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Abstract

Background: Our previous studies found the single-level cervical disc arthroplasty

(CDA) might be a feasible treatment for the patients with reversible kyphosis (RK).

Theoretically, the change of cervical alignment from lordosis to RK comes with the

biomechanical alteration of prostheses and cervical spine. However, the biomechani-

cal data of CDA in the spine with RK have not been reported. This study aimed at

establishing finite element (FE) models to (1) explore the effects of RK on the biome-

chanics of artificial cervical disc; (2) investigate the biomechanical differences of

single-level anterior cervical discectomy and fusion (ACDF) and CDA in the cervical

spine with RK.

Methods: The FE models of the cervical spine with lordosis and RK were con-

structed, then three single-level surgical models were developed: (1) RK + ACDF;

(2) RK + CDA; (3) lordosis + CDA. A 73.6-N follower load combined with 1 N�m
moment was applied at the C2 vertebra to produce cervical motion.

Results: At the surgical level, “lordosis + CDA” had the greatest ROM (except for

flexion) while “RK + ACDF” had the minimum ROM. However, at adjacent levels, the

ROM of “RK + ACDF” increased by 4.05% to 38.04% in comparison to “RK + CDA.”
“RK + ACDF” had the greatest prosthesis interface stress, while the maximum pros-

thesis interface stress of “RK + CDA” was at least 2.15 times higher than “lordosis
+ CDA.” Similarly, “RK + ACDF” had the greatest intradiscal pressure (IDP) at adja-

cent levels, while the IDP of “RK + CDA” was 1.6 to 6.7 times higher than “lordosis
+ CDA.” At the surgical level, “RK + CDA” had the greatest facet joint stress (except

for extension), which was 1.9 to 11.2 times higher than “lordosis + CDA.” At the

adjacent levels, “RK + CDA” had the greatest facet joint stress (except for extension),

followed by “RK + ACDF” and “lordosis + CDA” in descending order.

Conclusions: RK significantly changed the biomechanics of CDA, which is demon-

strated by the decreased ROM and the significantly increased prosthesis interface

stress, IDP, and facet joint stress in the “RK + CDA” model. Compared with ACDF,
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CDA overall exhibited a better biomechanical performance in the cervical spine with

RK, with the increased ROM of surgical level and facet joint stress and the decreased

ROM of adjacent levels, prosthesis interface stress, and IDP.

K E YWORD S

anterior cervical discectomy and fusion, biomechanics, cervical disc arthroplasty, finite
element analysis, reversible kyphosis

1 | INTRODUCTION

Anterior cervical discectomy fusion (ACDF) is the standard procedure

for managing symptomatic cervical degenerative disc disease that did

not respond to conservative treatment. However, by converting a

mobile, functional spinal unit into a fixed segment, ACDF resulted in

the increased strain at adjacent levels, presumably leading to acceler-

ated disc degeneration and/or segmental instability at these levels.1,2

In response to these concerns, cervical disc arthroplasty (CDA) has

emerged as an alternative to fusion, aiming to restore normal inter-

vertebral motion and avoid the abnormal kinematic stresses produced

by fusion.3 Several meta-analyses and randomized controlled studies

with long-term follow-up have revealed that CDA could achieve com-

parable or superior clinical and radiological outcomes compared with

ACDF.4–6

The lordosis has been extensively considered as the normal and

physiological curvature of cervical spine, but the kyphosis, which is

regarded as the abnormal deformity or morbid status, accounted for

up to 35% asymptomatic population.7,8 In a study of 958 asymptom-

atic adult volunteers, Kim et al. reported that more than one-fourth of

the participants (26.3%) had kyphotic cervical posture, and almost

five-sixth of the kyphotic individuals (83.3%) exhibited reversible

kyphosis (RK).9

There was no consensus about whether CDA could be indicated

for the patients with kyphosis. Due to the strict indications of CDA,

the lack of anterior column support for most artificial cervical disc

prostheses, and reasonable prudence toward this new surgical tech-

nique, most studies reported the application of CDA in the cervical

spine with lordosis.5,6,10 Some surgeons regarded kyphosis or severe

kyphosis as a contraindication for CDA,11–13 given that the segmental

kyphosis was massively reported after the insertion of BRYAN® Cer-

vical Disc (Medtronic Sofamor Danek).14 But some authors found that

CDA could restore the cervical alignment to some extent.15–18 Our

previous studies8,19 also found that for the single-level CDA patients,

both lordosis and RK groups achieved satisfactory and comparable

clinical outcomes; in the patients with RK, the clinical and radiological

outcomes of CDA were non-inferior to those of ACDF.

