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Abstract
Hematopoietic stem and progenitor cells maintain hematopoiesis throughout life by generating all major blood cell lineages through 
the process of self-renewal and differentiation. In adult mammals, hematopoietic stem cells (HSCs) primarily reside in the bone mar-
row (BM) at special microenvironments called “niches.” Niches are thought to extrinsically orchestrate the HSC fate including their 
quiescence and proliferation. Insight into the HSC niches mainly comes from studies in mice using surface marker identification and 
imaging to visualize HSC localization and association with niche cells. The advantage of mouse models is the possibility to study the 
3-dimensional BM architecture and cell interactions in an intact traceable system. However, this may not be directly translational to 
human BM. Sedentary lifestyle, unhealthy diet, excessive alcohol intake, and smoking are all known risk factors for various diseases 
including hematological disorders and cancer, but how do lifestyle factors impact hematopoiesis and the associated niches? Here, 
we review current knowledge about the HSC niches and how unhealthy lifestyle may affect it. In addition, we summarize epidemio-
logical data concerning the influence of lifestyle factors on hematological disorders and malignancies.

Modifiable lifestyle factors and the risk of 
hematological malignancies

Lifestyle-related diseases such as cardiovascular diseases, dia-
betes, chronic respiratory diseases, and cancer may all be pre-
ceded by exposure to one or more modifiable lifestyle factors 
such as unhealthy diet, physical inactivity, excessive alcohol 
intake, and smoking.

The role of lifestyle factors in the development of hemato-
poietic cancer is still unclear. However, epidemiological studies 
show that obesity 2 years before diagnosis are associated with 
acute myeloid leukemia (AML) for both males and females, 
whereas obesity is only associated with myelodysplastic syn-
drome (MDS) in females.1 Furthermore, obesity in adolescence 
has been associated with increased risk of developing myelopro-
liferative neoplasms.2 The data regarding the influence of alco-
hol on the development of MDS are conflicting. Some studies 
report that alcohol is not a significant contributor to MDS,3,4 
whereas a case-control study in Japanese men report a direct 
correlation between the amount of alcohol consumed per week 
and the risk of MDS.5 Large epidemiological studies incorporat-
ing biomarkers of exposure (eg, gamma-glutamyl transferase) 

are needed to better understand the contribution of alcohol 
intake to the development of MDS. Interestingly, heavy alcohol 
intake has been associated with a lower risk of non-Hodgkin 
lymphomas.6,7 Smoking on the other hand significantly increases 
the risk of hematologic malignancies,6,8,9 including an increase 
in the relative risk of developing MDS and AML by up to 40% 
in active smokers, and 25% in former smokers.10 In addition, 
smoking is significantly associated with myeloid clonal hemato-
poiesis,11 which is a risk factor for hematological cancer.

Specific alterations of the hematopoietic stem cell (HSC) 
niches may predispose to hematological cancer by facilitating 
mutant HSC survival and expansion.12 Exposure to modifiable 
lifestyle factors may introduce toxic or unhealthy substances 
to the circulation and/or increase body weight which poten-
tially lead to changes in the HSC niche. However, most of the 
current knowledge comes from studies in mice, and the exact 
mechanisms by which lifestyle factors affect the niche in human 
malignant hematopoiesis is a challenging issue for further 
investigation.

The hematopoietic niches

The functionality of HSCs depends on the balance between 
quiescence and activation. Reduced ability of HSCs to escape 
quiescence and initiate proliferation results in insufficient 
blood cell production. On the other hand, too many HSCs 
leaving quiescence or failing to return to quiescence after acti-
vation may exhaust the HSC pool resulting in bone marrow 
(BM) failure. Thus, HSC quiescence is crucial for sustaining 
the HSC pool and protects the HSCs by minimizing repli-
cation-associated mutations in their genome.13 The concept 
of the HSC niche was proposed to define the cellular inter-
actions and molecular pathways that underlie the regulation 
of quiescence or activation of individual HSCs by their BM 
microenvironment.
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The BM architecture

The BM resides within the cavities of axial and long bones, 
which consist of a delicate combination of mineralized tissue, 
BM, endosteum, periosteum, blood vessels, and nerves. The 
inner surfaces of the bone cavities are covered by a layer of 
flat-bone lining cells in a structure known as the endosteum.14 
Located in the endosteum are the osteoblasts and osteoclasts.15

In long bones, arteries pass through bone canals entering 
the BM cavity and branch into a multitude of arterioles, cap-
illaries, and sinusoids creating a vascularized BM region.14,16 
The BM microvasculature supplies oxygen and nutrients and 
removes metabolic waste from the extensively productive BM. 
Furthermore, mature blood cells leave the BM to the systemic 
circulation through the sinusoids.

