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Genetically informed, deep-phenotyped biobanks are an important research resource
and it is imperative that the most powerful, versatile, and efficient analysis approaches
are used. Here, we apply our recently developed Bayesian grouped mixture of regressions
model (GMRM) in the UK and Estonian Biobanks and obtain the highest genomic
prediction accuracy reported to date across 21 heritable traits. When compared to
other approaches, GMRM accuracy was greater than annotation prediction models
run in the LDAK or LDPred-funct software by 15% (SE 7%) and 14% (SE 2%),
respectively, and was 18% (SE 3%) greater than a baseline BayesR model without single-
nucleotide polymorphism (SNP) markers grouped into minor allele frequency–linkage
disequilibrium (MAF-LD) annotation categories. For height, the prediction accuracy
R2 was 47% in a UK Biobank holdout sample, which was 76% of the estimated
h2
SNP . We then extend our GMRM prediction model to provide mixed-linear model

association (MLMA) SNP marker estimates for genome-wide association (GWAS)
discovery, which increased the independent loci detected to 16,162 in unrelated UK
Biobank individuals, compared to 10,550 from BoltLMM and 10,095 from Regenie, a
62 and 65% increase, respectively. The average χ2 value of the leading markers increased
by 15.24 (SE 0.41) for every 1% increase in prediction accuracy gained over a baseline
BayesR model across the traits. Thus, we show that modeling genetic associations
accounting for MAF and LD differences among SNP markers, and incorporating prior
knowledge of genomic function, is important for both genomic prediction and discovery
in large-scale individual-level studies.

genomic prediction | association study | Bayesian penalized regression

As biobank datasets increase in size, it is important to understand the factors limiting
the prediction of phenotype from genotype. Alongside others, we have recently shown
that genomic prediction accuracy can be improved through the use of random-effects
models that incorporate prior knowledge of genomic annotations and allow for differences
in the variance explained by single-nucleotide polymorphism (SNP) markers, depending
upon their linkage disequilibrium (LD) and their minor allele frequency (MAF) (1–8).
These improvements in prediction accuracy should also translate into greater genome-
wide association study (GWAS) discovery power. Mixed-linear models of association
(MLMA) are commonly applied in GWASs in a two-step approach, where a random-
effects model is first used to estimate leave-one-chromosome-out (LOCO) genetic values,
and these are then used in a second marginal regression coefficient estimation step.
Theory suggests that the test statistics obtained in the MLMA second step depend upon
the accuracy of the LOCO genomic predictors produced from the first step. Current
MLMA implementations use a blocked ridge regression model (9), a Restricted Maximum
Likelihood (REML) genomic relationship model (10), or a Bayesian spike-and-slab model
(11) within the first step.

Here, we improve the computational implementation of our recently developed
Bayesian grouped mixture of regressions model (GMRM), which estimates genetic marker
effects jointly, but with independent marker inclusion probabilities and independent h2

SNP
parameters across LD, MAF, and functional annotation groups (Materials and Methods).
This allows us to apply the model to 21 traits in the UK Biobank to test for prediction
accuracy improvements over existing approaches. We then extend the model to provide
MLMA SNP marker association estimates to test whether improved prediction accuracy
translates to improved GWAS discovery compared to existing MLMA approaches.

Results

Genomic Prediction. We begin with an analysis of 428,747 UK Biobank individuals
genotyped at 8,430,446 markers with MAF > 0.0002 that overlap with markers imputed
in the Estonian Genome Centre data. For computational convenience we then removed
markers in very high LD using the “clumping” approach of plink, where we ranked
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Fig. 1. Prediction accuracy of a GMRM. (A) Prediction accuracy obtained by GMRM for the 21 traits compared to the best individual-level LDAK prediction
model (LDAK), a BayesR model with five mixture groups (BayesR), or polygenic risk scores calculated using BoltLMM mixed-linear model association SNP marker
effects (PRS). (B) The prediction accuracy of LDAK and GMRM models as a percentage difference from the accuracy obtained from the BayesR model. Error bars
in give 95% CIs. Full trait code descriptions are given in SI Appendix, Table S1.

SNPs by minor allele frequency and then selected the highest
MAF SNPs from any set of markers with LD R2 ≥ 0.8 within
a 1-Mb window. This results in the selection of a tagging set
of 2,174,071 variants, with only variants in very high LD with
the tag SNPs removed (Materials and Methods). We show that
our GMRM yields higher prediction accuracy than previously
published estimates that we are aware of for all 21 traits in a
UK Biobank holdout sample of 30,000 individuals (Fig. 1). A
GMRM improves over a baseline BayesR model implemented in
our software that assumes that markers come from five mixtures,
of four normal distributions and a Dirac spike at zero, by an
average of 18% (SE 3%, Fig. 1). Our prior is composed of 78
marker sets, each with five mixtures, with marker sets selected
based on genomic annotations, LD, and MAF (Materials and
Methods), and for a subset of five of the traits we also explore
different prior formulations (SI Appendix, Fig. S1). We find that
our prediction accuracy gains generally stem from addition of
a large number of mixture distributions with independent vari-
ance parameters and from MAF and LD groupings, with only
small gains in prediction accuracy achieved through annotation

grouping (SI Appendix, Fig. S1). We find similar patterns of phe-
notypic variance attributable to our 13 annotation groups across
traits, with ubiquitous enrichment at intronic regions, few exam-
ples of transcription factor binding site and enhancer enrichment,
and much less variance attributed to SNP markers that are distal
to genes than expected given the number of markers in this group
(SI Appendix, Fig. S2). Additionally, we also modeled height and
body mass index (BMI) without the LD clumping, using the full
set of 8,430,446 markers, and found the same prediction accuracy
of 0.468 for height and 0.146 for BMI.

