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Abstract 

Background In Uganda, antimalarial resistance in Plasmodium falciparum poses serious public health and treatment 
challenges. Globally, recent data have highlighted the roles of following genes in malaria resistance: Plasmodium 
falciparum dihydrofolate reductase (Pfdhfr), Plasmodium falciparum dihydropteroate synthetase (Pfdhps), Plasmodium 
falciparum chloroquine resistance transporter (Pfcrt), Plasmodium falciparum multidrug resistance gene 1 (Pfmdr1), 
and Plasmodium falciparum K13 propeller domain (Pfk13). This study investigated the prevalence and characteristics 
of P. falciparum molecular markers linked to antimalarial resistance in Northern, Northeastern, and Eastern Uganda.

Methods This cross‑sectional study collected 200 dried blood samples from children (2 months to 12 years) in North‑
ern, Eastern, and Northeastern Uganda. Samples were from malaria‑positive cases confirmed by rapid diagnostic tests 
and microscopy. Genomic DNA was extracted from these samples and analysed using Molecular Inversion Probes 
to detect Plasmodium falciparum genetic mutations. The sequencing was performed on the Illumina MiSeq platform, 
and raw data was organized and analysed with MIPTools software.

Results The study sequenced over 50% of the samples at each site as follows: Apac 87.7% (43/49), Moroto 68.0% 
(34/50), Soroti 65.0% (13/20) and Mbale 53.1% (43/81). The Pfk13 A675V and C469Y mutations varied from 0 to 23.3% 
and 8.3–14.3%, in four sites, with consistently low prevalence in Apac. The Pfdhfr N51I and S108N mutations were fixed 
in all districts, while C59R was fixed in Moroto and nearing fixation (92–97%) in other regions. The emerging I164L 
mutation ranged from 1 to 10% in all sites. The Pfdhps A437G and K540E mutations were fixed in Soroti, with 3–5% 
wild‑type prevalence in other sites. The A581G mutation showed 2.3% mixed genotypes in Mbale only. The Pfcrt K76T 
was predominantly wild type, except for 5% mutants in Mbale and Moroto. The pfmdr1 N86Y were wild type across all 
districts, except for 15% mixed genotypes in Soroti.
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Background
Globally, antimalarial drug resistance is a developing 
obstacle in the fight against malaria, particularly in the 
sub-Saharan Africa (SSA) and Southeast Asia (SEA) 
regions where Plasmodium falciparum is prevalent [1]. 
Emergence of resistance reverses the global gains in 
malaria control attained in the over two decades of use 
of artemisinin-based combination therapy (ACT) [2, 3]. 
Uganda, an East African country in SSA, remains highly 
burdened with malaria and was ranked 5th top con-
tributor of cases globally in 2021 [4]. Recent reports of 
the emergence of independent malaria resistance in the 
northern part of the country [5], have raised concerns 
that the phenomenon may be widely spread, but has not 
been systematically established. Some reports on resist-
ance to antimalarial drugs in Uganda have emerged with 
indication of the spread of artemisinin resistance-asso-
ciated molecular markers of P. falciparum [6, 7], but few 
data if at all any have comprehensively studied altogether 
known and emerging markers. Understanding the preva-
lence, distribution, and characteristics of these molecular 
markers through detailed analyses are critical for inform-
ing malaria control strategies and the continued effec-
tiveness of antimalarial therapies.

Molecular markers of antimalarial resistance of Plas-
modium falciparum, such as mutations in the K13 
propeller domain (Pfk13), Plasmodium falciparum dihy-
drofolate reductase (Pfdhfr), Plasmodium falciparum 
dihydropteroate synthetase (Pfdhps), Plasmodium fal-
ciparum chloroquine resistance transporter (Pfcrt) and 
Plasmodium falciparum multidrug resistance gene 1 
(Pfmdr1) genes have been extensively studied in SEA [8, 
9], and some reports in Uganda are emergent [6, 10–12]. 
Mutations in the Pfk13 gene are indicators of emerging 
resistance to artemisinin derivatives [6], while Pfdhfr and 
Pfdhps genes are associated with resistance to antifolate 
drugs like pyrimethamine and sulfadoxine, respectively 
[12]. Furthermore, Pfcrt and Pfmdr1 mutations are linked 
to quinoline and arylaminoalcohol drugs [13].

