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Abstract
Resveratrol is often described as a promising therapeutic molecule for numerous diseases,

especially in metabolic and neurodegenerative disorders. While the mechanism of action is

still debated, an increasing literature reports that resveratrol regulates the mitochondrial

respiratory chain function. In a recent study we have identified mitochondrial complex I as a

direct target of this molecule. Nevertheless, the mechanisms and consequences of such an

interaction still require further investigation. In this study, we identified in silico by docking

study a binding site for resveratrol at the nucleotide pocket of complex I. In vitro, using solu-

bilized complex I, we demonstrated a competition between NAD+ and resveratrol. At low

doses (<5μM), resveratrol stimulated complex I activity, whereas at high dose (50 μM) it

rather decreased it. In vivo, in brain mitochondria from resveratrol treated young mice,

we showed that complex I activity was increased, whereas the respiration rate was not

improved. Moreover, in old mice with low antioxidant defenses, we demonstrated that com-

plex I activation by resveratrol led to oxidative stress. These results bring new insights into

the mechanism of action of resveratrol on mitochondria and highlight the importance of the

balance between pro- and antioxidant effects of resveratrol depending on its dose and age.

These parameters should be taken into account when clinical trials using resveratrol or ana-

logues have to be designed.

Introduction
Resveratrol (RSV), a redox-active polyphenol found in various plants, has a wide range of bio-
logical properties, including anticancer, anti-inflammatory, cardio- and neuro-protective
effects. Its potential benefit on health has been mainly attributed to its antioxidant properties
[1–3] and its interaction with the sirtuins, a class of histone deacetylase enzymes [4].
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Mitochondria are key targets of RSV. Indeed, RSV modulates mitochondrial ROS produc-
tion, mitochondrial biogenesis [5, 6], via its interaction with SIRT1 [7, 8], and energy metabo-
lism via either transcriptional [9, 10] or enzymatic activation of SIRT3 [11, 12]. In addition,
RSV also interacts with respiratory chain complexes, as the F0F1 ATP synthase [13], resulting
either in an activation of the enzyme at low concentrations (i.e. picomolar to nanomolar) [14]
or in an inhibition of its activity at higher doses (i.e. micromolar) [14, 15]. Zini et al. further
showed that RSV also inhibited complex III [16]. Complex I (CI) plays a crucial role in main-
taining mitochondrial homeostasis, not only through its role in the energy metabolism and the
reactive oxygen species (ROS) production [17], but also by regulating the NAD+/NADH ratio
[18]. Recently, we identified CI as a direct target of RSV, resulting in an increase of its enzy-
matic activity at low doses (i.e. 1–5 μM) [19]. Nevertheless, the mechanism of interaction
between CI and RSV and its consequences on CI function remain to be determined. The recent
crystallization of CI structure shed light on the subunit organization and the functional sites
involved in its catalytic activities [20], enabling the in silico binding prediction studies. At a bio-
chemical point of view, CI comprises three structural modules: N, Q and P [21]. The N-module
is responsible for the oxidation of NADH into NAD+, generating 2 electrons and reducing the
flavin mononucleotide (FMN). This latter is non-covalently bound to the NDUFV1 subunit
(responsible for NADH oxidation and FMN binding). Then, the Q-module encompasses 7
iron-sulphur clusters that ensure the electron transfer and the final quinone reduction. Finally
the P-module pumps protons across the inner mitochondrial membrane, with the energy
released by the electron transfer [21]. In this study, we used a docking prediction to demon-
strate the interaction between RSV and CI. We further used in vitro and in vivo analyses to
demonstrate a direct binding of RSV at the CI nucleotide binding site of the NADH dehydroge-
nase module. We showed that RSV binding competed with the NAD+ fixation within the
nucleotide binding pocket, increasing NADH oxidation at low doses (up to 5 μMRSV) but
inhibiting CI activity at higher doses (50 μM RSV). We also demonstrated in vivo, in brain
mitochondria of young and old mice, that RSV increased CI but led to oxidative stress in aged
animals with low antioxidant defenses. Altogether, our results indicate that RSV interaction
with CI affects differentially the mitochondrial metabolism depending on the dose and the cel-
lular redox status.