We then compared our approach to a variety of other methods
at different sets of SNP markers. At the same set of 2,174,071
SNP markers, we determined the best possible prediction accuracy
obtained from the LDAK software (5), using either the BLD
-LDAK annotations or the same annotation groups used by
the GMRM and the models LDAK-Bolt-Predict and LDAK-
BayesR-Predict. We find that LDAK improves prediction accuracy
over an individual-level baseline BayesR model (Fig. 1), but that
prediction accuracy was generally lower than that obtained by a
GMRM (Fig. 1), with a GMRM improving prediction accuracy
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Fig. 2. Prediction accuracy of GMRM in UK and Estonian Biobanks. (A) Prediction accuracy of the GMRM effects sizes as a percentage of their upper bound (the
SNP heritability) for 21 traits. (B) Prediction accuracy obtained by GMRM for the 21 traits compared to that expected from ridge-regression theory. (C) Prediction
accuracy obtained using GMRM UK Biobank estimates in UK Biobank holdout data (UK→UK), GMRM UK Biobank estimates in Estonian data (UK→EE), and UK
Biobank and Estonian meta-analysis GMRM estimates in Estonian holdout data (UK+EE→EE) for five focal traits. (D) Odds ratio for top 1% of the GMRM genetic
predictor compared to all others, within UK→UK and UK+EE→EE for T2D, CAD, and high BP. Error bars in give 95% CIs. Full trait code descriptions are given in
SI Appendix, Table S1.

over the best LDAK model by an average of 15% (SE 7%). Both
LDAK and the recently presented LDPred -funct model use an
LD score framework to determine the variance attributable to
the SNPs, and thus we removed markers of MAF < 0.01, giving
a set of 6,991,095 markers, and from this we also conducted
LD clumping to give a set of 1,410,525 markers (Materials and
Methods). This tests whether the prediction accuracy improve-
ments of a GMRM are attributable to the fact that our software
can accommodate rare variants. For common SNPs, we find that
a GMRM outperforms LDPred-funct by 14% (SE 2%) and an
LDAK-BayesR-Predict model by 6% (SE 0.7%), but an LDAK-
Bolt-Predict model by only 2% (SE 0.7%). Compared to the
GMRM results presented in Fig. 1 at 2,174,071 SNP markers,
changes in prediction accuracy resulting from the exclusion of rare
variants differed among traits, but generally including rare variants
improved prediction accuracy (SI Appendix, Fig. S3). Thus, we
highlight that there is no “best” model for all human phenotypes,
but a flexible prior formulation that can accommodate differences
in phenotypic variance attributable to the MAF, LD, and anno-
tation properties of the markers across traits generally provides
improved genomic prediction.

The h2
SNP estimate obtained from GMRM sets the upper

bound for prediction accuracy in an independent sample and we
achieve over 76% of the h2

SNP for height and over 50% for 12
of the traits in the UK Biobank holdout sample (Fig. 2). The
expected prediction accuracy in an independent sample under
ridge regression assumptions is given by ref. 12 and we use this
equation, with the number of markers in the model as a proxy for
M and the estimates of SNP heritability obtained from GMRM,
to compare to the prediction accuracy we obtain. We find that the
accuracy obtained by GMRM is higher than that expected from
theory by up to 12.5% (mean 4.1%, SD 3.4%; Fig. 2). We meta-
analyzed the posterior mean effect sizes obtained from the UK
Biobank, with those obtained from a GMRM analysis of 105,000

Estonian Genome Centre participants, and then predicted into
an Estonian holdout sample of 20,000 individuals, improving
prediction of BMI (prediction accuracy of 16.1%) and cardiovas-
cular disease (CAD) (prediction accuracy of 7%) over the accuracy
obtained in the UK Biobank holdout sample (Fig. 1). Previous
results have highlighted the lack of transfer of genomic predictors
across populations, and here we achieved reduced prediction
accuracy for high blood pressure (BP) and type-2 diabetes (T2D)
diagnoses in Estonia compared to the UK Biobank. Thus, while
these results highlight the potential of running individual-level
analyses in each biobank and then meta-analyzing the results to
improve genetic predictors, they also highlight the likely trait
dependency of applicability of predictors across different health
systems. Nevertheless, we show high stratification across both
populations of early-onset risk groups with individuals in the top
1% of predicted genetic values having seven times (95% CI 4 to
9) higher risk of CAD, eight times (95% CI 6 to 11) higher risk of
high BP in the UK Biobank holdout sample, and four times (95%
CI 3 to 8) higher risk of T2D prior to 60 y of age, compared to
the rest of the population (Fig. 2). Thus, we show how Bayesian
posterior SNP effects size estimates can be meta-analyzed across
studies to improve identification of individuals at high risk of early
common disease onset.