There are divergent data on whether the HSCs reside in 
endosteal or perivascular niches, and whether the perivascular 
niche is sinusoidal or arteriolar. Several studies in mice report 
a perivascular localization of HSCs.17,18 Studies of human HSC 
niches are limited. One study using human BM biopsies reports 
that HSCs primarily localize to endosteal regions while hema-
topoietic stem and progenitor cells (HSPCs) reside in both vas-
cular and endosteal regions.19 However, another study reports 
a perivascular localization of HSCs.20 The inconsistencies in 
HSC localization may indicate a dynamic transition of HSCs to 
multiple niches and/or reflect a different proliferative status or 
reconstitution potential of the individual HSCs.

In support of this, human HSCs localizing close to bone (tra-
becular area) in xenograft mouse models have superior repop-
ulating and self-renewal capacity and are molecular distinct 
from those localizing in the central portion of BM.19 The HSCs 
localizing close to trabeculae express genes involved in HSC 
self-renewal and BM niche retention, whereas genes involved 
in proliferation and survival are all downregulated.19 This sug-
gests a quiescent state of HSCs locating near the endosteum. 
Similarly, it has been suggested that quiescent mouse HSCs pref-
erentially localize to arterioles, whereas cycling HSCs localize 
more closely to sinusoids.21 Recent studies in mice further sup-
port the hypothesis of a dynamic niche as they show that HSCs 
possess some motility, especially upon activation, and can be 
found at both perivascular and endosteal regions.22,23

Cellular and molecular niche factors

There are multiple cells that regulate murine HSC physiol-
ogy; osteoblasts, endothelial cells, mesenchymal stromal cells 
(MSCs), macrophages, megakaryocytes, hematopoietic ele-
ments, osteoclasts, and cells of the nervous system.24 Any indi-
vidual cell within the 3-dimensional environment may make 
direct contact with multiple cell types and receive biochemical 
information from others through surface-expressed, secreted or 
otherwise transferred signaling molecules.24 Such signaling mol-
ecules include, among many others, the well-studied chemokine 
C-X-C motif ligand 12 (CXCL12), stem cell factor (SCF), and 
Notch ligands. As in mouse, the human BM microenvironment 
is complex and consists of bone and its lining cells osteoblasts 
and osteoclasts, endothelial cells from various vasculature, 
MSCs, and resident mature blood cells.24,25

BM MSCs are multipotent mesenchymal precursor cells that 
have the ability to differentiate into osteoblasts, adipocytes, and 
chondrocytes.26 In mouse BM, MSCs are strikingly abundant 
and form a dense network via extension of numerous, elongated, 
thin processes that run along extracellular matrix fibers. As a 
consequence, the entire BM space are within <7 μm of the near-
est MSC surface.27 The MSC population is likely heterogenous 
with multiple subpopulations with distinct molecular profiles 
and locations.21,28–30 MSCs are known to have high expression 
of CXCL12 and/or SCF.28,31 CXCL12 is an important niche fac-
tor which promotes HSC maintenance and lymphopoiesis.32 

Furthermore, CXCL12 serves as a potent chemoattractant for 
CXC chemokine receptor 4-positive hematopoietic cells and 
therefore is critical for BM homing and HSC retention.33,34 SCF 
preserves the viability of HSPCs35 and facilitates their prolifera-
tion and differentiation.36

Recently, 2 previously unknown MSC populations were 
identified in mouse BM. Interestingly, the 2 populations express 
adipocyte and osteo-lineage genes differentially and are termed 
“Adipo-CXCL-12 abundant (CAR)” and “Osteo-CAR” cells, 
respectively. The Adipo-CAR cells are predominantly found in 
sinusoidal areas, whereas Osteo-CAR cells are in arteriolar or 
nonvascular areas, suggesting that the 2 populations occupy 
distinct niches.37 Similarly, a study of human xenograft mouse 
models shows that osteoblasts in trabecula areas have increased 
expression of Notch ligands (Jagged-1, Jagged-2, and Delta-like 
4) compared to osteoblasts in long bone area.19 Furthermore, 
CXCL12 from osteoblasts is required for the maintenance of 
early lymphoid progenitors in mice but not for HSCs or myeloid 
progenitors, suggesting a preferential endosteal niche for the 
lymphoid lineages in mice.32

Endothelial cells that line the BM blood vessels also contrib-
ute to the mouse HSC niche through expression of the Notch 
ligand Jagged-1 and SCF.38,39 Coculture studies of mouse-de-
rived endothelial cells and HSCs have shown that expression 
of Notch ligands by endothelial cells promotes proliferation 
and prevents exhaustion of HSCs.40 Furthermore, expression 
of Jagged-1 by endothelial cells regulates self-renewal of HSCs 
in vivo, as evidenced by a profound decrease in hematopoiesis 
and premature exhaustion of HSCs upon conditional deletion 
of Jagged-1 in endothelial cells.39

BM adipocytes: a HSC niche component?