Materials and Methods

Materials
Resveratrol (RSV), potassium hexacyanoferrate(III) (FeCN), and hexaammineruthenium (III)
chloride (HAR) were purchased from Sigma-Aldrich (Lyon, France). NAD+ and NADH
(grade II) were from Roche Applied Sciences (Lyon, France). Stock solutions of RSV were
reconstituted at 50 mM in DMSO and stored at -20°C and protected from light. RSV quality
was checked before all experiment by analyzing the absorption spectrum by UV/Vis spectros-
copy in KH2PO4 solution at pH 7.2. RSV spectrum shows a single maximum absorption band
between 304 and 310 nm [22].

Docking simulation and NDUFV1 sequence analysis
Docking calculations were carried out using DockingServer [23]. The MMFF94 force field was
used for energy minimization of RSV (ligand molecule) using DockingServer. Gasteiger partial
charges were added to the ligand atoms. Docking calculations were carried out on Thermus
thermophilus model of the N module of CI (subunits Nqo1, Nqo2, Nqo3) in both oxidized and
reduced crystal structures (PBD ID: 4HEA for oxidized structure and 3IAM for reduced one
respectively). Essential hydrogen atoms, Kollman united atom type charges and solvation
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parameters were added with the aid of AutoDock tools [23]. Affinity (grid) maps of 25×25×50
Å grid points and 0.375 Å spacing were generated using the Autogrid program [23]. AutoDock
parameter set- and distance-dependent dielectric functions were used in the calculation of the
van der Waals and the electrostatic terms, respectively. Docking simulations were performed
using the Lamarckian genetic algorithm (LGA) and the Solis &Wets local search method. Ini-
tial position, orientation and torsions of the ligand molecules were set randomly. Each docking
experiment was derived from 100 different runs that were set to terminate after a maximum of
2.500.000 energy evaluations. The population size was set to 150. During the search, a transla-
tional step of 0.2 Å and quaternion and torsion steps of 5 were applied. NDUFV1 amino acids
conservation was performed with the NCBI multiple protein alignment tool Cobalt for four
species (from Homo sapiens to the bacteria Thermus thermophilus) using standard parameters.
Black highlighted residues represent amino acids which are conserved in all the species tested.

Cell culture
This work was approved by the Ethical Committee of the University Hospital of Angers (CB
2014/02), and informed written consent was obtained from all participants. The two patients
(P1 and P2) presented a Leigh syndrome related to a CI deficiency due to compound heterozy-
gous mutations in the NDUFV1 gene: P1: c.156-2A>G, c.731A>G (p.Asn244Ser) and P2:
c.1162+4A>C, c.1156C>T (p.Arg386Cys). Fibroblasts from patients and 5 healthy controls
were cultured in 2/3 Dulbecco’s modified Eagle medium (DMEM-F12, PAN biotech, Ger-
many), 1/3 Amniomax (Gibco, Invitrogen, Paisley, UK), supplemented with 10% fetal bovine
serum (PAN biotech, Germany) at 37°C, 5% CO2. All experiments were conducted on fibro-
blast cultures between passages 6 and 25.

Animals
The investigation was performed in agreement with the guidelines from Directive 2010/63/EU
of the European Parliament on the protection of animals used for scientific purposes (authori-
zation of the laboratory 00577) and the Guide for the Care and Use of Laboratory Animals
published by the US National Institutes of Health (NIH Publication No. 85–23, revised 1996).
The protocol was approved by the Institutional Animal Care and Use Committee (IACUC)
and the Ethical committee of University Paris-Descartes (CEEA34.SB.008.12).

Male C57BL/6J strain mice (Janvier, Le Genest-St-Isle, France) were housed in a room at
24±2°C with a 12h/12h light-dark cycle, and diet and water ad libitum. Two groups were used:
young (Y) (6 months), and old mice (O) (22 months). Twelve weeks before euthanasia, half of
each group received a standard diet (M20 croquettes, (SDS1, Y Ctl and O Ctl groups), while
the other half received a diet of M20 croquettes supplemented with 0.04% RSV (Yvery1, Y
RSV and O RSV groups). The mice ingested 40 mg of RSV per kg and per day on average [24].
After 12 weeks of RSV diet, mice were anesthetized with isoflurane, before decapitation and
dissection of the cerebral cortex. RSV accumulation in brain was checked according to Menet
et al. [25]; the concentration of RSV and its derivates was 1.42±0.10 and 8.72±3.47 μmol/kg in
Y and O RSV mice, respectively and undetectable in control groups.