Mixed-Linear Model Association. We now change focus from
genomic prediction to GWAS discovery, in particular, the
commonly applied MLMA approach. We modified our GMRM
approach to provide MLMA SNP estimation within a leave-one-
genomic-region-out or leave-one-chromosome-out framework.
We validate this approach in simulation study, showing that
our GMRM MLMA approach yields higher power at associated
variants, while controlling for pervasive population stratification,
but not strong common environment effects (SI Appendix,
Fig. S4). In simulation, GMRM MLMA shows higher true
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Fig. 3. GWAS discovery of a GMRM in the UK Biobank. (A) Number of LD-independent genomic regions identified at 5 × 10−8 by GMRM, compared to in
BoltLMM (Bolt) and Regenie (Regenie) across 21 traits. (B) For SNP markers identified at 5 × 10−8 by Bolt, Regenie, and GMRM, we estimated the difference in
χ2 value between GMRM and Regenie and plotted this against the difference in prediction accuracy of GMRM compared to a BayesR model, to test whether
discovery power scales with improved prediction accuracy of using MAF-LD annotation groups. Shaded area gives the 95% CIs of the regression line. Full trait
code descriptions are given in SI Appendix, Table S1.

positive rates, but at the cost of slightly higher and still well-
controlled false discovery rate compared to BoltLMM (11),
being < 5% with relatives and strong common environment
confounding and < 1% with close relatives excluded. Thus,
we applied this approach to the UK Biobank data, with first-
degree relatives removed to minimize the potential for common
environment confounding. We find that GMRM MLMA yields
greater association testing power than comparable MLMA
methods of BoltLMM or Regenie (9) for all traits (Fig. 3). The
number of independent GWAS loci detected at P value 5× 10−8

was 16,162 for GMRM MLMA, compared to 10,550 from
BoltLMM and 10,095 from Regenie, a 65 and 62% increase,
respectively. At regions identified by all approaches at P value
5× 10−8, we find that the difference in the χ2 values obtained by
GMRM MLMA compared to Regenie scales with the difference
in prediction accuracy obtained in independent samples (Fig. 3),
a relationship expected by theory (Materials and Methods). The
average χ2 value of the leading markers was higher for GMRM
MLMA compared to Regenie by 26.94 (SE 4.59) and increased
by 15.24 (SE 0.41) for every 1% increase in prediction accuracy
gained over a baseline BayesR model across the traits, consistent
with an increase in power. We reanalyzed the data removing
rare variants and compared our results to those obtained by
Findor (13), BoltLMM, and Regenie at 6,991,095 common
variants and at the 2,174,071 LD-pruned tagging variant set,
finding the same improved performance for GMRM MLMA
(SI Appendix, Fig. S5).

A GMRM approach also provides fine mapping of the as-
sociations (window posterior probability of association [WPPA]
approach) (Materials and Methods) and we fine map 170 asso-
ciations to single markers with posterior inclusion probability
PIP ≥ 0.95, 307 associations to SNP sets of 2 to 5 markers
with PIP ≥ 0.95, and 497 to groups of 6 to 20 markers with
PIP ≥ 0.95 (SI Appendix, Fig. S6). A total of 60% of the total
GMRM MLMA associations fine mapped regions that contained
≥ 100 SNPs in LD. Thus, while we show that modeling genetic
associations accounting for marker properties is important for
discovery in large-scale individual-level biobank-scale studies, we

highlight how LD in the genome creates difficulty for pinpointing
the mechanistic basis of the associations.

Discussion

Here, we show that association discovery and genomic prediction
can be improved simply by better utilizing current data with
flexible prior formulations. However, there remain important
limitations. All of the above analyses were conducted using im-
puted genetic markers of minor allele frequency >0.0002 in a
sample of UK Biobank European-ancestry individuals (Materials
and Methods and SI Appendix, Table S1) as a demonstration of
the utility of our approach. The portability of polygenic scores
across human populations needs to be addressed to avoid poly-
genic risk stratification that is discriminatory toward groups lit-
tle represented in currently available genomic data. This is an
active research area, and our future work will involve accessing
performance in analyses of diverse samples and examining how
transfer learning can improve model estimation across worldwide
biobank data. Second, summary statistic approaches have been
developed, some of which also account for genomic annotations,
MAF, and LD when creating genetic predictors (4, 5, 14, 15),
and these methods are essential for utilizing currently available
summary data and for situations when individual-level data are
not accessible. However, summary statistics approaches have yet to
yield the prediction accuracy obtained in this study (4, 5, 14, 15).
Here, we have shown how using empirical data from two biobanks
can facilitate gains in discovery and polygenic prediction, through
a focus on creating powerful and efficient software applications to
maximize individual-level data analysis and then meta-analyzing
the results across biobanks. Thus, we hope that previous consortia
analyses can be revisited with a range of improved methodology
to facilitate further gains in discovery and polygenic prediction.
Achieving similar prediction accuracy while minimizing computer
resources is a focus of future work, but currently our approach is
coded in highly optimized C++ code, with run times compara-
ble to existing approaches, albeit with greater central processing
unit (CPU) use (SI Appendix, Figs. S7 and S8). For example, our
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main analyses (2 million SNPs and 400,000 individuals) took on
average 30 h using 24 CPUs.

Materials and Methods

UK Biobank Data. UK Biobank has approval from the North-West Multicenter
Research Ethics Committee (MREC) to obtain and disseminate data and samples
from the participants (https://www.ukbiobank.ac.uk/ethics/), and these ethical
regulations cover the work in this study. Written informed consent was obtained
from all participants. From the measurements, tests, and electronic health record
data available in the UK Biobank data (16), we selected 12 blood-based biomark-
ers, 3 of the most common heritable complex diseases, and 6 quantitative
measures. The full list of the 21 traits, the UK Biobank coding of the data used, and
the covariates adjusted for are given in SI Appendix, Table S1. For the quantitative
measures and blood-based biomarkers we adjusted the values by the covariates,
removed any individuals with a phenotype greater or less than 7 SD from the
mean (assuming these are measurement errors), and standardized the values to
have mean 0 and variance 1.