Biomechanically, a lordotic configuration could effectively resist

compressive loads and minimize the stress on the vertebral body

endplates.7 Also, the lordotic shape allows the cervical spine to dis-

tribute nearly 64% load of the head through the posterior columns

and 36% load through the anterior column.20 It is predicted that the

change of cervical alignment from lordosis to RK comes with the

biomechanical alteration of prostheses and cervical spine. However,

the biomechanical data of CDA in the spine with RK have not been

reported.

The purpose of this study was to (1) establish finite element

(FE) models to simulate three single-level operations, namely “RK
+ ACDF,” “RK + CDA,” and “lordosis + CDA”; (2) explore the effects

of RK on the biomechanics of artificial cervical disc and cervical spine

by comparing the FE analysis results of “RK + CDA” and “lordosis
+ CDA”; (3) investigate the biomechanical differences of single-level

ACDF and CDA in the cervical spine with RK by comparing the FE

analysis results of “RK + ACDF” and “RK + CDA.”

2 | MATERIALS AND METHODS

2.1 | Construction of cervical spine model with
lordosis and RK

The nonlinear FE model of the cervical spine with lordosis (C2–C7)

was developed and validated in our previous study.21 This lordosis

model was constructed based on the computed tomography

(CT) images of a young male without cervical degeneration (28-year-

old, 165 cm, 65 kg) with a resolution of 0.75 mm and an interval of

0.69 mm (SOMATOM Definition AS+, Siemens). Similarly, the CT

images of an asymptomatic male with RK (32-year-old, 161 cm, 62 kg)

were adopted to establish the RK model (Figure 1). The RK was

defined when the kyphosis in the neutral position was spontaneously

corrected to straight or lordosis in extension.8,19

The CT images (Digital Imaging and Communications, DICOM for-

mat) were imported into Mimics 17.0 (Materialize Inc.) to reconstruct

the geometric structure of the C2–C7 cervical vertebrae. Then, the

reconstructed model was imported into Geomagic Studio 12.0

(3D System Corporation) to acquire nonuniform rational B-splines sur-

faces. In this step, the errors and regional burrs of model were

corrected by denoising, surfacing, and smoothing; the cortical and

cancellous bones were reconstructed individually to achieve an accu-

rate anatomic model. Next, the model was imported into Hypermesh

12.0 (Altair) to generate a high-quality FE mesh. The material property

and element types were listed in Table 1. The number of elements

and nodes of each model were presented in Table 2. The mesh con-

vergence of a FE model was tested and verified by comparing the Von

Mises stress in different mesh resolutions. The mesh was considered

converged if the Von Mises stress changed less than 5% when the
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mesh density was doubled. The 10-node second-order tetrahedral

C3D10 element was used for the components of bone and prosthe-

ses; the second-order 20-node hexahedral C3D20 element was used

for the components of cartilage and intervertebral disc; the tension-

only truss element was used for ligaments and annular fiber. Finally,

the model was imported into ABAQUS 6.9.1 (Dassault Systems Cor-

poration) to set boundary conditions and perform the analysis.

The cancellous bone region of each vertebra was set as solid ele-

ments. The cortical bone and bony endplates of each vertebra were con-

structed as a shell with a thickness of 4 mm.28 The intervertebral disc

consisted of the annulus fibrosus and nucleus pulposus with a volume

ratio of 6:4. The annulus fibers, which accounted for approximately 19%

of the entire annulus fibrosus volume, were embedded in the ground sub-

stance with an inclination to the transverse plane between 15 and

30 degrees.28 The outer layer of nucleus pulposus and the inner layer of

annulus fibrosus shared the same nodes (Figure 2). A tie connection was

defined between the intervertebral disc and endplates. The facet joint

space was 0.5 mm, and each facet joint was covered by an articular carti-

lage layer with nonlinear frictionless surface-to-surface contact.21 Five

groups of ligaments, namely anterior longitudinal ligament (ALL), posterior

longitudinal ligament (PLL), ligamentum flavum, interspinous ligament, and

capsular ligament, were attached to the corresponding vertebrae using

tension-only truss elements.