The adult human BM consists of 50 to 70% adipose tissue. 
There is emerging evidence that BM adipocytes (BMAs) exert 
functions beyond mere filling of BM empty spaces as previously 
anticipated, but do they regulate hematopoiesis?

BMAs arise from differentiation of BM MSCs. A recent 
study in mice revealed that BMAs are in close proximity to 
both sinusoidal vessels, cells of the myeloid and granulocyte 
lineage, and osteoblasts.41 Although the human BMA mor-
phology resembles that of white adipocytes with a large lipid 
droplet, they comprise a heterogenous population with distinct 
lipid profile and metabolism,42 gene expression,43 functional 
responses,44 and localization,45 and they have been assigned the 
color yellow.46

The existence of 2 types of BM adipose tissue (BMAT) in 
mice has been suggested: regulated marrow adipose tissue 
(rMAT) and constitutive marrow adipose tissue (cMAT). 
rMAT presents as single adipocytes located at sites of active 
hematopoiesis, whereas cMAT contains larger adipocytes and 
are found in regions with a low number of hematopoietic cells. 
cMAT develops earlier and remains preserved on systemic 
challenges.47

Adipocytes are highly active secretory cells and release a large 
variety of factors, including SCF, to the local BM environment. 
The BMAs have been proposed as being a niche component 
during emergency hematopoiesis, that promotes hematopoi-
etic regeneration after irradiation. After exposure to irradiation 
or chemotherapy, endothelial cells and subsets of MSCs are 
depleted in mice, while adipocytes become abundant. Indeed, 
depletion of SCF from BMAs has little effect on SCF protein 
levels in mice with nonirradiated BM, but substantially reduces 
SCF levels in irradiated BM.48

Conversely, BMAs have also been implicated as predomi-
nantly negative regulators of hematopoisis.49 HSPCs are 2- to 
3-fold reduced in adipocyte-rich BM of the tail vertebrae com-
pared to nonadipocytic BM from the thoracic vertebrae in 
mice.49 Moreover, coculture studies using mouse BM–derived 
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cells have shown that BMAs inhibit regeneration of hematopoi-
esis by inducing apoptosis in HSPCs and by secreting transform-
ing growth factor β1 (TGF-β1), which have been implicated in 
the regulation of proliferation, quiescence, and differentiation of 
HSCs.50,51 Furthermore, adipocytes are known to secrete dipep-
tidyl peptidase-4,52 which cleaves important niche factors such 
as CXCL12.53 In agreement with the in vitro experiments, adi-
pocyte progenitor cells and preadipocytes transplanted into the 
tibia of mice lead to a significant reduction of hematopoietic pro-
genitor cells.54

Currently, little is known about the physiology of human 
BMAT. A recent study show that healthy elderly individuals (65-
92 years) have significantly more HSPCs located immediately 
adjacent to adipocytes compared with middle-aged healthy indi-
viduals (50-64 years).55 Furthermore, elderly have an increase 
in total number of myeloid cells, a decrease in lymphoid cells, 
and a higher density of maturing myeloid cells surrounding adi-
pocytes compared with middle-aged healthy individuals, which 
may influence myeloid skewing and the risk of myeloid malig-
nancies; all together suggesting a negative regulation by BMAs 
on human hematopoiesis.

Lifestyle factors and their influence on HSC 
niches

High-fat diet are associated with a loss of 
stemness in HSCs and MSCs

For many years, it has been known that diet affect hemato-
poiesis examples being anemia in iron56 and folate deficiency.57 
In 2016, almost 40% of the globe's adults were overweight58 
and the incidence is increasing. The increase in prevalence of 
obesity is often attributed to increased fat intake and decreased 
physical activity.59

Low-grade inflammation is a hallmark of obesity demon-
strated by increased circulating levels of proinflammatory 
cytokines such as interleukin (IL)-6, IL-1β, and tumor necrosis 
factor alpha (TNF-α).60 However, the BMAs from obese mice61 
and BM MSCs from obese humans60 do not exhibit a proinflam-
matory phenotype. Thus, more studies are needed to elucidate 
whether systemic inflammation during obesity impacts inflam-
mation in the BM and the HSC niches.

