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Abstract: The paper examines the compressibility of media with nano-inhomogeneities using the
example of an aluminum melt and C60 fullerenes immersed in it. The results of molecular dynamics
simulations indicate a significant effect of the interface on the effective compressibility of a het-
erogeneous medium. It is found that the application of the rule of mixture for the Al/C60 system
results in an incorrect qualitative picture of the dependence of compressibility on the concentration
of fullerenes. To explain this effect, an analytical model is proposed that takes into account the
reduction in distances between atoms of different components during compression. The model makes
it possible to estimate the effective mechanical characteristics of a liquid with nano-inhomogeneities
within the framework of the mechanical approach, and correctly predicts the nature of the change in
the dependence of compressibility on concentration.

Keywords: compressibility; nano-inhomogeneity; interface; molecular dynamics

1. Introduction

The problem of creating high-modulus nanoparticle-reinforced aluminum-based com-
posites with enhanced mechanical properties has attracted considerable attention of re-
searchers in the past decades [1–3]. Due to high mechanical stiffness, carbon nanostructures
and, in particular, C60 fullerenes seem to be especially promising [4].

Al/C60 composites have been developed and examined in [5–14]. Theoretical studies
of the dependence of energy on strain have made it possible to assess the values of the “bulk
modulus” and “Young’s modulus” of fullerenes, which are about 800 GPa and 2000 GPa,
respectively [15–18]. Estimates of the average elastic moduli of Al/C60 composites by
the rule of mixture (ROM) predict an increase in the stiffness with increasing fullerene
concentration. Recall that, according to ROM, average elastic moduli and elastic compliance
of the composite are calculated by averaging over the components, whose concentrations
are used as weight coefficients [19].

Experimental studies show that the mechanical properties of Al/C60 composites
strongly depend on the manufacturing technology. Among other reasons for this depen-
dence, one should single out the porosity of composite samples [6], phase transformations
during high-temperature annealing, and inhomogeneous distribution of the filler in the
matrix [5,8,9]. Material synthesis technologies that allow one to exclude these effects are
described in detail in [7,9,12–14], where, after composites were synthesized, their mechan-
ical properties, including the values of elastic moduli, were investigated. A significant
increase in Vickers hardness and tensile strength of composites is most often observed
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by researchers. The use of the empirical dependence of the hardness of materials on the
shear modulus G and compression modulus B (see paper [20]) suggests an increase in
the G/B ratio. An analysis of the tension diagrams presented in [7,11] demonstrates an
increase in Young’s modulus in the composite material compared to that in the original
one. At the same time, the ultrasonic study of the elastic characteristics of composites [7]
indicates a decrease in the bulk modulus of the composite at virtually the same (within the
measurement error) value of the shear modulus.

The effect of reducing the overall compression modulus of the composite when high-
modulus nanoparticles are incorporated into the matrix seems to be somewhat unexpected
and deserves a detailed theoretical study. Note that the ROM obtained by neglecting the
elastic interactions between inhomogeneities in a solid, as well as more general models
that allow this effect to be taken into account, are usually based on the assumption that the
interface is ideal [21]. When use is made of inhomogeneities up to 10 nm in size, the number
of atoms at the interfaces is comparable to the number of atoms in the bulk of the substance,
and the contribution of the energy of these atoms to the free energy of the system turns
out to be significant [22,23]. Note also that, for nanoparticles whose radius is comparable
with interatomic distances (in particular, fullerenes), such concepts as volume, density,
interfacial surface, and elastic modulus are poorly defined, and therefore the applicability
of continuum models for nanocomposites reinforced with such particles raises questions.