2.2 | Construction of prosthesis model

The three-dimensional computer-aided design model of the Zero-P

Spacer (Synthes) and Prestige LP Disc (Medtronic Sofamor Danek) were

built in this study. According to the measurements of intervertebral

F IGURE 1 The finite element
model of reversible kyphosis (RK).
The cervical spine model with RK
displayed kyphosis in neutral
position (A), increased kyphosis in
flexion (B), and lordosis in
extension (C)

TABLE 1 The material properties and element types of finite element models

Young's modulus (MPa) Poisson ratio Element type References

Cortical bone 12 000 0.3 C3D10 22,23

Cancellous bone 450 0.25 C3D10 22,24

Cartilage 10.4 0.4 C3D20 21,22

Endplate 500 0.25 C3D20 22,24

Nucleus pulposus Hyperelastic, Mooney–Rivlin, C1 = 0.12, C2 = 0.03 0.499 C3D20 23,25

Annulus fibrosus substance Hyperelastic, Mooney–Rivlin, C1 = 0.18, C2 = 0.045 0.45 C3D20 23,25

Annulus fibers 360–550 – T3D2 26,27

ALL 30 – T3D2 22,24

PLL 20 – T3D2 21,22

Ligamentum flavum 1.5 – T3D2 21,22

Capsular ligament 20 – T3D2 22,24

Interspinous ligament 1.5 – T3D2 22,24

Supraspinous ligament 1.5 – T3D2 21,22

Titanium alloy 110 000 0.3 C3D10 21,22

PEEK 3600 0.3 C3D10 21,24

Abbreviations: ALL, anterior longitudinal ligament; PLL, posterior longitudinal ligament.
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space at C5–C6 level and size parameters of protheses, the length,

width, and height of Prestige LP Disc were 16, 12, and 6 mm; the

corresponding data of Zero-P Spacer were 16.5, 17.5, and 6 mm

(Figure 3). The ball-and-trough articulation design of Prestige LP Disc

allows the flexion-extension motion to be coupled with the anterior–

posterior translation in the sagittal plane.29 The Zero-P Spacer consists

of PEEK interbody spacer, titanium alloy plate, and screws.

These prostheses were implanted at the C5–C6 level. To simulate

the surgical operation, the intervertebral disc, ALL, and PLL of C5–C6

level were completely removed, and the lower endplate of C5 vertebra

and the upper endplate of C6 vertebra were partially removed.30 The

cancellous bone graft, which was defined as frictionless, filled the mid-

dle cage of Zero-P Spacer.21 A nonbonded contact was applied

between the supra- and infra-adjacent surfaces of the cage and the rel-

evant vertebral surfaces with a contact friction coefficient of 0.3.21 The

tie constraint was applied to graft-vertebrae and screw-vertebrae inter-

faces to simulate rigid fusion and sufficient osseointegration.31 The

implant-implant interfaces of the artificial cervical disc were defined as

surface-to-surface sliding contact with a friction coefficient of 0.07.21

In total, three surgical procedures were simulated by FEmodels, that is,

“RK + Zero-P Spacer (RK + ACDF),” “RK + Prestige LPDisc (RK + CDA),”
and “lordosis + Prestige LPDisc (lordosis + CDA)” (Figure 4).

2.3 | Boundary conditions

The lordosis and RK models were fixed at the inferior endplate of C7

vertebra. The follower loads of 73.6 N were applied at the C2

vertebra to simulate head weight. A 1 N�m moment was applied at the

odontoid to produce flexion, extension, lateral bending, and axial rota-

tion. For all models, the following parameters were recorded in six dif-

ferent directions at the surgical level and/or adjacent levels: the range

of motion (ROM), intradiscal pressure (IDP, the maximum Von Mises

stress of intervertebral disc), facet joint stress (the maximum Von

Mises stress of facet joint), and the maximum Von Mises stress of the

prosthesis.

3 | RESULTS

3.1 | Validation of the lordosis and RK model

The ROMs of lordosis model were within the one standard deviation

of previous experimental data,32–34 which indicated that the current

lordosis model could statistically represent a healthy individual

(Figure 5).

