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Abstract

Notothenioid fish and invertebrate samples from Antarctica were collected in the austral

summer of 2009, and analyzed for persistent organic pollutants (POPs), including polycyclic

aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), and polybrominated

diphenylethers (PBDEs), as well as δ13C and δ15N stable isotopes for trophic level determi-

nation. In this study, the POP levels in the Antarctic biota samples were found to be ranked

in the following order: OCPs > PAHs >> PBDEs. The POP levels in notothenioid fish and

krill correlate to trophic levels; however, the POP concentrations in intertidal benthic inverte-

brates are higher than in notothenioid fish implying that specific biogeochemical factors may

affect bioaccumulation in the Antarctica ecosystem. Biomagnification of POPs may have a

smaller role than bioconcentration in Antarctica environment. In addition to the source,

transport, exposure, and absorption for each group of POPs in the short food chain in Ant-

arctica, the biological variation among species, interaction habitats, diet and metabolism are

also factors for future studies on contaminant bioaccumulation.

Introduction

Persistent organic pollutants (POPs) are ubiquitous anthropogenic chemicals that can transfer

over long distances and bioaccumulate through food webs, causing health risks to wildlife and

humans. Although many POPs such as organochlorine pesticides (OCPs), and polybromi-

nated diphenyl ethers (PBDEs) have been banned, they still continue to be reported at toxic

concentrations in organisms, even in the Polar Regions [1, 2, 3]. Scientists have found the pres-

ence of POPs in samples from Antarctica since the 1960s [4, 5, 6, 7]. The extremely low tem-

peratures in Antarctica enhance the low volatility and low degradation rate of POPs [8],

allowing the polar environment to serve as a global sink for persistent pollutants [9, 10, 11].

Cold-adapted organisms in Antarctic have slower metabolism, resulting in low rates of growth
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and reproduction [12]. Most polar organisms depend lipids for energy storage, and thus may

accumulate more POPs during a lifespan [13], leading to the efficient transfer and accumula-

tion of POPs in the food chain [14, 15]. The Antarctic food chain is fairly simple and short [8],

so fishes and invertebrates are key sources of POP bioaccumulation in the Antarctic marine

ecosystem. Notothenioid fish (suborder Notothenioidei), an endemic coastal demersal group,

includes six dominant families in terms of diversity and biomass [16, 17]. Notothenioid fish

constitute an important link in the Antarctic marine food chain, since they prey on a variety of

pelagic, benthic and epibenthic organisms, and they are preyed upon by squids, higher trophic

level fishes, penguins, sea birds, and marine mammals such as seals and whales [18]. Therefore,

studying POP bioaccumulation in notothenioid fish is important to understand the transfer

and distribution of POPs in the Antarctica food web.

When entering an organism, different POPs present different degradation rates and bioac-

cumulation patterns among tissues, depending on their physiochemical properties and the

metabolic system involved [19,20]. However, contaminant distribution patterns in tissues are

not only affected by the POP chemical structure and its major metabolites, but also by the biol-

ogy and ecology of organism in question [21, 22].

Due to the sampling limitations, the sample sizes in this study were low. However, our

results can be taken as indicative of the POP baseline of Antarctic fishes and invertebrates. The

objectives of this study were to determine and compare the occurrence, distribution, and pro-

files of target POPs (including PBDEs, PAHs, and OCPs) in muscle, liver, egg, and stomach of

Antarctic fishes and the invertebrates. Furthermore, δ13C and δ15N stable isotopes measure-

ments were used to investigate the correlation between POP levels and trophic levels and to

model bioaccumulation and biomagnification through the Antarctic food chain.