In this work, we study of the effect of the interface on the compressibility of the Al/C60
system by using the molecular dynamics (MD) simulation. To simplify the formulation of
the problem, we consider an aluminum melt, which makes it possible to remove questions
about the initial location of aluminum atoms near the conditional interfacial surface. This
simplification allows us to study the effect of the interface on the compressibility of systems
with a low concentration of inhomogeneities, in which the interaction of particles through
elastic fields is negligibly small. The model assumes the absence of shear deformations
in the system and does not answer questions about the distribution of elastic stresses in a
solid. The study of the influence of nano-inhomogeneities on the distribution of stresses and
deformation of solids will be presented elsewhere. Thus, the present work is aimed at studying
the applicability of continuum models of mechanics to such systems. Note that the examination
of the compressibility of the Al/C60 system with the aluminum melt can also be useful in view
of the widespread use of methods for consolidating powder mixtures, associated with pulsed
action on a substance with concomitant melting and crystallization [24–26].

2. Molecular Dynamics Simulation

To describe interatomic interactions, we relied on a hybrid potential with different
interaction models for various pairs of atoms. For a pair of Al–Al atoms, use was made of
the embedded atom model with the parametrization from Ref. [27], which provides a high
accuracy in calculating the compressibility and surface tension coefficient of the aluminum
melt [28]. Carbon atoms interact with each other via the Tersoff potential [29], in which the
parametrization proposed in [30] was used to improve the accuracy of graphene modeling.
To take into account the Al–C interaction, the Lennard–Jones potential was employed:

E = 4ε

[(σ

r

)12
−
(σ

r

)6
]

. (1)

The values of potential parameters (1), ε = 5.2 × 10−2 eV, and σ = 2.7 Å were
borrowed from [31], where the potential (1) was parameterized according to the results of ab
initio investigation of the interaction of carbon and aluminum atoms at the Al/C60 interface.
Despite the existing drawbacks, a detailed discussion of which can be found in [31], the
potential makes it possible to reproduce with high accuracy the experimental temperature
dependence of the Al(111) surface coating density with C60 molecules, obtained in [32] by
temperature-programmed desorption.

The MD calculations were performed using the LAMMPS software package [33] at a
temperature of 1000 K, according to the scheme in Figure 1.
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Figure 1. Schematic of the MD simulation procedure.

A spherical cavity was cut out in the center of the cubic computational domain
containing aluminum atoms, in which the fullerene C60 was located. The initial parameters
of the crystal cell and the arrangement of atoms were set in accordance with the structure of
the aluminum crystal [34]. Systems with different mass fractions of fullerenes were studied
by varying the size of the computational domain and the number of aluminum atoms. To
create the initial atomic configuration, we used in this work cubic aluminum supercells
N × N × N, (N = 7, 8, 9, 11, 15) with one C60 molecule, while the mass fraction of carbon,
µ, varied in the range from 0.2 mass% to 2.0 mass%. The cavity radius was calculated by
the formula R1 = R0 + σ, where R0 = 3.6612 Å is the fullerene radius in the absence of
interaction with aluminum; it is defined as the average distance between the center of mass
and carbon atoms at a given temperature. The integration of the equations of motion was
performed with a step of 0.2 fs, the thermostat relaxation time was set equal to 100 fs, the
barostat relaxation time was 1 ps, and the center of mass of the nanoparticle was fixed.

Relaxation involved two stages. First, the system was stabilized at 1000 K and zero
pressure for 10 ps. In this case, aluminum was melted and an equilibrium state of the
melt was established. Then, the computational cell was compressed or stretched, and the
system was again stabilized at a constant volume for 20 ps. After relaxation, the thermostat
was turned off and the averaged values of the nanoparticle radius R, the melt boundary
R1 (see Figure 1), the pressure on the melt from the boundaries of the computational
domain, and the radial distribution of the aluminum density relative to the center of
mass of the nanoparticle, n(r), were calculated. Averaging was performed using data
from 50 statistically independent calculations, in each of which the parameter values were
averaged over a time interval of 10 ps.

In studying the radial distribution of the melt density, the computational domain
was divided into concentric spherical surfaces, the center of which coincided with the
center of mass of the fullerene. The division step was approximately 0.1 Å. An analysis
of the temperature and local order parameters q4 and q6 [35,36], as well as the aluminum
density radial distribution function, suggests the absence of processes associated with the
crystallization or vitrification of aluminum during calculations.