Mitochondria isolation and complex I solubilization
Mitochondria from mouse brain were isolated as described [26]. The entire protocol was per-
formed at 4°C and completed in less than an hour. Isolated mitochondria from bovine heart
were obtained fromMitosciences (Abcam, Paris, France). Solubilized complexes were prepared
using n-dodecyl-β-D-maltoside [27].
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Mitochondrial enzymatic activities
The activities of the mitochondrial OXPHOS complexes were measured at 37°C with a UVmc2
spectrophotometer (SAFAS, Monaco). Activity of the NADH ubiquinone reductase (CI), succi-
nate ubiquinone reductase (CII), ubiquinol cytochrome C reductase (CIII), cytochrome C oxi-
dase (CIV) and citrate synthase (CS) were measured according to standard methods [28, 29].
NADH ubiquinone reductase (NUR) activity was assayed in KH2PO4 buffer (50mM, pH 7.5),
containing 3.75 mg/ml fatty acid-free BSA and 0.1mM decylubiquinone. 0.1 mMNADH was
added to initiate the reaction. Parallel measurements in presence of Rotenone (5μM) were used
to determine the background rate. NADH:FeCN and NADH:HAR reductase activities were
assayed in 20 mM KH2PO4 buffer (pH 7.5), with substrate and acceptor concentrations as pre-
viously described [30]. Background rates (without CI) were controlled for each experiment and
RSV concentration. NADH:FeCN, NADH:HAR and NADH:Decylubiquinone oxidoreduc-
tions were monitored at 340 nm (ε = 6.22mM–1.cm–1).

Mitochondrial respiration rates
Oxygen consumption was measured in Respiratory Buffer RB (225 mM sucrose, 10 mM Tris-
HCl, 5 mM KH2PO4, 10 mM KCl, 1 mM EDTA, 4 mMMgCl2, 1 mg/ml fatty acid-free BSA,
pH7.4) at 37°C using a high-resolution oxygraph (Oroboros, Innsbruck, Austria) on isolated
brain mitochondria, (0.05 mg/ml) as described elsewhere [26, 31], using substrates of com-
plexes I, I+III, II, IV and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) shuttle: CI
substrates: 5 mMmalate and 2.5 mM pyruvate; CI and II substrates: 5 mMmalate, 2.5 mM
pyruvate and 5 mM succinate; CII substrate: 10 mM succinate supplemented with 10 μM rote-
none; CIV substrate: 5 mMN,N,N0,N0-tetramethyl-p-phenylenediamine reduced with 50 mM
ascorbate. 20 mM glycerol-3-phosphate (G3P) was used to activate GAPDH shuttle. The active
state of respiration (coupled-respiration) was initiated by the addition of a saturating ADP con-
centration (0.5 mM).

The direct impact of RSV or oxidative stress on mitochondrial functionality was analyzed
on isolated brain mitochondria incubated during 30 minutes (1 mg in 0.2 ml buffer RB) with
either DMSO (vehicle, final concentration 1/2000), H2O2 (10 nM, exogenous stress) or succi-
nate without rotenone (10 mM, endogenous stress linked to reverse electron flow from CII to
CI [32]).

Western Blotting
SDS-PAGE electrophoresis and transfer to PVDF membrane were performed as described
[33]. Rabbit anti-SOD2 (Mitochondrial matrix MnSOD, Abcam, Paris, France), mouse anti-N
(epsilon)-(hexanoyl)lysine (HEL, Cosmobio, Tokyo, Japan) and anti—4 Hydroxynonenal anti-
body (4-HNE, Abcam, Paris, France) monoclonal antibodies were used for antioxidant enzyme
and oxidation product detection, respectively. Detection of fluorescent secondary antibodies
(Rabbit anti-mouse 680 nm and Goat anti-rabbit 790 nm) was performed using a LiCor Odys-
sey apparatus (Licor Biotechnology, Bad Homburg, Germany) with dual wavelength fluores-
cence detection (700 and 800 nm).

Protein-SH content
Protein-SH content was measured on proteins from post-nuclear supernatant (50μg) using
5,5'-dithiobis(2-nitrobenzoic)acid (DTNB) as described [34], and the amount of protein-SH
was calculated using reduced glutathione as standard (ε412nm = 13.6 mM-1.cm-1).
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Statistical analysis
Statistical comparisons between control and RSV mice were made with the Mann–Whitney U
test. The Wilcoxon test was used for the analysis of paired data. Differences were considered
statistically significant at p<0.05.