To our knowledge, no in vivo or in vitro cadaver studies reported

the ROMs of the cervical spine with kyphosis. This study constructed

the FE model of the cervical spine with RK for the first time. This RK

model displayed kyphosis in a neutral position, increased kyphosis in

flexion, and lordosis in extension, which conformed to the definition

of RK (Figure 1). The ROMs of RK model in extension or flexion were

similar to the kyphosis model of John et al.35 (Table 3).

3.2 | Range of motion

The ROMs of different models were presented in Figure 6. At C5–C6

level, compared with “RK + CDA,” the ROM of “RK + ACDF”
decreased by 86.24%, 64.99%, 66.79%, 67.46%, 67.28%, 70.04% in

flexion, extension, left bending, right bending, left rotation, and right

rotation, respectively; compared with “lordosis + CDA.” the ROM of

“RK + CDA” increased by 14.74% in flexion, but decreased by

58.19%, 5.63%, 10.63%, 4.24%, 9.59% in other directions.

At C4–C5 level, compared with “RK + CDA,” the ROM of “RK
+ ACDF” increased by 4.80%, 4.05%, 4.52%, 4.47%, 4.67%, 5.60% in

flexion, extension, left bending, right bending, left rotation, and right

rotation, respectively; compared with “lordosis + CDA,” the ROM of

TABLE 2 The number of elements and nodes of each model

Model Element Node

Lordosis 410 564 568 273

Reversible kyphosis 406 871 506 547

Reversible kyphosis + ACDF 586 379 802 101

Reversible kyphosis + CDA 544 515 728 053

Lordosis + CDA 495 197 672 174

Abbreviations: ACDF, anterior cervical discectomy fusion; CDA, cervical

disc arthroplasty.

F IGURE 2 The finite element model of the intervertebral disc
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“RK + CDA” increased by 79.21% in flexion, but decreased by

55.18%, 2.29%, 3.24%, 3.39%, 3.56% in other directions.

At C6–C7 level, compared with “RK + CDA,” the ROM of “RK
+ ACDF” increased by 17.16%, 12.90%, 38.04%, 33.35%, 21.19%,

20.78% in flexion, extension, left bending, right bending, left rotation,

and right rotation, respectively; compared with “lordosis + CDA,” the
ROM of “RK + CDA” increased 53.76% in flexion, but decreased by

54.53%, 15.20%, 16.36%, 10.43%, 11.70% in other directions.

F IGURE 4 Three simulated surgical procedures. (A) Reversible kyphosis + Zero-P Spacer, (B) reversible kyphosis + Prestige-LP Disc, and
(C) lordosis + Prestige-LP Disc

F IGURE 3 The finite element models
of prostheses. (A) Prestige LP Disc;
(B) Zero-P Spacer
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3.3 | The maximum Von Mises stress of the
prosthesis

The maximum Von Mises stress of the prosthesis of “RK + CDA” was

at least 2.15 times higher than that of “lordosis + CDA”. Compared

with “RK + CDA,” the maximum Von Mises stress of the prosthesis of

“RK + ACDF” increased by 31.46%, 33.11%, 50.63%, 70.85%, 34.41%,

52.71% in flexion, extension, left bending, right bending, left rotation,

and right rotation, respectively (Figure 7). In terms of “RK + ACDF,”
the maximum Von Mises stress of the interbody spacer occurred at the

anterior part in different directions of movement (Figure 8).

3.4 | IDP at adjacent levels

At C4–C5 level, the IDP of “RK + CDA” was 2.3 to 6.7 times higher

than that of “lordosis + CDA”; compared with “RK + CDA,” the IDP

of “RK + ACDF” increased by 25.18%, 41.12%, 33.65%, 25.00%,

27.21%, 23.07% in flexion, extension, left bending, right bending, left

rotation, and right rotation, respectively (Figure 9).

At C6–C7 level, the IDP of “RK + CDA” was 1.6 to 4.9 times

higher than that of “lordosis + CDA”; compared with “RK + CDA,”
the IDP of “RK + ACDF” increased by 22.62%, 17.61%, 13.86%,

17.08%, 19.71%, 23.31% in flexion, extension, left bending, right

bending, left rotation, and right rotation, respectively (Figure 9).

3.5 | Facet joint stress

The facet joint stress of different models was presented in Figure 10.