It is known from the theory of capillarity that, in a liquid with a spherical inho-
mogeneity of radius R, the pressure on different sides of the interface is different. The
inhomogeneity limited by the interface is subject to the action of the Laplace pressure,
while, in the liquid volume, the pressure is uniformly distributed everywhere, except for
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the region of a small volume near the interface [37]. The thickness of this region, d, is
comparable in magnitude with the interatomic distances, and at R� d it can be assumed
that the function of the spatial distribution of pressure changes abruptly on the interfacial
surface. In the model in question, an approximation like this is inapplicable, and the
fraction of aluminum deformed by surface tension forces is significant. To calculate the
effective compressibility of an inhomogeneous medium, it is necessary to determine the
dependence of the volume on the pressure acting on the substance from the boundaries
of the computational domain, and the contribution of the Laplace pressure should be
excluded. Therefore, in the MD simulation, the pressure was calculated with allowance
for only the atoms located near the boundaries of the computational domain. The distance
to the boundaries was 0.05 of the size of the computational domain; in this case, at least
350 atoms participated in the averaging. The components of the local stress tensor were
calculated according to [38].

Figure 2 shows the data characterizing the deformation of the system under the action
of the applied pressure. One can see from Figure 2a that the applied pressure significantly
changes the radial distribution function of the dimensionless aluminum density, n(r)/n0.
Here, n0 is the mean density of a homogeneous aluminum melt at zero pressure. The first
maximum of the function, which characterizes the position of the aluminum boundary R1,
markedly shifts under the action of the applied pressure.

(a) (b)

Figure 2. Deformation of an aluminum melt with a spherical inhomogeneity (C60) under uniform
compression: (a) radial aluminum density distribution at an applied pressure p = −2 GPa (dashed-
dotted curve), p = 0 GPa (solid curve), and p = 2 GPa (dashed curve); and (b) deformation of the
spherical interface (the solid line and the circles, the interface coincides with the C60 fullerene surface;
the dashed line and the triangles, along the aluminum boundary of radius R1, n(R1)/n0 = 0.5). The
lines show the dependences obtained by approximating the MD data indicated by symbols. The inset
shows the first distribution peak.

The shape of the density distribution function in the region of the first maximum
characterizes the position of the interface in the Al/C60 system. Figure 2b shows the
dependences of the deformation of a spherical inhomogeneity on pressure, ε(R) = δR/R0,
where R0 is the radius of the inhomogeneity at zero pressure, and δR is the change in the
radius under the action of the applied pressure p. In the first case, the fullerene radius
R (solid line) was taken as the interface radius, and, in the second case, the radius of the
aluminum boundary R1, at which the function n(R1) increasing from zero reaches half the
average density n0. Thus, the value of R1 was calculated using n(r) by solving the equation

n(R1) = n0/2

in the range 0 ≤ R1 ≤ rmax, where rmax defines the position of the first maximum of n(r).
One can see from Figure 2b that the deformations of the surfaces of aluminum and

carbon do not coincide, with the difference between them at the boundaries of the selected
pressure range being sixfold in maximum. This fact has a significant effect on the mechanical
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properties of an inhomogeneous medium, which in this case are determined not only by
the properties of the melt and nanoparticles, but also by the relative displacement of pairs
of Al–C atoms under the action of applied stresses.

The effective compressibility of the medium was calculated using the pressure and
volume of the computational domain obtained in the MD simulation by the formula:

k = − 1
V0

∂V
∂p

. (2)

Let us assume that the dependence of the compressibility of a multicomponent system
on the concentration of inhomogeneities obeys the ROM

k =
N

∑
j=1

νjk j, (3)

where the summation is performed over all components of the mixture; and νj and k j
are the volume fractions and compressibility of the components, respectively. Fullerene
compressibility at 1000 K was calculated in this work by the MD method and amounted to
1.41× 10−12 Pa−1. This value is consistent with ab initio simulation data [17], where the
compressibility was 1.15× 10−12 Pa−1. The calculated compressibility of the aluminum
melt, 24.6× 10−12 Pa−1, corresponds to a value of 29.0× 10−12 Pa−1 that was ab initio MD
calculated in [39] for the aluminum melt.