Several studies in mice report that high-fat diet (HFD) and/or 
diet-induced obesity cause loss of HSC quiescence and induce 
differentiation, resulting in a shift from self-renewing HSCs 
toward mature progenitors.62–64 HFD has been reported to create 
a myeloid bias in mice and to decrease expression of CXCL12 
and Jagged-1.64 Similarly, obese humans have higher numbers 
of granulocytes and monocytes in peripheral blood consistent 
with increased myelopoiesis.65 Whether the decrease in CXCL12 
and Jagged-1 can explain the loss of stemness of HSCs during 
obesity is a subject for further research.

Studies on mice MSCs suggest that obesity skews differen-
tiation of MSCs toward adipocytes at the expense of osteo-
blasts.54,64 As described previously, CXCL12 from osteoblasts 
are important for the maintenance of lymphoid progenitors, and 
adipocyte over osteoblast differentiation could potentially have 
a negative impact on production of lymphoid cells. Moreover, 
obesity has been shown to increase reactive oxygen species 
(ROS) production which is associated with BM MSCs senes-
cence and stem cell exhaustion60 (Figure 1).

Similarly, obesity in humans has been associated an enrich-
ment of adipocyte progenitors in the BM.60 While the direct 
impact of increased BMAT on the HSC niches is yet unknown, 
increased BMAT would bring many more hematopoietic and 
niche cells into closer contact with BMAs. Increased BMAT 
during aging has been associated with reduced hematopoie-
sis.55 In addition, transfer of fatty acids from increased lipolysis 

in BMAT has been reported to support the proliferation and 
survival of AML blasts from patients.66 This is an interesting 
finding since obesity1,67,68 and type 2 diabetes69 are known risk 
factors for hematological malignancies. Of note, BMAs also 
have an important role in emergency hematopoiesis as described 
earlier. Prolonged dietary-induced weight loss is associated with 
a decrease in BMAT in humans with the largest effect observed 
in those with higher baseline BMAT.70 However, the reported 
effect may be transient as the amount of BMAT increases after 
the diet-intervention ended.

Paradoxically, the amount of BMAT also increases in cases 
on chronic malnutrition/starvation as seen in anorexia ner-
vosa (AN).71–74 This is attributed an increased adipocyte over 
osteoblast differentiation72 as with the HFD BM. Low blood 
cell counts are frequently observed in patients with AN.75,76 
These data suggest that metabolic stress, either through 
starvation or obesity, results in similar BM alterations with 
increased adipocyte differentiation causing an increase in 
BMAT. However, the effect on hematopoiesis seems to vary as 
HFD has been associated with myelopoiesis and starvation is 
generally associated with low blood cell counts. These differ-
ences may arise from deficiencies in important nutrients, vita-
mins, and minerals77 with impact on hematopoiesis, which are 
frequently seen in patients with AN. Indeed, protein malnu-
trition suppresses cell cycle progression in HSPCs,78 leads to 
anemia and leukopenia, decreases the production of CXCL12 
and SCF from endothelial cells,79 and decreases trabecular 
bone80 in mice.

A healthy body weight results from balancing adequate diet 
and physical activity. Worldwide physical inactivity is increas-
ing, and in 2016, 28% of adults aged 18 and over did not meet 
the global recommendations of physical activity.81

Exercise may reverse the obesity-induced rise in 
BMAs and increase numbers of HSPCs in BM

Exercise has numerous benefits on the human physiology. 
Consistent exercise counteracts the systemic effect of obesity 
by improving body composition82 and decreasing low-grade 
inflammation.83

Some studies have shown that exercised humans84,85 
and mice86,87 have increased amounts of HSPCs in BM and 
peripheral blood. Furthermore, exercise induces a short 
and rapid mobilization of HSPCs and endothelial cells to 
the circulation. Divergent data exist on whether exercise 
increases HSC quiescence88 or activation86 in mice, but in 
general, there is a consensus that exercise does not exhaust 
or impair HSCs.

MSCs from exercised-trained mice have decreased adipocyte 
and increased osteoblast differentiation potential.87 However, 
1 study reported no difference in BM osteoblast numbers in 
running versus sedentary mice.88 Mechanical load or strain 
to BM MSCs in vitro largely downregulate adipogenesis and 
promote differentiation of osteoblasts.89,90 Interestingly, regular 
exercise decreases the amount of BMAT both in humans91,92 
and mice.87,93

Overall, the effect of exercise on the BM is still not well 
described, but current data suggest that exercise may coun-
teract the effect of obesity-induced changes in the HSC niche 
(Figure 1). The effects of exercise on the individual cell popu-
lations within both the endosteal and perivascular niches, and 
on hematopoiesis in general, is an interesting subject for further 
investigation.