For the common complex diseases, we determined disease status using a
combination of information available. For high BP, we used self-report informa-
tion of whether high blood pressure was diagnosed by a doctor (UK Biobank code
6150-0.0), the age high blood pressure was diagnosed (2966-0.0), and whether
the individual reported taking blood pressure medication (6153-0.0, 6177-0.0).
For T2D, we used self-report information of whether diabetes was diagnosed by a
doctor (2443-0.0), the age diabetes was diagnosed (2976-0.0), and whether the
individual reported taking diabetes medication (6153-0.0, 6177-0.0). For CAD,
we used self-report information of whether a heart attack was diagnosed by a
doctor (3894-0.0), the age angina was diagnosed (3627-0.0), whether the indi-
vidual reported a heart problem diagnosed by a doctor (6150-0.0), and the date
of myocardial infarction (42000-0.0). For each disease, we then combined this
with primary death ICD-10 (International Classification of Diseases 10th Revision)
codes (40001-0.0); causes of operative procedures (41201-0.0); and the main
(41202-0.0), secondary (41204-0.0), and inpatient ICD10 codes (41270-0.0). For
BP we selected ICD10 codes I10, for T2D we selected ICD10 codes E11 to E14 and
excluded from the analysis individuals with E10 (type-1 diabetes), and for CAD
we selected ICD10 codes I20 to I29. Thus, for the purposes of this analysis, we
define these diseases broadly simply to maximize the number of cases available
for analysis. For each disease, individuals with neither a self-report indication nor
a relevant ICD10 diagnosis were then assigned a zero value as a control.

We restricted our discovery analysis of the UK Biobank to a sample of Euro-
pean individuals. To infer ancestry, we used both self-reported ethnic background
(21000-0) selecting coding 1 and genetic ethnicity (22006-0) selecting coding 1.
We also took the 488,377 genotyped participants and projected them onto the
first two genotypic principal components (PC) calculated from 2,504 individuals
of the 1,000 Genomes project with known ancestries. Using the obtained PC
loadings, we then assigned each participant to the closest population in the
1,000 Genomes data: European, African, East Asian, South Asian, or Admixed,
selecting individuals with PC1 projection < absolute value 4 and PC 2 projec-
tion < absolute value 3. Samples were excluded if in the UK Biobank quality-
control procedures they 1) were identified as extreme heterozygosity or missing
genotype outliers, 2) had a genetically inferred gender that did not match the self-
reported gender, 3) were identified to have putative sex chromosome aneuploidy,
4) were excluded from kinship inference, or 5) had withdrawn their consent for
their data to be used. We used the imputed autosomal genotype data of the UK
Biobank provided as part of the data release. We used the genotype probabilities
to hard call the genotypes for variants with an imputation quality score above 0.3.
The hard-call threshold was 0.1, setting the genotypes with probability ≤ 0.9
as missing. From the good-quality markers (with missingness less than 5% and
P value for Hardy–Weinberg test larger than 10−6, as determined in the set of
unrelated Europeans) we selected those with MAF > 0.0002 and rs identifier, in
the set of European-ancestry participants, providing a dataset 9,144,511 SNPs.
From this we took the overlap with the Estonian Genome Centre data described
below to give a final set of 8,430,446 markers. For computational convenience
we then removed markers in very high LD using the clumping approach of plink,
where we ranked SNPs by minor allele frequency and then selected the highest-
MAF SNPs from any set of markers with LD R2 ≥ 0.8 within a 1-Mb window. This
results in the selection of a tagging set of variants, with only variants in very high

LD with the tag SNPs removed. These filters resulted in a dataset with 458,747
individuals and 2,174,071 markers.

We split the sample into training and testing sets for each phenotype, se-
lecting 30,000 individuals that were unrelated (SNP marker relatedness <0.05)
to the training individuals to use as a testing set. This provides an independent
sample of data with which to access prediction accuracy. For the complex diseases,
we randomly select 1,000 cases and match to 29,000 controls, again ensuring
that these individuals were unrelated to those in the training sample.

Estonian Biobank Data. All Estonian Biobank participants have signed a
broad informed consent form and the study was carried out under ethical
approval 1.1-12/2856 from the Estonian Committee on Bioethics and Human
Research (Estonian Ministry of Social Affairs) and released under data release
P03. The Estonian Biobank (EstBB) is a population-based cohort encompassing
20% of Estonia’s adult population (200,000 individuals, 66% females;
https://genomics.ut.ee/en/content/estonian-biobank). Individuals underwent
microarray-based genotyping at the Core Genotyping Lab of the Institute of
Genomics, University of Tartu. A total of 136,421 individuals were genotyped
on Illumina Global Screening Arrays (GSAs) and we imputed the dataset to an
Estonian reference, created from the whole-genome sequence data of 2,244
participants (17). From 11,130,313 markers with imputation quality score
>0.3, we selected SNPs that overlapped with those selected in the UK Biobank,
resulting in a set of 8,430,446 markers.

General data, including basic body measurements, were collected at recruit-
ment. Project-based questionnaires were sent later and filled out on a voluntary
basis. Health records are regularly updated through linkage with the national
Health Insurance Fund and other relevant databases, providing sporadic access to
blood biomarker measurements and medical diagnoses (18). For the genotyped
individuals, we had data available for height and body mass index and we
removed individuals plus or minus 7 SD from the mean and adjusted both
phenotypes by the age at enrollment, sex, and the first 20 PCs of the SNP marker
data. Prevalent cases of BP, CAD, and T2D in the Estonian Biobank cohort were
first identified on the basis of the baseline data collected at recruitment, where
the information on prevalent diseases was either retrieved from medical records
or self-reported by the participant. The cohort was subsequently linked to the
Estonian Health Insurance database that provided additional information on
prevalent cases (diagnoses confirmed before the date of recruitment) as well
as on incident cases during the follow-up. For BP we selected ICD10 code I10,
for CAD we selected codes of I20 to I29, and for T2D we selected codes E11
to E14 and excluded E10. We also split the sample into training and testing
sets for each phenotype, selecting 20,000 individuals that were unrelated (SNP
marker relatedness<0.05) to the training individuals to use as a testing set. This
provides an independent sample of data with which to access prediction accuracy.
For the complex diseases, we randomly select 1,000 cases and match to 19,000
controls, again ensuring that these individuals were unrelated to those in the
training sample.