Previous studies in Uganda point to varying levels of 
resistance in different parts of the country. Early evi-
dence indicates population and geographic distribution 
of these molecular markers of antimalarial resistance [12, 
14–18], but have a potential for homogeneous diffusion 
across the country with time, travel and immigration 
of populations. Data from studies conducted between 

2016 and 2023 show emergence of partial resistance 
to artemisinins in multiple geographic locations, with 
increasing prevalence and regional spread over time [6]. 
Therefore, regular updates on district and region-specific 
data are urgently needed to guide targeted interventions. 
Such data would update whether partial resistance has 
progressed to saturation or not. In addition, they are 
important in determining on geographical variations in 
the levels of resistance. Comprehensive analysis of resist-
ance markers are paramount in assessing the prevalence 
of other molecular markers of antimalarial resistance 
beyond Pfk13 in heterogeneous malaria transmission 
intensity settings. Therefore, this study assessed the prev-
alence of key molecular markers of antimalarial resist-
ance in P. falciparum isolates among patients attending 
care in four settings: Eastern (Soroti and Mbale), North-
ern (Apac), and Northeastern (Moroto) in Uganda.

Methods
Study setting
The study was conducted as part of the “Development of 
Geospatio-Temporal Surveillance and Characterisation 
of Malaria in the Changing Climatic conditions in East-
ern Uganda study (GTS-MACS) in four sites in Uganda: 
Eastern (Soroti and Mbale), Northern (Apac), and North-
eastern (Moroto) from February 7, 2024, to August 7, 
2024. These sites were selected purposively due to the 
reported high prevalence of malaria in the locales. Fig-
ure 1 below shows the study sites and their access by the 
community served.

Study design
A cross-sectional study was designed to determine the 
prevalence of molecular markers of antimalarial resist-
ance in patients from East, North, and Northeastern 
Uganda.

Participants recruitment and selection
Participants aged two months—twelve years of age and 
seeking healthcare for non-complicated malaria at any 
one of the four health facilities in Apac General Hospi-
tal, Mbale Regional Referral Hospital, Moroto Regional 
Referral Hospital, and Soroti Regional Referral Hospi-
tal were eligible to participate in the study. Patients who 
tested malaria positive on rapid diagnostic test (RDT) 
and confirmed with P. falciparum by microscopy were 

Conclusion This study reveal rising partial artemisinin resistance and widespread antifolate resistance surpassing 
WHO thresholds in Northern, Northeastern, and Eastern Uganda. Emerging super‑resistant parasites pose a serious 
threat to malaria control, necessitating urgent enhanced surveillance and alternative treatment strategies.
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included in the study after consent by a parent or care-
taker (and ascent for legally qualifying participants).

A single-tier cluster sampling plan was adopted to 
obtain a representative sample from each of the four dis-
tricts in the Northern, Eastern, and Northeastern sub-
regions of Uganda.

Data collection and laboratory procedures
The data used in this analysis was collected between Feb-
ruary 7, 2024, and August 7, 2024. A customised ques-
tionnaire was developed, pre-tested and administered on 
one-on-one interview by trained research assistants. Var-
iables such as sex, age, history of fever, and use of anti-
malarials related to the most recent bout of fever were 
recorded by trained research assistants.