Results and Discussion

RSV is predicted to bind to complex I at the nucleotide binding site
To get insight into the effect of RSV on CI, a molecular docking study was used. While the
structure of Bos taurus CI from heart mitochondria has been determined by single-particle
electron cryo-microscopy [35], its X-ray high resolution structure is not yet available. Never-
theless, CI key subunits harboring the bio-energetic core functions are conserved from archae-
bacteria to human [35, 36]. This is particularly the case for the 51 kDa, 24 kDa, 49 kDa, PSST
and TYKY subunits (B. taurus orthologues of the human NDUFV1, NDUFV2, NDUFS2,
NDUFS7 and NDUFS8 subunits, respectively) and the small domain of the 75 kDa subunit
(orthologue of the human NDUFS1 protein) [32, 35, 37]. In this structure, the NADH binding
site involves the aromatic rings of three conserved phenylalanines, i.e. Phe 70, 78, and 205 (Fig
1A) that stabilized the adenine ring of NADH or NAD+ by stacking interactions, while the car-
boxyl group of the conserved Glu185 interacts with the ribose of the molecules [20]. The flavin
mononucleotide (FMN) is held in place by a hydrogen bonding network and interacts mostly
with residues 175 to 220 [20, 35, 37] These residues involved in the nucleotide binding site are
highly conserved throughout evolution (Fig 1B, red box), thus, we used the high-resolution
structure of the CI NADH dehydrogenase module (N module) of T. thermophilus (PBD ID:
3IAM) for the docking study with RSV (Fig 1C).

Docked poses of RSV revealed its interactions with the nucleotide binding site, which
involve hydrophobic and aromatic binding to two of the conserved phenylalanines, i.e. Phe78
and Phe205, and hydrogen bonds with Glu185 (Fig 1C). Thus, the RSV interaction with CI
would imply three of the four amino acids involved in the stabilization of the adenine ring and
ribose of the NAD(H) molecule; two of them being also involved in FMN binding (Glu185 and
Phe205, Fig 1B, yellow squares). By contrast, docking study did not evidence any interaction
between RSV and the amino acids stacking the nicotinamide head group of NAD(H), i.e.
Gly67 and Glu97 [20]. The stacking of the nicotinamide head group is responsible for the stabi-
lization of NADH binding, while it does not interfere with NAD+ stabilization [38], suggesting
that RSV should more easily compete with NAD+ binding than with that of NADH.

To challenge the docking results, solubilized CI preparations were used (Fig 2A, 2B and 2C)
and incubated with 5 nM to 50 μMRSV, before assessing 3 different enzymatic reactions cata-
lyzed by the different CI domains (Fig 2A): i) the decylubiquinone addition enables the mea-
surement of the overall NADH Ubiquinone Reductase reaction (NUR, Fig 2A1), ii) the HAR
(NADH:HAR reaction, Fig 2A2) and iii) the FeCN (NADH:FeCN reaction, Fig 2A3) addition
enables the direct re-oxidation of the reduced FMN within the N module. At low doses (5 nM
to 5 μM), RSV dose-dependently stimulated the NUR reaction, reaching a maximal effect at
5 μM (+35%, p<0.05, Fig 2A1). At higher concentrations, NUR activity progressively
decreased to the vehicle value (RSV vs Veh: -15% for 50 μMRSV, Fig 2A1 and 2B). The HAR
reduction was also stimulated by low RSV concentrations up to 5 μM (+48%, p<0.01, Fig
2A2), but was significantly inhibited at higher ones (-30% at 50 μMRSV, p<0.05, Fig 2A2).
Finally, RSV did not significantly affect FeCN reduction (1 μMRSV: p = 0.09, Fig 2A3). For
this latter test, the effect of 25 to 50 μMRSV doses could not be investigated due to a strong
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interaction between FeCN and RSV, leading to a direct NADH oxidation despite the absence
of any enzyme (not shown).

