaluations of blood flow and WSS at 
different stages of the disease.

A set of simulations with the follow-up artery geometry has been performed to assess the time-scale of the 
predictions with respect to the progress of the disease. Figure 6 compares distribution of WSS and neutrophil 
adhesion for baseline and follow-up artery geometry of Patient 1 (the distributions for the other leukocyte spe-
cies show the same qualitative features).

The wall shear stress distribution is similar for the baseline and follow-up geometries, except around 
s/D = 10 . Clinical data show the development of an additional stenosis from the baseline to the follow-up 
exam, with a significant reduction in lumen area at this location (Fig. 3a and b). Consistently, the shear stress 
simulated using the follow-up geometry is larger with respect to the baseline level. The rate of adhesion is locally 
lower ( s/D ≈ 10 ), but sharply increases downstream the stenosis ( s/D ≈ 12−13 ). The obstruction in the lumen 
induces recirculation downstream of it, as shown by the particle lines in the inset in Fig. 6b. Recirculations (local 
flow reversal) are typically associated with low values of WSS and hence have higher chances of leukocyte adhe-
sion. The strength and extent of the recirculation varies significantly throughout the cardiac cycle because of the 
variation in the blood flow rate. Recently, similar variations have also been found in the recirculation regions for 
rough-wall pulsatile pipe flows by Jelly et al.30 Their parametric study showed that the impact of the unsteady 
flow rate increases for larger roughness features on the wall, that is to say for more complex and irregular geom-
etries. As we have analyzed in a previous work for an ideal stenosis22, the average wall shear stress WSS may not 
reflect the actual level of adhesions because of these variations throughout the cardiac cycle and may ultimately 
lead to mispredict leukocyte transmigration. The present results for a realistic artery are consistent with those 
observations. The average WSS at these sections of the follow-up geometry ( s/D ≈ 12−13 ) is only slightly lower 
than the baseline value, while adhesion rises significantly.

With regard to the progress of the disease, apart from the change in magnitude, there is not a significant shift 
in the regions where high adhesion is predicted. This suggests that the adhesion computed from the baseline 

(6)WSS =
1

C

∫ 2π

0

�WSS� rdθ

Figure 5.   Flow and WSS variability over the cross-sectional lumen area (at s/D = 12.5 ). (a) Time-averaged 
〈WSS〉 as a function of the azimuthal direction θ : — realistic centerline; —– straight centerline. The horizontal 
line (–.–) denotes the adhesion threshold for neutrophils ( 1.2 Pa ). (b) Mean streamwise velocity Uξ over the 
lumen area for the realistic centerline case.
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geometry may provide a good qualitative forecast of the disease progress over the next six-months. Nevertheless, 
a quantative conclusions cannot be drawn at this stage, because of the modeling limitations in our simulations. 
Further modeling of biochemical processes, which are not presently included in our simulations, are needed to 
quantitatively assess the time-frame for extrapolating plaque growth.

Limitations
Due to the complexity of the atherosclerosis process, a number of modeling limitations should be considered 
in interpreting the results of this study. First, it should be noted that our model presently does not compute 
plaque growth, but rather leukocyte adhesion. The agreement with clinical data is evaluated upon the underlying 
assumption that a decrease in lumen area likely indicates high local level of adhesion and plaque progression. 
Additionally, our model treats the endothelial wall as fully activated (with TNF-α ) everywhere, while in practice 
it may be only partially activated. Spatially heterogeneous levels of activation would affect the distribution of 
the adhesion rate further. This limitation of our study may also explain the numerical prediction of adhesion 
peaks in regions where little plaque growth is observed in the clinical data. After adhesion and transmigration, 
leukocyte may migrate in the arterial wall depending on the cytokine concentration. This effect and the subse-
quent processes responsible for plaque development are not modeled in our framework. The migration in the 
wall will affect the correspondence between the regions with peak adhesion and the stenosis location. This effect 
may also compensate for the fact that a large rate of adhesion is predicted along a longer artery segment than the 
region where stenosis progress is observed. In fact, after adhesion and transmigration in neighboring regions, 
leukocytes may have diffused and concentrated towards the location where plaque appears to have grown more 
from clinical data. Finally, another limitation of this study is the assumption of a rigid artery wall. In reality, 
the lumen geometry changes because of the artery wall elasticity and motion due to the heart contraction. The 
artery deformation affects the flow pattern and wall shear stress, in particular the instantaneous distribution31–35. 
Consequently, the average adhesion distribution may also vary as a result of the artery deformation.

Conclusions
Leukocyte adhesion in realistic stenotic coronary arteries has been analyzed with coupled bio-hemodynamics 
simulations. Adhesion to the endothelial wall was compared against the change in lumen area observed on a set 
of patients which underwent baseline and follow-up exams in a clinical trial. Artery segments with a predicted 
large rate of adhesion are well correlated with the segments presenting plaque growth from clinical data. This 

Figure 6.   Comparison between simulation results using the arterial geometry from the baseline exam and the 
six-month follow-up exam: (a) WSS distribution, normalized by the reference value WSS0 ; (b) rate of adhesion 
for neutrophils. Solid lines, baseline geometry; dashed lines, follow-up geometry. The inset in (b) shows particle 
lines for the blood flow in the follow-up geometry.
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agreement between simulations and clinical data is encouraging and suggests that the simulations provide a 
physiologically accurate description of the adhesion process.

The analysis of the numerical results emphasizes the role of the three-dimensional artery geometry. The com-
plex geometry induces heterogeneity and asymmetry in the flow patterns, which results in spatial variations of the 
wall shear stress along the lumen contour. This ultimately leads to differences in the predicted rate of adhesion, 
and the use of the realistic centerline improves significantly the comparison against clinical data. Qualitatively, 
the regions with large rate of adhesion do not change significantly comparing the baseline case with simulations 
using the follow-up artery geometry. A refined modeling framework, which includes bio-chemical processes 
beyond adhesion (such as leukocyte migration in the artery wall), is needed for quantitative estimation. Future 
work will be devoted to improve the modeling assumptions towards the development of a computational model 
for prediction of atherosclerosis progress.

Data availability
The dataset generated during the current study is available from the corresponding author on reasonable request, 
with the exception of clinical data covered by a non-disclosure agreement between Emory University and the 
University of Texas at Dallas.
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