Study trained laboratory staff were responsible for 
blood sampling via venipuncture. Blood samples were 
taken for rapid diagnostic test (RDT) and when posi-
tive a confirmatory microscopic examination was done. 
In addition, a few drops of blood were blotted onto fil-
ter papers and left to dry as dried blood spots (DBS). 
The DBS samples were stored in plastic bags with silica 
gel to prevent DNA degradation, and transported to 
the Uganda Ministry of Health’s Central Public Health 

Laboratory (CPHL) in Luzira, Kampala, for further 
analysis.

The study focused on analyzing resistance markers 
related to artemisinin and antifolate drugs. Specifically, 
it examined single nucleotide polymorphisms in the pro-
peller domain of the Pfk13 gene at codons P441Y, A469Y, 
C469Y, R561H, C580Y, and A675V, which are associ-
ated with artemisinin resistance. Additionally, antifolate 
resistance markers were investigated by analysing muta-
tions in the Pfdhfr gene at codons S108N N51I, C59R, 
and I164L, as well as in the Pfdhps gene at codons S436A, 
A613S, A437G K540E, and A581G. The study also 
explored transporter genes, including mutations in the 
Pfcrt gene at codon K76T, and the Pfmdr1 gene at codons 
N86Y, Y184F, S1034C,N1042D, and D1246Y.

A total of 200 DBS samples were collected, with the 
following distribution across the study sites: Apac (49 
samples), Mbale (81 samples), Moroto (50 samples), and 
Soroti (20 samples). Genomic DNA was extracted from 
the DBS samples using Chelex method as previously 
described [19]. To detect genetic mutations associated 
with antimalarial resistance, Molecular Inversion Probes 
(MIPs) technology protocol was employed as described 
[14]. This method involves the hybridization of MIPs 

Fig. 1 A map of Uganda showing study sites and their catchment areas
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with target DNA regions, followed by circularization and 
amplification of the probes [20]. Briefly, the amplified 
products were then sequenced using the Illumina MiSeq 
platform, which allows for high-throughput sequencing 
and accurate detection of genetic variants. Samples that 
did not have sufficient coverage after the initial sequenc-
ing were either re-pooled or recaptured to improve 
coverage. For MIP data, MIPTools software (version 
0.19.12.13) was used to organize raw sequencing data and 
perform variant calling (https:// github. com/ bailey- lab/ 
MIPTo ols). Individual genotypes were assigned to poly-
morphic sites covered by a minimum of 5 unique molec-
ular identifiers (UMIs). Variants were required to have 
a genotype allele count of at least 3 UMI’s for alternate 
alleles and at least 2 UMI’s for reference alleles. Down-
stream analysis was conducted using R, samples that did 
not work were repeated twice to be declared negative. 
Negative samples were primarily due to low very parasite 
count.

Results
The study sequenced over 50% of the samples at each site. 
Apac had the highest success rate, with 87.7% (43/49) 
of samples sequenced, followed by Moroto with 68.0% 
(34/50), Soroti 65.0% (13/20), and Mbale 53.1% (43/81). 
The main reasons for some samples not yielding genotyp-
ing data were very low parasite densities.

Prevalence of molecular markers
Table 1 presents the results of the prevalence of molecu-
lar markers in all four study sites.

The Pfk13 gene mutations revealed varied prevalence 
across the sites. The A675V mutants were absent in 
Apac, with 100% of samples showing the wild-type geno-
types. In contrast, Mbale exhibited a minor presence of 
the mutation with 7.0% of samples showing the mutants. 
Moroto and Soroti had 2.9% and 23.1% of samples with 
A675V mutant genotypes respectively. Mutations R561H, 
C469F, and C580Y were not detected in any of the sam-
ples from the study sites. The PfK13 C469Y mutation was 
observed in approximately 14.3% of samples from Apac, 
with 14.3% showing mixed genotypes. Mbale, Moroto, 
and Soroti had 7.0%, 14.7%, and 8.3% of samples with the 
Pfk13 C469Y mutation, respectively, with varying pro-
portions of mixed genotypes.