Materials and methods

Collection of samples

Fishes and invertebrates were collected from the coastal areas between Chun-Shan Station

(-69.371483˚, 76.385906˚) and Davis Station (-68.583043˚, 77.921333˚) adjacent waters in east-

ern Antarctica (Fig 1) in the austral summer of December 2009 –January 2010. The collected

samples include six species fish: Chaenocephalus aceratus, Chionodraco rastrospinosus, Gobio-
notothen gibberifrons, Gymnodraco acuticeps, Pagothenia borchgrevinki, Pseudotrematomus ber-
nacchii, and nine species of invertebrates: Gammaridae gn. sp., Euphausia superba, Nacella
concinna, Amauropsis sp., Yoldia sp., Ophionotus victoriae, Sterechinus neumayeri, Sterechinus
sp., and Salpidae gn. sp. (S1 Table). The studied Antarctic species are demersal or bathypelagic.

All tissue samples were stored immediately at -20˚C until analysis.

Chemical analysis

The analytical methodology used is described in Ko et al., 2014 [23, 24]. Briefly, dried tissue ali-

quots were homogenized with sodium sulfate. The homogenate was extracted using acceler-

ated solvent extraction (ASE-300, Dionex, USA). A fraction of the resulting extract was used

for the determination of lipid content by gravimetry. The remaining extract was further puri-

fied by fractionation on a multilayer silica gel column for instrumental analysis.

Detection and quantification of analytes was carried out using a Varian CP-3800 gas chro-

matography coupled with a Model 320 triple-quadrupole mass spectrometer (Varian, USA)

equipped with electron ionization (EI) source for PAH and OCP analysis; negative chemical

ionization (NCI) source for PBDE analysis. Both sources were in the selected ion monitoring

(SIM) mode. A 30m x 0.25mm x 0.25μm, DB-5 capillary column (J&W Scientific, USA) was

used for the determination of PAHs and OCPs. A VF-5MS (10m x 0.53mm x 0.25um film

POPs in Antarctic fish and invertebrates
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thickness) rapid capillary column was used for the determination of PBDE congeners. The

investigated compounds (Table 1) include 24 PAHs, 11 OCPs, and 17 PBDEs.

Laboratory protocol and quality assurance/quality control (QA/QC) followed guidelines

described by Ko et al., 2014 [23, 24]. Method validation was performed using the NIST

intercomparison exercise for the determination of persistent organic compounds in whale

blubber samples (NIST SRM 1945). Surrogate recovery ranged from 88% to 101%. Method

detection limits (MDLs) were set as the average plus three times the standard deviation of

ten blank technical replicates (Table 1). Spiked matrices were recovered within the accept-

able ranges (78–110% of the spiked analytes). After freeze-drying, subsamples of the muscle

were measured for stable isotopes (δ13C and δ15N). Clean up was performed in a test tube

containing 100 mg of sample and 4 mL of cyclohexane. The mixture was shaken for an

hour, then centrifuged for separation and dried at 50˚C for 48 hr. Purified samples were

analyzed using a Thermo Finnigan Delta plus Advantage isotope ratio mass spectrometer.

Pee Dee Belemnite and atmospheric nitrogen (IAEA-TECDOC-825, 1995) were used as

standards for quantification of δ13C and δ15N, respectively. Isotopic values were expressed

in parts per thousand relative to standards: δ13C or δ15N = [(Rsample/Rstandard) -1] x 103,

Fig 1. Fish and invertebrate samples were collected from the coastal areas between Chun-Shan station and Davis

station adjacent waters in eastern Antarctica.

https://doi.org/10.1371/journal.pone.0194147.g001
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where R = δ13C or δ15N. Based on replicate measurements of internal laboratory standards,

experimental precision is ±0.15‰ and ±0.20‰ for δ13C and δ15N, respectively.

Data analysis

The trophic level (TL) of a species is a function of the 15N content in their tissue (Post et al.,

2000). The reference first trophic level may vary due to factors such as sampling site and tro-

phic structure. In this study, the TLs were estimated by the classic formula reported in Post

et al., (2000): TLspecies = [(δ15Nsecondary consumer - δ15Nprimary consumer)/3.4] + 2, where δ15Nprim-

ary consumer was shrimp in this study and 3.4‰ was a constant per-trophic-level fractionation

[25]. Regression analysis was used to estimate the best fit [26] between POP concentration (log

transformed) and trophic levels in each species according to the following simple linear regres-

sion: log [POP] = a + (b x TL).