In addition to the increased prevalence of obesity, possibly 
attributed a HFD and lack of exercise, the total volume of 
alcohol consumed has increased by 70% from 1990 to 2017.94 
Heavy alcohol intake may also induce systemic inflammation 
and increase BMAT as seen with obesity.
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Alcohol metabolites are potentially harmful to  
the BM

Excessive alcohol consumption is a major public health 
concern, and a risk factor for increased mortality from cancer, 
hepatic disorders, diabetes, infections, and BM suppression.95,96 
Ingested alcohol is rapidly absorbed through the gastrointestinal 
tract into the bloodstream and distributed throughout the water 
in the body, so that most tissues are exposed to the same concen-
tration of alcohol as the blood.97 More than 90% of alcohol is 
metabolized by the liver. Metabolic pathways of alcohol involve 
the oxidation of alcohol to acetaldehyde by the enzymatic activ-
ity of alcohol dehydrogenase. Acetaldehyde is a highly reactive 
and toxic substance, and is in healthy people rapidly oxidized 
to acetate by aldehyde dehydrogenase.97 The reduction of nico-
tinamide adenine dinucleotide (NAD) is required in both reac-
tions.98 Several isozymes of aldehyde dehydrogenase exist and 1 
is absent in about 40% in the Japanese population.99

Overall, alcohol metabolism results in production of acetal-
dehyde and acetate, enhanced activity of the respiratory chain 
due to NADH formation, and increased iron uptake, which all 
promote the generation of ROS.100

Excessive alcohol consumption increases oxidative 
stress in the BM causing adipocyte over osteoblast 
differentiation and deterioration of the bone 
microarchitecture

A recent study demonstrated for the first time that chronic 
voluntary alcohol drinking in rhesus macaque monkeys leads 
to long-term impairment of HSPC function, and alterations 
in the BM microenvironment that consist after 1 month of 
abstinence.101 Purified HSPCs from alcohol-drinking monkeys 
produce significantly less granulocyte-monocyte and erythroid 
colonies in vitro compared with cells from control animals.101 

Figure 1.  Hypothetical working model for obesity-induced niche changes in human BM. HFD decreases CXCL12 expression in the BM, induces HSC 
activation and differentiation resulting in a shift from self-renewing HSCs toward mature progenitors with a myeloid bias. Obesity increases circulating levels of 
proinflammatory cytokines and ROS. MSCs of obese BM are senescent and exhausted possibly mediated by the increased ROS levels. Obesity/HFD suppress 
osteogenic and induce adipogenic differentiation of MSCs leading to an expansion of BMAT. Exercise counteracts the systemic effect of obesity by improving 
body composition and decreasing the systemic inflammation. Furthermore, exercise may improve the obesity-induced niche changes by decreasing the amount 
of BMAT and increasing osteoblast differentiation. Furthermore, exercise may balance the quiescence versus active state of HSCs. BM = bone marrow; BMAT = bone 
marrow adipose tissue; CXCL12 = C-X-C motif ligand 12; ECs = endothelial cells; HFD = high-fat diet; HSC = hematopoietic stem cell; MSC = mesenchymal stromal cell; OBs = osteoblasts; 
OCs = osteoclasts; ROS = reactive oxygen species. Created with BioRender.
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These data are consistent with the clinical observation that exces-
sive alcohol consumption is associated with granulocytopenia, 
thrombocytopenia, and anemia. The liver is the site of produc-
tion of thrombopoietin.102 Accordingly, alcohol-induced liver 
damage significantly contributes to perturbed thrombopoiesis.

Chronic excessive alcohol consumption is also considered a 
high-risk factor for loss of bone mineral density, impairment 
of bone remodeling, and deterioration of bone tissue,103,104 
and is a cause of osteoporosis.105 Multiple studies report that 
alcohol have an inhibitory effect on osteogenic differentiation 
of human BM MSCs in vitro through stimulation of oxidative 
stress that suppresses Wnt signaling.106–109 Furthermore, ethanol 
treatment induces premature senescence in cultured human BM 
MSCs with decreased cell proliferation and cell cycle arrest in 
a dose-dependent manner possibly by increasing ROS levels.106