Mutations in the Pfdhfr gene demonstrated a signifi-
cant presence in the samples from all districts. The N51I 
mutation reached a fixation rate of 100% in all districts. 
The C59R mutation was widespread, with Apac showing 
97.6% of samples with the mutant genotypes and 2.4% 
mixed. Mbale had 93.0% mutants and 4.7% mixed, while 
Moroto and Soroti showed 100% and 92.3% mutants, 
respectively, with the remaining samples showing mixed 

genotypes. The I164L mutation was present in 11.6% of 
Apac samples, with the rest being wild-type or mixed. In 
Mbale, 7.0% of samples had this mutation, and Moroto 
and Soroti showed 2.9% and 7.7% mixed mutants, respec-
tively. The S108N mutation was fixed in all samples from 
Apac, Mbale, Moroto, and Soroti.

For the Pfdhps gene, the A437G mutation was preva-
lent across all districts, with Apac showing 88.4% of sam-
ples with this mutation and 2.3% mixed. Mbale had 97.6% 
mutants and 2.4% mixed, Moroto had 97.1% mutants 
and 2.9% mixed, and Soroti showed 100% mutants. The 
A581G mutation was not present in Apac, Moroto, and 
Soroti, while Mbale showed 2.3% mixed genotypes with 
97.7% mutants. The K540E mutation was prevalent 
in Apac with 88.1% of samples showing this mutation 
and 4.8% mixed. Mbale, Moroto, and Soroti also exhib-
ited high prevalence rates with 97.6%, 97.1%, and 100% 
mutants, respectively, indicating widespread resistance.

The high prevalence quintuple mutations(Pfdhfr;N51I,
C59R,S108Nand Pfdhps:A437G,G540E) mediating resist-
ance to sulfadoxine-pyrimethamine is widespread in all 
four districts.

Mutations in the Pfcrt gene, specifically K76T, were 
rare. In Apac, all samples were wild-type with only 2.5% 
showing the mutant form, Mbale 97.5% were wild-type 
and 2.5% mutant, Moroto 97.1% wild type, 2.9% mutants, 
and Soroti all samples had wild-type. This low prevalence 
of K76T mutation indicates less resistance associated 
with chloroquine in these regions.

The analysis of the Pfmdr1 gene mutations showed 
minimal variation across the study sites. The N1042D, 
and N86Y mutations was absent in all samples across 
the study sites. The D1246Y and mutation was present in 
Soroti with 8.3%, while Apac, Mbale, and Moroto all had 
wild genotypes. The Y184F mutation was also absent in 
all samples from the districts.

Figures 2, 3, 4, 5 show the prevalence of different gen-
otypes on the PfK13, Pfdhfr, Pfdhps, Pfcrt and Pfmdr1 
genes across sample collection sites in Apac, Mbale, 
Moroto, and Soroti. The figure displays the frequency 
of various mutations among genes. The prevalence of 
mutations is represented as a percentage, with the Y-axis 
showing the proportion of mutant (red), mixed (yellow), 
and wild-type (green) genotypes.

Discussion
The study revealed that artemisinin resistance has rapidly 
emerged in new regions of Uganda. There is a character-
istic trend of the spread (Figs. 2–5) that shows that where 
there is a mutant, the presence of mixed mutant and wild 
is indicative of the ongoing fitness cost of wild type and 
mutant genotype strains of P. falciparum in the popula-
tion which gradually mutants genotype will be prominent 

https://github.com/bailey-lab/MIPTools
https://github.com/bailey-lab/MIPTools
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with increased use of artemisinin. The detection of muta-
tions in the Pfk13 gene, particularly the A675V and 
C469Y single nucleotide polymorphisms, suggests the 
presence of emerging artemisinin resistance in these 
regions similar to previous reports [5] [6]. To monitor 
this process requires point in time national surveillance 
and geospatial mapping to inform targeted interventions 
[21, 22].