Bayesian GMRM. We extend the software implementation of our recently
developed Bayesian grouped mixture of regression model (1):

y = 1μ+
Φ∑

ϕ=1

Xϕβϕ + ε, [1]

where there is a single intercept term 1μ and a single error term ε but SNPs are
allocated into groups (ϕ1, . . . , ϕΦ), each of which has its own set of model pa-

rameters Θϕ =
{
βϕ, πβϕ , σ2

βϕ

}
. As such, each βϕj is distributed according

to

βϕj ∼ π0ϕδ0 + π1ϕN
(

0, σ2
1ϕ

)
+ . . .+ π5ϕN

(
0, σ2

5ϕ

)
, [2]

where for each SNP marker group
{
π0ϕ , π1ϕ , . . . , π5ϕ

}
are the mixture propor-

tions and
{
σ2

1ϕ , σ2
2ϕ , . . . ,σ2

5ϕ

}
are the mixture-specific variances proportional

to σ2
βϕ

× 0.0001, σ2
βϕ

× 0.001, σ2
βϕ

× 0.01, σ2
βϕ

× 0.1. Note that our soft-
ware facilitates different choices of groups, mixture number, and mixture scaling
constants.
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The mixture proportions and variance explained by the SNP markers are all
unique and independent across SNP marker groups. Following our previous
work (1), we partition SNP markers into seven location annotations using the
knownGene table from the University of California Santa Clara browser data, pref-
erentially assigning SNPs to coding (exonic) regions first; then in the remaining
SNPs we preferentially assign them to intronic regions, then to 1-kb upstream
regions, then to 1- to 10-kb regions, then to 10- to 500-kb regions, and then to
500-kb to 1-Mb regions. Remaining SNPs were grouped in a category labeled
“others” and also included in the model so that variance is partitioned relative to
these also. Thus, we assigned SNPs to their closest upstream region; for example,
if a SNP is 1 kb upstream of gene X, but also 10 to 500 kb upstream of gene
Y and 5 kb downstream of gene Z, then it was assigned to be a 1-kb region
SNP. This means that SNPs 10 to 500 kb and 500 kb to 1 Mb upstream are
distal from any known nearby genes. We further partition upstream regions to
experimentally validated promoters, transcription factor binding sites (tfbs), and
enhancers (enh) using the HACER, snp2tfbs databases. All SNP markers assigned
to 1-kb regions map to promoters; 1- to 10-kb SNPs, 10- to 500-kb SNPs, and
500-kb to 1-Mb SNPs are split into enh, tfbs, and others (unmapped SNPs),
extending the model to 13 annotation groups. Within each of these annotations,
we have three minor allele frequency groups (MAF < 0.01, 0.01 > MAF >
0.05, and MAF > 0.05), and then each MAF group is further split into two based
on median LD score. This gives 78 nonoverlapping groups for which our model
jointly estimates the phenotypic variation attributable to, and the SNP marker
effects within, each group. For each of the 78 groups, SNPs were modeled using
five mixture groups with variance equal to the phenotypic variance attributable to
the group multiplied by constants (mixture 0= 0, mixture 1= 0.00001, mixture
2= 0.0001, 3= 0.001, 4= 0.01, 5= 0.1). The probabilities that markers enter
each of the five mixtures (the mixture components) and the variance attributable
to the marker group (σ2

βϕ
) are all estimated independently, linked only by a

residual updating scheme and thus a regression problem where the number
of covariates greatly exceeds the number of measured individuals is broken
down into a series of interdependent regressions where the number of covariates
within a group is always far less than the total sample size.

We first extend our prediction software to accommodate the analysis of
multiple traits simultaneously. While this approach does not yet utilize esti-
mates of the genetic or residual covariance among different outcomes when
estimating the SNP effects, a number of coding developments were made to
improve speed of the baseline calculations and facilitate the random number
generation, vectorization of the effect size estimation, and missing data handling
for multiple outcomes. We benchmarked the timing of our software increasing
the sample size, marker number, number of traits analyzed, and the number of
Message Passing Interface (MPI) processes, to demonstrate the scalability of our
approach as the dimensionality of the data increases. We present these results in
SI Appendix, Figs. S7 and S8.

Assessment of Prediction Accuracy and Method Comparisons. We apply
the model to the 21 UK Biobank traits described above and use the posterior
mean SNP marker effects to predict into the holdout sample. We repeat the analy-
sis without the MAF-LD annotation groups, fitting five mixture components, which
is equivalent to a BayesR model. SEs are calculated by the method proposed by
Fisher (19). Additionally, we explore other prior options for five UK Biobank traits,
presenting these results in SI Appendix, Fig. S1.

We then repeat the analysis using the individual-level prediction models
implemented in LDAK (LDAK-Bolt-Predict and LDAK-BayesR-Predict) described in
a recent paper (5), with both the BLD-LDAK annotations and the same annotations
used for the GMRM model as described above. We then present the highest
prediction accuracy obtained as measured by the correlation between the pre-
dictor and the phenotype within the holdout UK Biobank sample. With the aim
of providing a simple benchmark, we also repeated the analysis using BoltLMM,
selecting an LD-clumped (R2 ≤ 0.01 within a 1-Mb window) subset of markers
for the random-effect term, and we then used the mixed-linear model association
marker effects at the same set of 2,174,071 SNPs to create a predictor. We present
these comparisons in Fig. 1.