At C5–C6 level, compared with of RK model, the facet joint stress of

“RK + ACDF” decreased by 34.23%, 77.15%, 48.44%, 50.16%,

44.18%, 43.25% in flexion, extension, left bending, right bending, left

rotation, and right rotation respectively, while the facet joint stress of

“RK + CDA” increased by 47.17%, 2.94%, 15.46%, 35.21%, 28.96%,

20.96% during the same motion. The facet joint stress of “RK + CDA”
was 1.9 to 11.2 times higher than that of “lordosis + CDA.”

At C4–C5 level, compared with “RK + ACDF,” the facet joint

stress of “RK + CDA” increased by 15.38%, 143.48%, 47.64%,

28.60%, 25.66%, 33.33% in flexion, extension, left bending, right

bending, left rotation, and right rotation, respectively; except for

extension, the facet joint stress of “RK + CDA” was 1.5 to 10.9 times

higher than that of “lordosis + CDA.”
At C6–C7 level, compared with “RK + ACDF,” the facet joint

stress of “RK + CDA” increased by 40.84%, 47.93%, 42.41%, 38.93%,

41.80%, 39.05% in flexion, extension, left bending, right bending, left

rotation, and right rotation, respectively; except for extension, the

facet joint stress of “RK + CDA” was 1.14 to 12.8 times higher than

that of “lordosis + CDA.”

4 | DISCUSSION

4.1 | Construction of cervical spine model with RK

At the time of manuscript preparation, the FE model of proximal junc-

tional kyphosis after the surgery for adult spinal deformity (mainly at

F IGURE 5 The comparison of range of motions between the
lordosis model and experimental data

TABLE 3 The comparison of range of motions in flexion or
extension between reversible kyphosis model and the kyphosis model
of John et al.35

C2–C3 C3–C4 C4–C5 C5–C6 C6–C7

Flexion

John et al.35 3.36� 3.35� 4.77� 4.5� 5.36�

Present study 4.56� 2.88� 3.97� 5.12� 5.94�

Extension

John et al.35 3.28� 3.58� 4.99� 3.31� 3.47�

Present study 2.92� 2.14� 2.23� 2.21� 4.17�
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the thoracic and lumbar spine) was well-established. However, no

in vivo or in vitro cadaver studies reported the ROMs of the cervical

spine with kyphosis. Very few FE studies focused on the cervical spine

with malalignment such as straight and kyphosis. Chen et al. com-

pared the strain behavior and ROMs of malaligned cervical spine

implanted with different prostheses, but the ROMs of the intact

F IGURE 6 The comparison of range
of motions between different models at
surgical and adjacent levels

F IGURE 7 The comparison of the maximum Von Mises stress of the prosthesis between different models

HU ET AL. 7 of 11



cervical spine with kyphosis were not presented.36 Wei et al. reported

the stress and ROMs of the straightened cervical spine rather than

the kyphotic one.37 Pramudita et al. reported the 100-ms relative

intervertebral rotations of five head–neck FE models.38

In terms of the study of John and colleagues,35 they

established lordotic, straight, and kyphotic FE cervical spine models

to investigate the influence of sagittal alignment on the ROM after

corpectomy. Perhaps due to the unavailability of ROMs of the cer-

vical spine with kyphosis, their segmental ROMs were validated

with physiological moment-rotation characteristics reported from

cadaver experiments (the cervical spine with lordosis). They also

described the ROMs of the kyphotic model in flexion and extension

before and after corpectomy. To our knowledge, it was the only FE

study that reported the ROMs of the intact cervical spine with

kyphosis. Our ROMs of RK model in extension or flexion were simi-

lar to those of John et al.35

4.2 | The FE analysis of single-level CDA
in the spine with lordosis or RK

This FE analysis showed that RK would decrease the ROM at surgi-

cal and adjacent levels in extension, lateral bending, and axial rota-

tion but increase the flexion ROM. These results were in

agreement with some previous studies.37,39 Wei et al. reported the

ROM of the cervical spine with reduced lordosis decreased 24%–

33% compared to that of the normal physiological model. Miyazaki

et al. observed the translational motion and angular variation

tended to decrease at all levels when the alignment shifted from

normal to less lordotic.39 However, John et al. found the flexion

ROM decreased by an average of 13% with the change in sagittal

alignment from lordosis to kyphosis,35 which was inconsistent with

our results. This contradiction could be partly explained by the dif-

ferent modeling methods of cervical spine. In John's study, the

mesh morphing and rigid body rotation were used to generate

straight and kyphotic models from the baseline lordotic model.35

F IGURE 8 The stress distribution of interbody spacer in the “reversible kyphosis + anterior cervical discectomy and fusion” model.
The maximum Von Mises stress of the interbody spacer occurred at the anterior part in different directions of movement

F IGURE 9 The comparison of intradiscal pressure at adjacent
levels between different models
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This method largely neglected the compatibility, fitness, and alter-

ation of delicate bone structures (such as facet joint and

uncovertebral joint) that might experience deformation along with

cervical alignment change, presumably leading to increased stiff-

ness eventually.