Importantly, ROS levels are significantly higher in serum of 
patients with alcohol dependence compared with healthy con-
trols110 indicating that other organs and tissues than the liver 
are exposed to high levels of ROS during ethanol metabolism. 
Furthermore, ethanol can freely diffuse into cells and induce 
intracellular oxidative stress in cultured human osteoblasts.111 
The effects of alcohol on cultured cells were partly confirmed 
in an in vivo study in mice, where high doses of ethanol down-
regulate osteogenic differentiation of BM MCSs, whereas low 
doses improve osteogenic differentiation and elevate bone for-
mation.112 This suggests that multiple mechanisms may contrib-
ute to alcohol-induced bone loss, and that the effect may depend 
on the amount of alcohol consumed. In addition, ethanol signifi-
cantly increases the number of BMAs and expression of genes 
important for adipocyte differentiation in cultured human BM 
MSCs113 and in mice.112 Thus, ethanol induces an adipocyte over 
osteoblast differentiation of MSCs, which is well in line with 
the clinical observation of increased risk of osteoporosis with 
chronic alcohol consumption.

In patients with excessive alcohol consumption, acetalde-
hyde-derived epitopes have been found in peripheral blood 

erythrocytes and their precursors in BM,114 suggesting a direct 
role in hematotoxicity, which is consistent with studies on cul-
tured murine and human HSPCs115 and osteoblast cell lines.116 
Since HSCs mainly reside in a quiescent state, and are long-
lived, they are continuously exposed to potential genotoxic 
agents such as acetaldehyde. A more recent study in mice reports 
that the primary protection against acetaldehyde is provided by 
aldehyde dehydrogenase–mediated detoxification. However, 
when this is lost or saturated, acetaldehyde induces DNA dam-
age in HSCs, and HSCs mutated by aldehydes are functionally 
compromised and display myeloid bias.117

Bone microarchitecture is not only an important determinant 
of bone strength but also an important structural component 
of the HSC niches, as different cell types have unique molecu-
lar functions based on their location to, among others, trabec-
ular bone areas. Reduction in trabecular bone volume has been 
described in multiple animal models following ethanol diet.118–122

There is a lack of data addressing alcohol-induced changes 
in the BM microenvironment and microarchitecture in humans. 
However, a few studies on alcohol abuse report reduced trabec-
ular bone volume in humans and confirm the low osteoblast 
activity.123,124 Studies on the effect of alcohol consumption in 
humans are challenged by confounders and comorbidity fac-
tors among patients such as variations in consumption, alco-
hol percentage, age, sex, ethnicity, impaired nutritional status, 
behavioral differences, and the presence of comorbidities such 
as liver insufficiency and other organ damage. However, the cur-
rent data suggest potential alcohol-induced changes to the HSC 
niches such as decreased osteoblast numbers, increased num-
bers of BMAs, and remodeling of the bone microarchitecture 
(Figure 2). These changes could theoretically lead to changes in 
the HSCs resulting in impaired hematopoiesis consistent with 
the clinical presentation of patients with excessive alcohol con-
sumption. However, more studies are needed to evaluate the 
mechanistic effect of ethanol on the HSC niches and the result-
ing consequences on human hematopoiesis.

Figure 2.  Hypothetical working model for ethanol-induced niche changes in human BM. Ingested alcohol is rapidly absorbed through the gastroin-
testinal tract into the bloodstream. Ethanol is metabolized mainly in the liver to acetaldehyde and acetate, which generates high levels of ROS. Chronic exces-
sive alcohol consumption is associated with pancytopenia and increased circulatory levels of proinflammatory cytokines. However, the inflammatory status 
of the HSC niche during excessive alcohol consumption remains unknown. The increased ROS levels induce MSC senescence and reduced proliferation. 
Furthermore, ROS inhibit osteogenic and promote adipogenic differentiation of MSCs. In addition, ethanol diet reduces trabecular bone volume. Acetaldehyde is 
directly hematotoxic and induces DNA damage in HSCs. Normally, acetaldehyde is rapidly converted to acetate by aldehyde dehydrogenase, but the enzymes 
may be lost or saturated leading to increased acetaldehyde. BM = bone marrow; ECs = endothelial cells; EtOH = ethanol; HSC = hematopoietic stem cell; MSC = mesenchymal 
stromal cell; OBs = osteoblasts; OCs = osteoclasts; ROS = reactive oxygen species. Created with BioRender.
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Prolonged alcohol consumption promotes the 
development of inflammation

Prolonged alcohol consumption is associated with increased 
blood levels of proinflammatory cytokines, such as IL-6,125,126 
IL-8,125,127 Regulated upon Activation, Normal T cell Expressed 
and Secreted,128 and TNF-α.129 Inflammation triggers a protec-
tive response involving blood and immune cells and leads to 
drastic alterations in hematopoietic output to compensate for 
the increased demand.130