We then select 1,410,525 common variants with MAF ≥ 0.01 from the
2,174,071 marker sets and repeat the GMRM and LDAK prediction analysis
to compare the model prediction accuracy obtained from a set of common
SNPs. Additionally, we used BoltLMM to generate mixed-linear model association

summary statistics for 6,991,095 SNPs of minor allele frequency ≥ 0.01, again
using an LD-clumped (R2 ≤ 0.01 within a 1-Mb window) subset of markers for
the random-effect term. We used these summary statistics and compared to the
LDPred-funct method (4) using UK Biobank LD score annotations (baselineLF
v2.2.UKB) (20). We present these comparisons in SI Appendix, Fig. S3.

We then predict into the Estonian Biobank data, run the GMRM in the Estonian
data, and predict into the Estonian holdout sample using both UK Biobank model
estimates and UK and Estonian Biobank combined estimates. We present these
in Fig. 2.

Mixed-Linear Association Modeling. We extended our software to return
the typical fixed-effect SNP regression coefficients estimated by other MLMA
approaches. In the first step of running GMRM, the SNP marker effects that we
obtain are jointly estimated and thus within each iteration, estimation is made
accounting for the effects of other markers in both short- and long-range LD. From
these estimates, we can obtain partitioned predictors for each focal block k of the
genome g̃blockk

=
∑j

j=1 xj,−kβj,−k , where xj,−k are the values of SNP markers
that are not part of block k and βj,−k are their jointly estimated posterior mean
effects. These can then be used when testing for association in a second step
to yield standard frequentist mixed-model summary statistics, following other
approaches. When testing for association of the phenotype with a marker xj from
focal block k, we consider a simple linear model

ỹblockk
= xj,kβj,k + εk , [3]

where ỹblockk
= ỹ − g̃blockk

gives the phenotypic residuals where the polygenic
effects estimated across the genome other than the focal testing block are
adjusted for, xj is the jth marker in the focal block, βj is the ordinary least-
squares estimate for the jth marker in block k, and εk is the residual error, with
ε∼ N

(
0, INσ

2
ε

)
with Mk the number of markers within block k.

A t-test statistic is then straightforward to obtain as

Tj,k =
xT

j,k ỹblockk

[σ2
ỹblockk

xT
j,kxj,k]0.5

, [4]

where σ2
ỹblockk

is calculated as 1
N ||ỹ

T
blockk

||2
2, where N is the number of individuals.

A normal approximation of T 2
j,k ≈ χ2

1 is used to give the P value. A step-by-step
algorithm for this GMRM MLMA approach is given in Algorithm 1 in SI Appendix.

The test statistic values obtained are an approximation of the mixed-model
χ2 statistic if one were to model the SNP as a fixed effect with a full mixed-model
equation. This approach follows recent studies (ref. 9 and equations 23 and 24 of
supplementary online material of ref. 11), in particular as theχ2 statistic obtained
from BoltLMM is equivalent to computing the squared correlations between
SNPs being tested and a best linear unbiased predictor, which is the approach
taken here. The power of mixed-model association is driven by the fact that focal
test SNPs are tested against a “denoised” residual phenotype, from which other
SNP effects estimated by the mixed model have been conditioned out. Here, we
expect the SNP marker-effect estimation to be improved as the genetic predictor
used to residualize the phenotype should have a higher prediction accuracy
within an independent sample if the true underlying SNP marker effects differ
across MAF-LD annotation groups. While further work is required to optimize this
approach for rare diseases using saddle-point approximations and to account
for the covariance of multiple outcomes, here we wished to simply demonstrate
that modeling SNP effects in MAF-LD annotation groups in the first step yields
improved MLMA fixed-effect marker estimates in the second step. We verify this
approach in a simulation study as described below.

Guided by the simulation study results, we subset the UK Biobank data to in-
dividuals that were related to less than first-degree relatives (n = 414, 055). We
then obtained MLMA estimates using GMRM MLMA in a leave-one-chromosome-
out approach and we also verified these by placing the LOCO predictors that
we obtain from GMRM into the second step of the Regenie software. This en-
abled a direct comparison with Regenie and we also compared to the results
obtained by BoltLMM. We present these MLMA results in Fig. 3 for the full
8,430,446 SNPs set, where the LOCO predictors of GMRM were obtained from
the 2,174,071 LD-clumped SNPs set and MLMA SNP estimates were made for
the full 8,430,446 SNPs set. For BoltLMM and Regenie we selected an LD-
clumped (R2 ≤ 0.01 within a 1-Mb window) ∼1 million subset of markers for
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the variance component/LOCO predictions as the authors suggest this is optimal,
and then we obtained MLMA SNP estimates for the full 8,430,446 SNPs set. In
SI Appendix, Fig. S5, we present the MLMA results for the 2,174,071 LD-clumped
SNPs set, again using all 2,174,071 variants for the GMRM LOCO predictor and
LD-clumped (R2 ≤ 0.01 within a 1-Mb window) 1 million subset of markers for
the variance component/LOCO predictions of BoltLMM/Regenie. We also present
MLMA results for 6,991,095 SNPs of minor allele frequency ≥ 0.01, where the
1,410,525 common variants with MAF ≥ 0.01 from the 2,174,071 markers set
were used for the variance component/LOCO predictions of all approaches. Addi-
tionally, for the 6,991,095 SNPs of minor allele frequency ≥ 0.01 we compare
our results to Findor (13), a P-value weighting approach using the expected
variance attributable to SNPs through an LD score UK Biobank annotation model
based on BoltLMM summary statistics. For all approaches, we clump the results
with the following Plink commands: –clump-kb 5000 –clump-r2 0.01 –clump-
p1 0.00000005, which represents a conservative definition of independent loci
within a 5-Mb window and an R2 threshold of 0.01.