The high prevalence of fixed mutations in the Pfdhfr 
(N51I, S108N, C59R) and pfdhps (A437G, K540E) genes 
across the study sites indicates widespread resistance 

to antifolate drugs, which are components of the com-
bination therapy sulfadoxine-pyrimethamine (SP). The 
near-fixation of the C59R and A437G mutations and the 
emerging I164L mutation highlight the continued selec-
tion pressure exerted by SP, despite its limited use as a 
first-line treatment though used in pregnant women [23], 
and patients with sickle cell disease [24–26], as prophy-
laxis or presumptive treatment. The finding of a mixed 
genotype at the A581G locus in Mbale suggests ongoing 
selection and potential for further spread of resistance. 
The results of mutations in antifolate genes mediating 

Fig. 2 Prevalence of PfK13 gene mutations

Fig. 3 Prevalence of antifolate mutations in the Pfdhfr gene
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resistance are consistent with reported data from differ-
ent regions in Uganda [6, 12, 14].

The Pfcrt K76T mutation, associated with chloroquine 
resistance, was predominantly wild type in the four dis-
tricts, with only a small percentage of mutant alleles 
detected in Mbale and Moroto. This reflects the success-
ful withdrawal of chloroquine from malaria treatment 
protocols, leading to a reversion to wild-type alleles and 
results are consistent with what was reported in other 
regions of Uganda [6, 12] and also previously reported 
reversal sensitivity from Malawi [27] and other south-
ern africa countries [28]. However, the persistence of 
some mutant alleles suggests that chloroquine resistance 
could re-emerge if the drug were reintroduced without 

adequate monitoring [29]. This may be one of the major 
lessons on use of antimalarials. Successful withdrawal of 
antimalarials potentially paves way for their re-use for 
therapy in the future. Since this has happened to chloro-
quine, it is likely to happen to ACT and therefore, arte-
misinin-based combinations should not be thrown away 
if the stage of withdrawal reaches.

Finally, the wild-type status of the Pfmdr1 N86Y allele 
across most districts, with some mixed genotypes in 
Soroti, suggests limited selection pressure from drugs 
targeting this gene, such as mefloquine. Interestingly, the 
high prevalence of the wild-type N86 and Y184F identi-
fied in the four regions are associated with decreased 
sensitivity to lumefantrine, which is selected by the 

Fig. 4 Prevalence of antifolate mutations in the Pfdhps gene

Fig. 5 Prevalence of mutations in the transporter genes
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current first-line artemisinin combination therapy (AL) 
in Uganda. This suggests that the same polymorphisms 
have opposite effects on sensitivity to different drugs [6, 
10, 11, 30].

Limitations
A key limitation of this study is the relatively small num-
ber of successfully genotyped specimens across all four 
study areas, with fewer than 50 specimens in total. This 
limitation was particularly pronounced in Soroti, where 
only 11 to 13 specimens were successfully analysed. As 
described in the methodology, low parasitaemia sig-
nificantly impacted sequencing success. To address this 
challenge, the study sequenced all collected samples and 
reattempted sequencing for those with poor DNA yield. 
In addition, the specimens analysed were not fully repre-
sentative of the broader parasite population in the study 
areas, particularly given the low success rate in Soroti. 
This affects the generalizability of the findings. Despite 
these efforts, the sample size remains a constraint, 
and future studies with larger cohorts are planned to 
strengthen the findings.

Conclusion
The study highlights the complex and evolving landscape 
of antimalarial resistance in Uganda, with significant 
implications for malaria control strategies. The findings 
underscore the need for enhanced surveillance of molec-
ular markers, public awareness campaigns to promote the 
rational use of antimalarials, and consideration of alter-
native treatment regimens where resistance is prevalent. 
Continued monitoring and timely updates of treatment 
guidelines will be crucial to maintaining the effectiveness 
of malaria control programmes in Uganda.
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