Results and discussions

All analyzed samples contained detectable levels (above the method detection limit) of the tar-

get POPs (Table 1). Fig 2 presents the fluctuation in concentration of each POP among the six

species of notothenioid fish. The highest levels of total OCPs (S11OCP) was found in Pagothe-
nia borchgrevinki (Pab) and the highest level of PAHs (S24PAH) and PBDEs (S17PBDE) were

found in Gobionotothen gibberifrons (Gg). S24PAH, S11OCP, and S17PBDE in fish muscles

Table 1. The investigated POPs (24 PAHs, 11 OCPs, and 17 congeners of PBDEs) and the method detection limit (MDL) of each compound.

PAHs MDL (ng) OCPs MDL (ng) PBDE congeners MDL (ng)

Acenapthylene, 0.51 α-HCH 0.19 BDE15 0.07

Acenaphthene 1.70 β-HCH 0.64 BDE17 0.03

Fluorene 2.19 γ-HCH 0.82 BDE28 0.06

Dibenzothiophene 1.02 δ-HCH 0.30 BDE71 0.06

Phenanthrene 3.03 HCB 0.09 BDE47 0.02

Anthracene 0.65 o,p'-DDE 0.04 BDE66 0.55

4,6dimethyldibenzothiop 0.39 p,p'-DDE 0.08 BDE100 0.02

Fluoranthene 1.20 o,p'-DDD 0.07 BDE99 0.03

Pyrene 0.92 p,p'-DDD 0.08 BDE85 0.01

Retene 0.21 o,p'-DDT 0.07 BDE154 0.02

Benzo[a]fluorine 0.08 p,p'-DDT 0.18 BDE153 0.02

Benzo[b]fluorine 0.13 BDE138 0.02

Benz[a]anthracene 0.50 BDE183 0.03

Chrysene/Triphenylene� 0.87 BDE190 0.03

Benzo[b]fluoranthene 0.82 BDE203 0.09

Benzo[k]fluoranthene 0.57 BDE205 0.05

Benzo[e]pyrene 0.85 BDE206 0.40

Benzo[a]pyrene 1.15

Perylene 0.75

Indeno[1,2,3-c,d]pyrene 0.36

Dibenz[a,h]anthracene 0.52

Benzo[g,h,i]perylene 0.77

Coronene 0.28

� Chrysene and triphenylene were not chromatographically resolved, thus the MDL was pooled and the sum of these compounds was used in the data analysis and

discussion.

https://doi.org/10.1371/journal.pone.0194147.t001
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were 6–27 ng/g ww (wet weight), 6–39 ng/g ww, and 0.1–0.4 ng/g ww, respectively. Both PAH

and OCP levels in notothenioid fish were more than 20 times greater than PBDE levels. In this

study, the levels of PAHs and OCPs in the analyzed samples reach those found in marine

organisms from other regions of the world, while the PBDE concentrations were relatively low

and comparable to those found in marine organisms from remote zones.

Since industrialization, abundant anthropogenic PAHs have been produced and distributed

in the environment, and the continued transport and input of these contaminants into the

Antarctic may cause increasing trends of contaminant in the polar environment. During the

past few decades, excessive use of OCPs in agriculture, especially in developing countries in

the Southern Hemisphere near the Antarctic, may have caused heavy bioaccumulation of

OCPs in Antarctic marine organisms. Although most OCPs have been disabled or restricted,

they may still be in use in some Southern Hemisphere countries, and inventory data are

incomplete or not available [27]. Over the past several decades, PBDEs were widely used in the

production of flame retardants [28] and added in a variety of consumer goods. Due to its hor-

mone-disrupting effects, in particular estrogen and thyroid hormones, in both wildlife and

human, PBDEs were termed as emerging pollutants, and a number of actions were executed to

ban industrial production and limit the exposure and release of PBDEs in many countries,

especially in the US and the European Union. Compared to the levels of PAHs and OCPs

found in Antarctic notothenioid fish, the evidence of low concentrations of PBDEs (Fig 2)

might be due to these restrictions, indicating the potential efficacy of the industrial production

restriction and actions such as the Stockholm Convention, a treaty to control and phase out

major POPs.