The role of the HSC niches during inflammation is still 
uncertain. MSCs express various cytokine/chemokine receptors 
enabling them to sense any local or systemic inflammation. On 
activation of cytokine receptors, the MSCs are able to modify 
the cytokine and chemokine profile in the environment through 
production of additional factors.131 Thus, it is likely that MSCs 
in both the endosteal and perivascular niche activate inflamma-
tory programs during chronic alcohol consumption, which may 
directly affect the maturation of neighboring HSPCs. However, 
this remains hypothetical and future studies are needed to 
address whether the cellular components of the HSC niches 
adapt their hematopoiesis-supporting functions according to 
the inflammatory status of the BM, and whether such changes 
are persistent or reversible during an abstinent period.

A sustained inflammatory response may result in HSC 
exhaustion, accumulation of genetic alterations, and BM fail-
ure, all of which may promote the development of hematopoi-
etic malignancies.132 Considering the alcohol-induced increased 

ROS levels, inflammation, and niche remodeling, it is surprising 
that heavy alcohol drinking has been associated with a lower 
risk of non-Hodgkin lymphomas.6,7

Systemic inflammation may also be caused by other external 
stimuli, such as cigarette smoke.

Cigarette smoking reduces the number of BM 
MSCs and endothelial progenitor cells

Inhaled tobacco smoke reaches the airways, and nicotine and 
other compounds are absorbed into the bloodstream.133 Multiple 
studies report that smoking induces leukocytosis and increased 
blood cell counts.134–136 Studies exposing various animal models 
to cigarette smoke report inhibition of the number and function 
of MSCs.137–139 Similarly, cigarette smoke extract injected intra-
peritoneally in mice depletes BM endothelial progenitor cells and 
reduces SCF.140 Furthermore, isolated MSCs from mice exposed 
to cigarette smoke have increased expression of the Notch ligand, 
Jagged-1.137 Balanced levels of Notch signaling appear necessary 
to avoid development of hematological malignancies.141

Heavy smokers have significantly higher plasma levels of 
C-reactive protein and IL-6 compared with nonsmokers sug-
gesting a systemic inflammatory response in addition to the 
local inflammation in the airways. Inflammation, as described 
earlier, leads to drastic alterations in hematopoietic output, 
which may be the reason for the increased blood cell counts 
observed in smokers. Furthermore, cigarette smoke contains 

Figure 3.  Hypothetical working model for cigarette smoke–induced niche changes in human BM. Inhaled tobacco smoke reaches the airways, and 
nicotine and many other compounds are absorbed into the bloodstream including Cd, Pb, Bz, and acetaldehyde. Smoking induces leukocytosis suggesting 
HSC activation. Furthermore, smoking increases systemic inflammation and ROS concentrations. Cigarette smoke damages the endothelial cells, possibly by 
ROS-induced DNA damage or Cd and/or Bz-toxicity and reduces the levels of SCF. Similarly, the survival of MSCs is impaired, possibly due to DNA damage 
induced by Cd, Pb, or Bz, and they show increased Jagged-1 expression. Acetaldehyde is directly hematotoxic and induces DNA damage in HSCs. Pb sup-
press proliferation and differentiation of HSCs. However, this is contradictory to the increased leukocytosis observed in smokers. Long-term exposure of Pb 
reduces trabecular bone volume. Cd suppresses osteogenic and induces adipogenic differentiation of MSCs leading to an expansion of BMAT. BM = bone marrow; 
BMAT = bone marrow adipose tissue; Bz = benzene; Cd = cadmium; ECs = endothelial cells; HSC = hematopoietic stem cell; MSC = mesenchymal stromal cell; OBs = osteoblasts; OCs = 
osteoclasts; Pb = lead; ROS = reactive oxygen species; SCF = stem cell factor. Created with BioRender.
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high concentrations of ROS142 and induces ROS and DNA dam-
age in endothelial cells.143

Cigarette smoke contains more than 5000 chemical com-
pounds144 of which 93 are listed as harmful or potentially harm-
ful by the Food and Drug Administration.145 Some of these are 
nicotine, cadmium, lead, acetaldehyde, and benzene, which may 
all directly affect the HSCs and their niches.