Expression (3), as well as the compressibility of the components, allows us to expect a
monotonic decrease in the effective compressibility of the system with increasing volume
concentration of the fullerene. However, the results of the MD simulation (see Figure 3), as
well as experimental data [7], indicate the opposite.

Figure 3. Dependence of compressibility on the concentration of fullerenes in the aluminum melt
(the solid line, calculation by the ROM; the symbols, the MD data; and the dash-dotted line, the
least-squares approximation of the calculated data).

The solid line in Figure 3 shows the dependence of the compressibility on the volume
νC60 and mass µC60 concentrations of fullerenes, calculated according to the ROM, and the
symbols represent the results of calculations using Formula (2), where the volume and
pressure were calculated by the MD method. The dashed-dotted line is the least-squares
approximation of the calculated data.

3. Discussion

The curves of the dependence of the effective compressibility on the concentration of
fullerenes, calculated by the MD method and by the ROM, demonstrate not only a quanti-
tative but also a qualitative discrepancy. Application of the ROM does not allow one to
expect an increase in the compressibility of the system with incorporated spherical particles,
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which are more rigid than the matrix material. Estimation of the effective inhomogeneity
compressibility using the ROM (3) and linear approximation of the MD simulation results
yields a value of 26.1× 10−12 Pa−1, which is approximately 18.5 times greater than the
calculated compressibility of the fullerene C60.

The reason for this discrepancy is the small size of the nanoparticles, which makes
it impossible to neglect the interface thickness. One can see from Figure 2b that the
deformations of the carbon and aluminum surfaces are incompatible, which limits the
applicability of the theory of elasticity of inhomogeneous media.

For a more detailed qualitative explanation of the obtained results, we consider a
simplified analytical model of a medium with a spherical inclusion. The free energy of the
interface between phases 1 and 2 of a medium can be calculated by the thermodynamic
integration method:

F =
1
2

∫ 1

0
dλ
∫

u(r1, r2, λ)n2(r1, r2, λ)dr1dr2, (4)

where n2 is a two-particle distribution function, and the value λ = 0 corresponds to a
system whose components 1 and 2 do not interact with each other. The interaction potential
between the atoms of components 1 and 2 located at the points r1 and r2, u(r1, r2, λ),
provides a continuous transition from a state without interaction to a state with a real
potential of interatomic interaction, u0(r1, r2):

u(r1, r2, λ) = λu0(r1, r2). (5)

The function n2 is unknown, but it can be calculated using various numerical methods,
among which the molecular dynamics simulation is considered one of the most reliable.
However, in the absence of simplified analytical models, the analysis of the results of such
numerical experiments is difficult.

An expression for the free energy of the interface can be derived using a simplified
model widely used for the analytical description of capillarity [37,40]. We assume that
carbon atoms are uniformly distributed over the nanoparticle surface. In this case, for the
interatomic potential of form (1), the interaction of an aluminum atom with a nanoparticle
is determined by the expression [31]

u0(r1, r2) ≈ u0(r) = 8πεσ2nS0

R
r

[
1

10
(ζ−10 − ζ+10)−

1
4
(ζ−4 − ζ+4 )

]
, (6)

where ε and σ are the parameters of potential (1), nS0 is the average surface density of
atoms of the nanoparticle (for fullerene nS0 ≈ 0.36 Å−2), R is the nanoparticle radius,
r is the distance from the center of the nanoparticle mass to the aluminum atom, and
ζ±m = [σ/(r± R)]m.