This FE analysis found that RK could significantly increase the

stress of anterior column (intervertebral disc at adjacent levels and

Prestige LP Disc) and posterior column (facet joints). Similarly, Wei

et al. reported the Von Mises stress of the cervical spine with reduced

lordosis were all higher than the normal model, increasing 50%–95%

under different load conditions.37 It was speculated that the reduced

lordosis or kyphosis of cervical spine tended to shift the greater part

of the load from the posterior columns to the anterior column, which

could potentially increase adjacent segment mechanical load and con-

tribute to the development of adjacent segmental degeneration.20 On

the other hand, the IDP values at adjacent levels of kyphotic models

were significantly higher than those of lordotic models, indicating the

risk of disc rupture or herniation at adjacent levels was much higher in

the cervical spine with kyphosis.

4.3 | The FE analysis of single-level CDA and
ACDF in the spine with RK

This study found both CDA and ACDF increased the ROM of adjacent

levels. However, compared with “RK + CDA,” the ROM of “RK
+ ACDF” decreased by an average of 70.47% at the surgical level and

increased 4.68% and 20.3% at C4–C5 and C6–C7 levels, respectively.

The FE analysis of Hua et al.,22 Choi et al.,40 and Grandhi et al.41

reported similar results, indicating that CDA could theoretically slow

down adjacent segment degeneration by preserving the intervertebral

motion of implanted spine unit.

This study observed that compared with ACDF, CDA could sig-

nificantly reduce the prosthesis interface stress and IDP at adjacent

levels and increase the facet joint stress at the surgical levels. In this

study, compared with “RK + ACDF,” the maximum prosthesis inter-

face stress of “RK + CDA” decreased an average of 45.53%; the IDP

decreased an average of 29.2% at C4–C5 level and 19.03% at C6–

C7 level; the facet joint stress increased 2.69 folds in average. Like-

wise, Choi et al. reported that the Prodisc-C led to increased motion

and facet joint stress at the index level and decreased motion, facet

joint stress, and IDP at both adjacent levels.40 In an in vitro study

with cadaveric cervical specimens, Zhao et al. revealed the maximum

facet joint stress of CDA was 2.72 times higher than ACDF on aver-

age.42 It was speculated that ACDF eliminated the intervertebral

motion at the surgical level, causing the stress concentration in the

anterior column at the surgical and adjacent levels. Also, the fused

segments blocked the motion of facet joints, which gave rise to the

stress shielding and prevented the force transmission. It should be

noted that the maximum facet joint stress of “RK + CDA” was

40.3% higher than that of “RK + ACDF.” The fixed load (1 N�m
moment) and increased stiffness at adjacent levels caused by ACDF

could explain this result.

There are several limitations in this FE study. First, there was no

muscular tissue in this cervical spine model. Thus, the FE model could

not fully simulate the natural cervical spine.30 Second, the surgical

procedure was largely simplified in FE models. For instance, the dis-

traction of vertebrae before inserting a prosthesis was not simu-

lated.21 Third, this study only involved two kinds of prostheses. Other

artificial cervical discs like Bryan Cervical Disc, Prodisc-C, and the tra-

ditional “cage + plate” procedure were not simulated. These prosthe-

ses and surgical procedures may have different materials, kinematics,

and fixation methods, which might bring about diverse results.

5 | CONCLUSIONS

RK significantly changed the biomechanics of CDA, which is demon-

strated by the decreased ROM and the significantly increased pros-

thesis interface stress, IDP, and facet joint stress in the “RK + CDA”
model. Compared with ACDF, CDA overall exhibited a better biome-

chanical performance in the cervical spine with RK, with the increased

ROM of surgical level and facet joint stress and the decreased ROM

of adjacent levels, prosthesis interface stress, and IDP.

F IGURE 10 The comparison of facet joint stress between
different models
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