POP concentrations (based on ng/g ww) in livers and eggs of the fish samples were rela-

tively high, probably due to the higher lipid content of these tissues. Thus, to compare the POP

bioaccumulation in different tissues of the fish, the POP concentrations in muscle, liver, egg,

and stomach were normalized by the lipid content of each tissue (ng/g lipid; Fig 3).

Fig 2. Concentration of S24PAH, S11OCP (A) and S17PBDE (B) among the six species of notothenioid fish.

https://doi.org/10.1371/journal.pone.0194147.g002
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Theoretically, the lipid-normalized POP concentrations are expected to be fairly constant and

based on their lipophilicity. However, Fig 3 shows that POPs accumulated in muscle lipids

more than in liver lipids, suggesting that POPs in the liver, especially for PAHs and OCPs, may

be metabolized more readily. In comparison to fish that mainly feed on krill, higher concentra-

tions of POPs were found in hepatic tissue than in muscle tissue in some Antarctic species of

fish that feed on benthic organisms [29]. Borshesi et al (2008) [30] also found that POP levels

were higher in Trematomus bernacchii (a benthic species) than in Chionodraco hamatus
(inhabits the continental shelf). The bioaccumulation of various classes of POPs in the tissues

of Antarctic fish may be attributable to ecological differences rather than the physiochemical

properties of POPs. Additional factors, such as differences in toxicant metabolism rates and

selective metabolism of various POPs, may also play an important role in defining long term

chemical bioaccumulation patterns in Antarctic fish species.

The POP levels in most Antarctic invertebrates were generally greater than in fish (Table 2),

suggesting that specific biogeochemical processes rather than trophic transfer, were involved

in the transport, exposure, and absorption for each group of contaminants. Many studies also

pointed out that certain species of aquatic invertebrates experience higher bioaccumulation of

POPs than fish in the same waters [31, 32, 33]. Due to tiny body sizes, invertebrates can be

modeled as fat spheres with larger surface area-to-volume ratios that can absorb non-polar

compounds like POPs [34]. Some invertebrates such as amphipods are detritivores, and may

accumulate higher concentrations of POPs by via contaminated detritus [35]. Additionally,

invertebrate metabolic capacity may be lower than those of fish [36].

Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) are showed in Fig 4. Carbon stable

isotope ratios (δ13C) in invertebrates (-26‰ to -12‰) showed a greater range than in fish tissue

(-23‰ to -17‰), due to differences in physiology and biochemistry. A large range of δ15N (4‰

to14‰) in fishes and invertebrates was found and seemed to be related to nitrogen uptake from

different animal-derived sources leading to the classification of four trophic levels (from TL1 to

TL4), which indicates that fish is ranked in the higher TL than invertebrate (Fig 4).

Based on the relationship between the δ15N values (trophic levels) and the POP concentra-

tions in fish and invertebrates in this study (Fig 5), there is not a clear role for biomagnification

of POPs through the food chain in this research zone of the Antarctic. The negative correlation

Fig 3. POP concentrations in muscle, liver, egg, and stomach of fish were normalized by lipid content of each tissue.

https://doi.org/10.1371/journal.pone.0194147.g003
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between TL and most POP concentrations in organisms (except OCPs in invertebrates) indi-

cates that specific biogeochemical processes, rather than biomagnification, were involved in

the source, transport, exposure, and absorption of POP contaminants. POP availability in the

Antarctic environment and specific ecological features such as short food chain may play an

important role in POP bioaccumulation.