Note that, in the original work [31], expression (6) was obtained for a hollow particle
(fullerene), but, in some cases, it can be also used for a spherical inclusion. For a spherical
nanoparticle, nS0 is calculated taking into account surface atoms, while a small contribution
from the interaction of internal atoms with the surrounding substance (aluminum) can be
taken into account approximately in parameterizing potential (1), or completely excluded
from consideration. We believe that this approximation is possible for nanoparticles with
R0 ∼ 1 nm due to a rapid decrease in potential (6) with distance r, and also taking into
account the fact that most of the atoms of small nanoparticles are located on the surface. We
can assume that this approximation is applicable for nanoparticles of size R0 � 1 nm with
the appropriate parametrization of potential (1), in which the contribution of internal atoms to
the interaction energy can be taken into account implicitly when calculating the parameters ε
and σ; however, the limits of applicability of the model require additional studies.

Further simplification of the problem is associated with the use of the approximate
aluminum density distribution function, which we equate to zero at r < R1 and to the
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average density n0 otherwise. Thus, in expression (4), the two-particle distribution function
is approximated by the Heaviside step function:

n2(r, λ) ≈ n0Θ(r− R1) =

{
0, r < R1,
n0, r ≥ R1,

(7)

where n0 ≈ 0.0536 Å−3 is the average density of the aluminum melt, calculated in this
work at 1000 K.

Assuming a temperature-independent uniform distribution of atoms, we simultane-
ously neglect the temperature dependence of the free energy. Therefore, these assumptions
are very rough, which does not allow us to expect a high accuracy of the analytical model.
The usefulness of analytical expressions lies in the possibility of a simple qualitative expla-
nation of the results of numerical simulation, as well as in the possibility of determining
the characteristic parameters of the problem for practical assessments.

The use of Expressions (6) and (7) makes it possible to perform integration of Equation (4)
analytically:

F = w0

[
ξ1−

8 − ξ1+
8 − ξ2−

8 + ξ2+
8 +

8R
9σ

(
ξ1−

9 + ξ1+
9 − ξ2−

9 − ξ2+
9

)]
−

10w0

[
ξ1−

2 − ξ1+
2 − ξ2−

2 + ξ2+
2 +

2R
3σ

(
ξ1−

3 + ξ1+
3 − ξ2−

3 − ξ2+
3

)]
, (8)

where use is made of the notation ξ i±
m = [σ/(Ri − R)]m; the index i = 1, 2 correspond to the

inner and outer boundaries of the matrix; and w0 is the characteristic energy determined
by the expression

w0 =
2
5

π2εn0nS0 Rσ4. (9)

The integration boundaries R1 and R2 correspond to the inner and outer boundaries of
aluminum, which occupies the volume of a hollow sphere (for an infinite volume, R2 → ∞).
Neglecting small values of ξ2±

m and ξ1+
m , we can obtain the final expression:

F0 = w0

(
ξ8 +

8R
9σ

ξ9 − 10ξ2 −
20R
3σ

ξ3

)
,

ξm = [σ/(R1 − R)]m. (10)

At R2 − R = 4σ, Formulaes (8) and (10) give a difference in the calculation results
within an error of 10%. This corresponds to a volume fraction of fullerenes, νC60 = 1.7%,
and a weight fraction of fullerenes, µC60 = 3.8%. At these concentrations, there are usually
problems with a uniform distribution of C60 in aluminum, and therefore µC60 is usually
less than or equal to 2% in practice. We will assume that the compressibility of the system
can be described using a mechanical model, in which, however, the inhomogeneity is
characterized by certain effective values of the parameters (radius and compressibility). To
ensure that the deformation compatibility conditions are met, the effective radius of the
inhomogeneity is set to coincide with the cavity radius R1. The pressure distribution for
r < R1 will be considered homogeneous. To calculate the pressure, we use the well-known
thermodynamic relation [41]:

p = −
(

∂F
∂V

)
T

. (11)

Assuming that the nanoparticle volume is limited by a sphere of radius R1, we obtain

p ≈ w0

πR2
1σ

[
ξ9 +

R
σ

ξ10 −
5
2

(
ξ3 +

R
σ

ξ4

)]
, (12)
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where R is the nanoparticle radius, which in the case of small deformations linearly depends
on the pressure as

R = R0

(
1− p

3Bp

)
, (13)

and Bp ≈ 709 GPa is the bulk modulus of a nanoparticle, calculated in this paper for the
fullerene C60.