Nicotine, the addictive compound of tobacco, has been 
reported to increase the number of human MSCs in vitro140 
and the number of endothelial progenitors cells and SCF in 
plasma from mice.146 Whether nicotine exhibits a direct effect 
on HSCs is still unclear, but 1 study reports the expression of a 
nicotinic acetylcholine receptor on HSCs, and that oral nicotine 
administration in mice leads to higher frequency of HSCs in 
BM and increased leukocyte counts in peripheral blood, BM, 
and spleen.136 Furthermore, nicotine is extensively metabolized 
to a number of compounds with cotinine being the most pre-
dominant.133 Cotinine has a much slower clearance than nico-
tine but studies investigating the effect of cotinine on the BM 
are very limited.

Cigarette smoking is a major exposure route for cadmium 
and to a lesser extent lead.147 Both are heavy metals with long 
half-lives, considerable toxicity, and are known carcinogens.148 
Epidemiological studies have shown that cadmium exposure 
causes bone damage and increases the risk of osteoporosis.149,150 
Cadmium induces endothelial dysfunction,151 increases the 
number of BMAs,152 suppresses osteogenic differentiation of 
BM MSCs,153 and induces DNA damage in MSCs affecting cell 
viability154 in vitro, suggesting a toxic effect of cadmium on the 
HSC niches.

Bone is a major reservoir of lead and contains more than 90% 
of the total lead body burden.155 In birds, areas with trabecular 
bone and BM accumulate high levels of lead.156 Lead exposure is 
cytotoxic to mouse BM MSCs causing increased DNA damage, 
reduced proliferation157 and MSCs numbers.158 Furthermore, 
long-term low-dose lead exposure in mice results in reduced 
bone density and trabecular bone.158 Lead suppresses prolifera-
tion of HSCs159 and myeloid and lymphoid differentiation160,161 
in mice. In contrast, human smokers have increased numbers of 
monocytes and granulocytes and comparable levels of lympho-
cytes to nonsmokers.162 The level of exposure to heavy metals 
in smoke drawn from a single cigarette is small and likely not 
acutely toxic, but the accumulation of these metals in the body 
over years of exposure is a health concern,147 and may cause 
harmful changes to the HSC niches.

Benzene is a known carcinogen and a serious public health 
concern. After inhalation, benzene metabolites are distributed to 
lipid-rich and well-perfused tissues including the BM. Multiple 
studies have linked benzene exposure to reduced leukocytes, 
erythrocytes, neutrophil, and lymphocytes counts.163,164 Benzene 
metabolites significantly impair survival of cultured human 
BM MSCs165 and alter the function of human BM endothelial 
cells.166,167 Furthermore, benzene increases the risk of a broad 
range of hematological malignancies and disorders.168

In summary, cigarette smoking introduces several toxic and 
carcinogenic compounds to the body which may impair hema-
topoiesis through direct hematotoxicity and potentially by 
disrupting the HSC niches (Figure  3). However, some incon-
sistencies remain between the observed effect of the individual 
compounds of cigarette smoke on BM in animal models, and 
the clinical observations in heavy smokers. Thus, there is still a 
knowledge gap of how and if the many compounds in cigarette 
smoke reaches the BM and if so, how together they affect the 
HSC niche.

Perspectives and conclusion

Several lifestyle factors, such as smoking and obesity, are asso-
ciated with increased risk of developing a hematological cancer. 

However, there is currently limited knowledge of how lifestyle 
factors affect hematopoiesis. Especially the number of human 
studies is limited as this topic has received little attention.

Here we provide an overview of the current knowledge 
about the potential consequences of unhealthy diet, chronic 
alcohol consumption, and smoke exposure on the HSC niches 
and hematopoiesis. The data suggest that HFD, alcohol, and 
smoking cause inflammation, increase BMAT, and induce niche 
remodeling either through structural changes or changes in 
expression of niche factors.

Furthermore, we present data suggesting the existence of 
multiple HSC niches and a dynamic transition of HSCs between 
these niches dependent on the individual state of the HSC. 
Whether HFD, alcohol, or smoke influence the localization of 
HSCs to different niches and/or the ability of the niche to induce 
either quiescence or activation of the HSCs is a subject for fur-
ther studies.

Most of the data presented here are from animal studies 
or based on correlations observed in humans. Therefore, any 
mechanistic relationship between unhealthy lifestyle and malig-
nant transformation remains hypothetical and an interesting 
target for future research. This could potentially reveal new 
pathogenic mechanisms, but also identify novel therapeutic or 
prophylactic targets and approaches.

In conclusion, HSCs ability to sustain a normal hematopoi-
esis is highly dependent of the support from the HSC niches. 
Unhealthy lifestyle such as HFD, excessive alcohol intake, and 
smoking induce alterations in the BM. However, more studies, 
especially in humans, are needed to fully understand the impact 
of lifestyle on the HSC niches and how this may be linked to 
malignant transformation.
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