Simulation Study. We follow a similar simulation study design to that
presented in a number of recent studies (10). From our quality-controlled UK
Biobank data, we first randomly selected 100,000 individuals with relatedness
estimated from SNP markers of≤ 0.05 and used marker data from chromosomes
1 through 10 with MAF ≥ 0.001 to give 1.36 million SNPs. For the odd
chromosomes, we randomly selected 10,000 LD-independent SNP markers
as causal variants. We simulated effect sizes for the causal variants, b, by drawing
from a normal distribution with zero mean and variance 0.5/10,000. We then
scaled the 10,000 causal variant SNP markers to have mean 0 and variance 1
and multiplied them by the simulated marker-effect sizes to give genetic values
with mean 0 variance 0.5. In previous work (1), we have extensively explored
the ability of our GMRM approach to recover SNP effects sizes and accurately
estimate SNP-heritability parameters independently of the relationship of
effect sizes, MAF, and LD, and so here we simply assume a simple underlying
genetic model of randomly selected causal variants and no relationship between
effect size and MAF or LD. We then simulate population stratification effects by
scaling the loadings of the 100,000 individuals on the first principal component
calculated from the genetic data and multiplying the values by

√
0.05; this

gives a vector of values, ps with variance 0.05. Finally, individual environment
values are drawn from a normal distribution with zero mean and variance
1 − Var(Xb)− Var(ps), so that the sum of the genetic, ps, and environmental
values gives a phenotype with zero mean and variance 1. We replicate this
simulation 10 times, referring to it in the main text and the figures as “random
unrelated” causal variant allocation.

Using the same randomly selected individuals, we repeat the simulation
but we separate the genetic markers into four groups, randomly selecting
1,000 LD-independent exonic markers, 1,000 LD-independent intronic markers,
1,000 LD-independent transcription factor binding site markers, and 7,000
LD-independent markers from other annotation groups. We then sample the
marker effects for each of the four groups, drawing from independent normal
distributions with zero mean and variance 0.1/1,000, 0.25/1,000, 0.1/1,000, and
0.05/7,000, respectively. This gives three annotation groups with larger effect size
variance but the same number of causal variants and a total variance explained
by the SNP markers var(Xb) = 0.5 as the previous simulation setting. We
then simulated population stratification effects in the same way and individual
environment values by drawing from a normal distribution with zero mean
and variance 1 − Var(Xb)− Var(ps), so that the sum of the genetic, ps, and
environmental values gives a phenotype with zero mean and variance 1. We also
replicate this simulation setting 10 times, referring to it in the main text and the
figures as “enrichment unrelated” causal variant allocation.

We then repeat the “random” and the “enrichment” simulation settings, but
we change the selection of the individuals used for the simulation. We randomly
select 10,000 unique sibling pairs from the UK Biobank data and combine
these with 80,000 randomly selected unrelated individuals to give a mixture of
relatedness similar to the proportions of related and unrelated individuals in the
UK Biobank data. We simulate the same genetic and ps values, but we also add
a common environmental variance by drawing a value for each sibling pair from
a normal distribution with mean 0 and variance 1 and allocating a value of 0
to each of the unrelated individuals. We scale these values by

√
0.12 to give

a vector of among-family differences, pe, with variance 0.12. Finally, individual

environment values are drawn from a normal distribution with zero mean and
variance 1 − Var(Xb)− Var(ps)− Var(pe), so that the sum of the genetic, ps,
pe, and environmental values gives a phenotype with zero mean and variance
1. We replicate this simulation 10 times, referring to it in the main text and the
figures as “random related” and “enrichment related” causal variant allocation.

We then analyze these data using BoltLMM, fastGWA (10), and GMRM-MLMA
and calculate the average χ2 values (using an approximation that T 2 ≈ χ2) for
the causal variants, which gives a comparative measure of the power of each
approach. We also calculate the averageχ2 values (again using an approximation
that T 2 ≈ χ2) obtained from markers on the even chromosomes that contain
no causal variants, comparing to the null expectation of 1. These results are
presented in SI Appendix, Fig. S4. We find improved power of GMRM-MLMA
over other approaches in all settings, with control of the pervasive population
stratification. We find only moderate χ2 inflation when relatives share strong
common environment effects that is the same as that obtained by BoltLMM. This
inflation never increased the false discovery rate (FDR) above 3.5% in any of the
simulations, but was best controlled by a fastGWA approach.

Utilizing the Posterior Distribution Obtained. We apply our model to each
UK Biobank and Estonian Genome Centre data trait, running two short chains
for 5,000 iterations and combining the last 2,000 posterior samples together.
We show in SI Appendix, Fig. S9 that the prediction accuracy obtained from our
model and the hyperparameter estimates of h2

SNP converge within the first 2,000
iterations. While obtaining a full posterior distribution with many hundreds of
independent samples would require running longer chains, we show that the
posterior mean effect size for each SNP that we use for prediction (and thus also
in the estimation of the MLMA effect sizes) is well approximated within this run
time (SI Appendix, Fig. S9), which is sufficient in this work to assess the prediction
accuracy of our approach and to estimate the variance attributable to different
genomic regions.