Conclusion

Banned pesticides such as HCB and p,p0-DDE, and other legacy and ongoing pollutants such

as PBDEs and PAHs, were measured in fish and invertebrate samples collected at Chun-Shun

research station adjacent waters in eastern Antarctic and found to reach levels comparable to

those from other areas of the world. The POPs accumulated more in fish muscle than in the

liver, suggesting that liver metabolism may reduce the bioaccumulation of POPs. POP concen-

trations in Antarctica fish and invertebrates negatively correlated with trophic level, suggesting

that specific biogeochemical processes may be involved in the sources, transport, exposure,

and absorption for each POP contaminant. Biological variation among species, habitat interac-

tion, diet, metabolism, and growth dilution may also affect the particularly unusual patterns of

POP bioaccumulation in notothenioid fish in the Antarctic.

Supporting information

S1 Table. Analyzed species of biota samples. Identification information of the analyzed biota

samples (fishes and invertebrates).

(PDF)

Table 2. Concentrations of POPs (ng/g wet weight) in Antarctic fish muscle and invertebrate samples.

Species A� N S24PAH S11OCP S17PBDE S11PCB

Fishes

Chaenocephalus aceratus Ca 3 10.4 (8.4–12.5) 23.0 (20.0–25.5) 0.2 (0.2–0.2) 23.0 (20.0–25.5)

Chionodraco rastrospinosus Cr 1 9.5 23.8 0.1 23.8

Gobionotothen gibberifrons Gg 1 26.8 21.3 0.4 21.3

Gymnodraco acuticeps Ga 2 19.4 (19.3–19.6) 29.3 (27.1–31.6) 0.2 (0.1–0.3) 29.3 (27.1–31.6)

Pagothenia borchgrevinki Pb 3 15.4 (12.8–18.4) 32.7 (30.5–35.2) 0.2 (0.1–0.3) 32.7 (30.5–35.2)

Pseudotrematomus bernacchii Psb 3 9.5 (6.3–14.0) 23.8 (6.6–38.8) 0.2 (0.1–0.3) 23.8 (6.6–38.8)

Invertebrates

Gammaridea gn. sp. Gam 2 50.4 (46.3–54.5) 38.9 (34.3–43.5) 0.4 (0.3–0.4) 38.9 (34.3–43.5)

Euphausia superba Es 2 67.4 (62.3–72.4) 4.4 (3.5–5.3) 1.3 (0.8–2.2) 4.4 (3.5–5.3)

Nacella concinna Nc 1 21.5 15.1 0.3 15.1

Amauropsis sp. As 1 752.8 123 124.9 123

Yoldia sp. Ys 2 35.85 (28.4–43.3) 22.15 (20.4–23.9) 1.3 (0.8–1.8) 22.15 (20.4–23.9)

Ophionotus victoriae Ov 2 7.4 (5.4–9.4) 13.6 (10.7–16.6) 0.1 (0.1–0.2) 13.6 (10.7–16.6)

Sterechinus neumayeri Sn 2 49.2 (46.1–52.4) 101.4 (92.9–110.0) 1.1 (1.0–1.1) 101.4 (92.9–110.0)

Sterechinus sp. Ss 2 20.1 (14.6–25.7) 29.9 (19.3–40.5) 0.4 (0.3–0.4) 29.9 (19.3–40.5)

Salpidae gn. sp. Sal 1 84.2 6.5 1.3 6.5

�Abbreviation

https://doi.org/10.1371/journal.pone.0194147.t002
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Fig 5. The interrelation of trophic level (TL) v.s. concentrations of log PAH (A), concentrations of log OCP (B), and concentrations of log PBDE (C).

https://doi.org/10.1371/journal.pone.0194147.g005

Fig 4. Range of stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in the Antarctic notothenioid fish and invertebrates.

https://doi.org/10.1371/journal.pone.0194147.g004
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