At zero pressure, Equation (12) yields

R1,0 = R0 + (2/5)1/6σ, (14)

which corresponds to an effective inhomogeneity radius at zero pressure.
In the case of small deformations, Expression (12) can be written in the form of a Taylor

series:

p(R1) ≈ −3Bi
δR1

R1
+ O

[(
δR1

R1

)2
]

. (15)

Neglecting the terms above the first order of smallness and performing simple but
rather cumbersome calculations, we obtain an approximate value of the “bulk modulus” of
the interface, Bi:

Bi ≈ 27εn0nS0 R0σ. (16)

The compressibility of an inhomogeneous medium can now be calculated using the
ROM (3), where the interface volume is calculated as

Vi =
4
3

π
(

R3
1,0 − R3

0

)
. (17)

Thus, the effective value of the compressibility of a nano-inhomogeneity can be
calculated by the formula:

ke f f = kp(R0/R1,0)
3 + ki

[
1− (R0/R1,0)

3
]
. (18)

It follows from (3) that, when a spherical nanoparticle is added to a liquid, the com-
pressibility can be reduced only if ke f f < km, which must be taken into account when
creating composite materials—for the Al/C60 system ke f f = 31.5× 10−12 Pa−1, and for
aluminum melt km = 24.0× 10−12 Pa−1, which explains a monotonic increase in k(νC60)
obtained in the MD simulation. Hereinafter, the analytical estimates rely on such MD-
calculated parameters as fullerene and aluminum-melt compressibilities.

At zero pressure acting on the liquid from the outer boundary, the pressure is p(R1) 6= 0,
and hence R1 6= R1,0. To calculate p(R1), it is necessary to estimate the value of the specific
interfacial free energy.

In the expression for free energy [see Equation (4)], as the state with zero free energy,
we chose the state of the melt with a cavity in it, where a spherical particle was then
incorporated. The work spent on creating a spherical cavity of radius R1 can be estimated
using Expression (10), where the free energy Fc is calculated using the parameters εM and
σM of the interaction potential between matrix atoms. For aluminum, εM = 0.1743 eV
and σM = 2.925 Å [42]. The radius of a spherical particle “cut out” from the matrix is
RM = R1 − (2/5)1/6σM. The free energy of the interface is expressed as

F = F0 − Fc = F0 + 4πR2
1γ0

(
1− δ

R1

)
+ C, (19)
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where the formulae for calculating the surface tension coefficient of the matrix, γ0, and the
Tolman length δ can be obtained directly from (10):

γ0 ≈ 2.2εMn5/3
0 σ3

M,

δ ≈ 0.27σM. (20)

The constant C, which is independent of the radius R1, will be taken equal to zero
in calculations, since the expressions for physical quantities in question include only
derivatives of the free energy, which can be determined up to an arbitrary constant. Given
that δ/R1 ∼ 0.1 � 1, we will approximately assume that the surface tension coefficient
γ = γ0 is independent of the radius R1. Assuming the pressure on the melt from the side
of the boundaries to be equal to p, the radius R1 will be calculated by taking into account
the Laplace pressure pL = 2γ0/R1,0:

R1(p + pL) = R1,0

[
1−

ke f f (p + pL)

3

]
. (21)

To test the model, the results of analytical estimates of some characteristics of the
interface were compared with the data obtained by the MD simulation. Analytical estimates
were performed using the presented formulas with the above parameter values. The results
of the comparison are presented in Table 1. The cavity radius R1 and the particle radius
R were calculated at zero external pressure. In analytical estimates, the fullerene was
assumed to be deformed under the action of pressure pL, and the radius R was calculated
by Formula (13). In MD simulation, the value of the free energy F0 was replaced by the
value of the potential energy of interaction between carbon and aluminum atoms. A more
accurate calculation of the free energy of the interface was not performed in this work.
The value of γ0 calculated by Formula (20) was compared with the data of [42], where the
Lennard–Jones potential with parameters εM and σM was used to calculate the specific
energies of Al (111) and (100) surfaces by the MD method.