We estimate the proportion of total h2
SNP attributable to each genomic an-

notation and we divide this proportion by the proportion of SNP markers in
the model for this annotation given the total number of SNP markers in the
model. This gives an estimate of the enrichment of the marker effects, whereby
if the average effect sizes of markers within a given annotation are larger than
expected given the number of markers entering the model for that annotation,
then the value obtained should be greater than 1. Conversely, smaller than
expected marker effects will yield values less than 1. We present these results
in SI Appendix, Fig. S2, where we find substantial enrichment of SNP heritability
in intronic regions across traits and weak evidence that enrichment differs across
traits, with exonic enrichment for height, forced vital capacity, mean corpuscular
hemoglobin, low- and high-density lipoprotein, and blood cholesterol levels
(SI Appendix, Fig. S2). Generally, blood-based biomarkers show enrichment at
proximal promotors, transcription factor binding sites, and enhancers, with varia-
tion in complex diseases and quantitative traits attributable to distal transcription
factor binding sites and enhancers in proportion to that expected given the
number of markers in the model (SI Appendix, Fig. S2). SNP markers located
greater than 500 kb from a gene explained a far smaller proportion of variance
explained then expected given the number of markers that map to the region
(SI Appendix, Fig. S2).

We previously presented a WPPA approach (1). The WPPA is estimated by
counting the proportion of Markov chain Monte Carlo samples in which the
regression coefficient βj is greater than a given threshold for at least one SNP
j in a given genomic window, which can be used as a proxy for the posterior
probability that the genomic region contains a causal variant. Because WPPA
for a given window is a partial association conditional on all other SNPs in the
model, including those flanking the region, the influence of flanking markers on
the WPPA signal for any given window will be inversely related to the distance
k of the flanking markers. Thus, as the number of markers between a causal
variant and the focal window increases, the influence of the causal variant on
the WPPA signal will decrease and so WPPA computed for a given window can
be used to locate associations for that given window, while also controlling the
false discovery rate. Thus, it represents an approach to fine-mapping association
results to groups of SNP markers. Here, we group markers by LD into 341,380
LD-independent groups using plink’s clumping procedure, which selects groups
of markers (from single SNPs to groups of 100 or more) with LD R2 ≥ 0.1 within
a 1-Mb window. For each of these 341,380 SNP groups we calculate the WPPA,
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defined as the posterior probability that a group explains at least 0.0001% of
the phenotypic variance. The number of groups with WPPA ≥ 0.95 is shown in
SI Appendix, Fig. S6.

Comparisons to Theory. We note the important distinction between predic-
tion SNP effect sizes that are obtained from mixed-models/penalized regression
models, in which a single model is fitted where all SNPs are included as random
effects, and those obtained from an MLMA model where individual SNP associa-
tion estimates are typically sought. Here, we sought to make this distinction clear
by comparing the prediction accuracy obtained by GMRM and its baseline BayesR
model to that obtained from using other random-effect models implemented
in LDAK and to predictors created from MLMA estimates to demonstrate that it
is inappropriate to create polygenic risk scores from MLMA estimates compared
to random-effect models. The expected prediction accuracy in an independent
sample under ridge regression assumptions is given by ref. 12 as

R2 =
h2

SNP

1 + M
Nh2

SNP
(1 − R2)

[5]

and we use this equation, with the number of markers in the model as a proxy for
M and the estimates of h2

SNP obtained from GMRM, to compare to the prediction
accuracy we obtain.

For the common complex disease traits, we place the estimates of the propor-
tion of variance explained by the SNP markers on the liability scale to facilitate
comparison with the quantitative measures. The linear transformation of heri-
tability from the observed 0 to 1 scale, h2

o , to that of liability scale h2
l is

h2
l ∼

h2
o K(1 − K)

z2 [6]

with K the population lifetime prevalence and z the height of the normal curve
at the truncation point pertaining to K (21). We did not observe the population
lifetime prevalence of any disease within either population and so we make the
assumption that the prevalence in the UK Biobank and Estonian Biobank samples
provides a very distant approximation. We scale the estimates of the prediction
accuracy to also place these on the liability scale, R2

l , as

R2
l ∼

R2
o K2(1 − K2)

z2P(1 − P)
[7]

with P the proportion of cases in the testing sample. Note that this expression is
also an approximation and can result in bias when ascertainment is extreme and
heritability on the liability scale is high, although this is expected to be small in
practice and negligible for the three disease traits considered here (22).

Previous work (23) has shown that the expectation of the mean χ2 value at
causal SNPs is given by

E[χ2
causal SNPs] = 1 +

Nh2
SNP

Mcausal · 1
1−R2

[8]

with N the sample size. Thus, under the assumptions of no confounding, no case–
control ascertainment-induced confounding, and no pervasive familial related-
ness, increased prediction accuracy should yield increased power (χ2 statistics)
at SNPs that are associated with underlying causal variants.

Data Availability. Data from this project were held under UK Biobank project ID
35520. The individual-level genotype and phenotype data are available through
formal application to the UK Biobank (www.ukbiobank.ac.uk). The Estonian
Biobank data are available upon request from the cohort author R.M. according to
data access protocols to researchers with approval from the Estonian Committee
on Bioethics and Human Research (Estonian Ministry of Social Affairs). Sum-
maries of all posterior distributions obtained and the MLMA-associated results
are deposited in Dryad (24). GMRM software is fully open source and available at
https://github.com/medical-genomics-group/gmrm (25). Anonymized data have
been deposited in Dryad (24). Some study data are available (the individual-level
genotype and phenotype data are available through formal application to the UK
Biobank (https://www.ukbiobank.ac.uk/).
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