Table 1. Comparison of the results of analytical estimates of some characteristics of the Al/C60

interface with the data of MD simulation.

F0, eV R1, Å R, Å γ0, J/m2

MD −9.176 5.88 3.6462 1.185 a, 1.234 b

Analytical estimate −8.670 5.68 3.6519 1.42
a,b are the data of [42] for Al (111) and (100) crystalline surfaces, respectively, obtained in the framework of the
model of interaction between aluminum atoms, which was used in the derivation of Formula (20).

One can see from Table 1 that, despite rather rough approximations, the analytical
model makes it possible to estimate the characteristics of the interface within acceptable
accuracy. The dependence of the compressibility of the medium on the concentration of
fullerenes is presented in Table 2.

Table 2. Influence of the fullerene concentration on the compressibility of the aluminum melt.
Comparison of analytical estimates, kA, and calculations by the MD method, kMD.

µC60 , % νC60 , % kMD × 1012, Pa−1 kA × 1012, Pa−1

0.20 0.08 24.73 24.60
0.51 0.20 24.89 24.66
0.93 0.37 25.34 24.71
1.34 0.53 25.67 24.76
2.00 0.79 25.95 24.84
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Compared with the MD simulation data, analytical estimates underestimate the com-
pressibility of the medium, which is apparently due to the use of approximation (7) for the
two-particle distribution function of carbon and aluminum atoms. Analysis of the data
shows that the value of ke f f is underestimated by about two times: the analytical estimate
yields 31.5× 10−12 Pa−1, and the approximation of the results of the MD simulation is
65× 10−12 Pa−1. At the same time, the obtained values of ke f f are more than 10 times
higher than the compressibility value of the fullerene C60, which is kp = 1.41× 10−12 Pa−1.
The analytical model predicts an increase in compressibility with an increase in the concen-
tration of fullerenes, and, therefore, adequately describes the nature of the dependence of
the effective compressibility of the medium on the concentration of inhomogeneities.

4. Conclusions

We used the MD simulation to study the compressibility of a substance with nano-
inhomogeneities using the example of an aluminum melt and the fullerene C60. The simulation
indicates a decrease in the compressibility of aluminum with an increasing concentration of
C60. This result agrees with experiment [7] but contradicts estimates using the ROM.

To explain the obtained result, the deformation of the interface during system com-
pression was analyzed. The position of the aluminum boundary was determined from the
function of the radial density distribution plotted relative to the center of mass of C60. A
spherical surface was taken as the fullerene boundary, whose radius corresponded to the
average distance from carbon atoms to the center of mass of the molecule. The analysis
showed that the displacements of these boundaries under the action of an external pressure
do not coincide, and the distance between them is comparable in magnitude with the
fullerene radius. This fact imposes restrictions on the use of a mechanical model, which
assumes the presence of a thin interfacial surface, on which the conditions of compatibility
of strains and stresses can be used. In addition, the nature of the displacement of the bound-
aries of aluminum and fullerene reveals a possible reason for an increase in the effective
compressibility of the system observed in the experiment and numerical simulation with
an increase in the concentration of fullerenes.

An analytical model is proposed that takes into account the interactions between atoms
of different phases at the interface and correctly predicts the nature of the change in the
bulk modulus of the system with increasing nanoparticle concentration. The model relies
on the formulations of the mechanics of inhomogeneous media, in which the values of the
inhomogeneity parameters are replaced by effective ones that take into account the interaction
of atoms of different phases. The use of analytical expressions for estimating the effective
characteristics of an inhomogeneity in mechanical simulation yields an acceptable agreement
with the results of MD simulations. The absence of the need for complex atomistic calculations
and the simplicity of the obtained analytical expressions make the model convenient for
practical estimates of the compressibility of an inhomogeneous medium.
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Abbreviations
The following abbreviations are used in this manuscript:
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