The NUR reaction involves the NADH oxidation at the FMN site, followed by FMN re-oxi-
dation by the FeS clusters and subsequent electron transfer to the quinone. By contrast, the
HAR reduction does not involve FeS cluster chain or quinone reduction, and enables the mea-
surement of the NADH dehydrogenase activity of CI [38]. Our results demonstrated that RSV
effects on NUR activity can be reproduced and even amplified by the HAR addition (+ 58% for
5 μMRSV and– 36% for 50 μMRSV, Fig 2B) suggesting that the N-module is a molecular tar-
get of RSV, thus reinforcing the docking result. In addition, the effects of RSV were biphasic,
first increasing up to 5 μM, then decreasing the turnover rate of the reaction at higher concen-
trations. The rate limiting step of the HAR reaction at low nucleotide concentrations is the
HAR reduction, which one requires the presence of a negatively charged nucleotide bound to
the reduced FMN [39]. RSV is known to easily lose its low-energy electrons, producing nega-
tively charged species [40] among which phenoxide anion [41]. Thus, by increasing the occu-
pancy of the reduced-FMN site and/or by increasing the local negative charge, low RSV

Fig 1. RSV binds to complex I at the nucleotide binding site. (A) NADH binding site of complex I,
according to Sazanov et al. [37]. The bound NADHmolecule is colored in pink. The FMN and amino acids
that interact with the bound nucleotide are colored in yellow. The hydrophobic stacking interactions between
the three phenylalanines and the adenosine moiety are represented by dashed gray lines. (B) Boxshade
alignement of the amino acid sequence of NDUFV1 (human nomenclature) from Homo sapiens, Bos
taurus, Musmusculus and Thermus thermophilus showing the conservation of the NADH and FMN
binding sites. The conserved amino acids are highlighted in dark, the NADH binding site is boxed in purple,
the FMN binding site in red, and the amino acids interacting with RSV are boxed in yellow. (C) Occlusion of
the flavin site through the binding of NAD(H) or RSV. RSV bound to active FMN site in complex I from
Thermus thermophilus (Protein Data Bank ID: 3IAM). The FMN and bound nucleotide are shown as sticks.
RSV is colored in green. Amino acids that interact with the bound nucleotide are colored in yellow, with
hydrogen bonding interactions shown by dashed red lines and hydrophobic stacking interactions by dashed
dark lines.

doi:10.1371/journal.pone.0144290.g001
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concentrations may increase the rate of HAR reduction. However, at higher concentration,
RSV may also compete with NADH at the nucleotide binding site, thus progressively inhibiting
the rate of NADH oxidation, as seen at a concentration of 50 μM. By contrast, the FeCN reac-
tion was not significantly modified by RSV, which could be explained by the fact that FeCN
only reacts with a nucleotide-free reduced FMN [39].

Docking study suggested that RSV could compete more easily with NAD+ binding than
NADH binding. To test this hypothesis, NADH:FeCN activity was measured in the presence of
RSV and increasing concentrations of NAD+ (Fig 2C), a known weak competitive inhibitor of
CI [38]. NAD+ addition alone inhibited the NADH:FeCN oxido-reduction, with an IC50 value
of 1.58 mM (Fig 2C), while the presence of 5 μMRSV increased the IC50 value to 4.93 mM
(Fig 2C), suggesting that RSV can displace NAD+ from its binding to the nucleotide binding
pocket. Moreover, the higher was the NAD+ concentration, the lower RSV counteracted the

Fig 2. RSV binding to complex I modulates the kinetic of NADH oxidation. (A) Effect of RSV on the
NUR, HAR and FeCN enzymatic reactions catalyzed by complex I on isolated mitochondria. A1: The
rates of NADH:Ubiquinone oxido-reduction (the NUR reaction, A1), NADH:HAR oxido-reduction (the NADH:
HAR reaction, A2) and NADH:FeCN oxido-reduction (the NADH:FeCN, A3) were measured on isolated CI in
the presence of increasing RSV concentrations (5 nM to 50 μM). Reactions were started by the addition of
NADH. Data are presented as a percentage of vehicle (DMSO), as mean ± sem of six independent
experiments. The (*) indicates significant differences (p<0.05) compared with vehicle. (B) Comparison of
the effect of two RSV concentrations (5 and 50 μMRSV) on HAR and NUR reactions on isolated
mitochondria. Data are presented as a percentage of vehicle (DMSO) and as a mean ± sem of six
independent experiments. The (*) indicates significant differences (p<0.05) compared with vehicle. (C)
Effect of RSV on the FeCN reaction and competition with NAD+. The rate of the FeCN reaction was
measured in the presence of either DMSO (vehicle) or 5 μMRSV and increasing NAD+ concentrations (0.1–
50 mM). IC50 values for the inhibition of FeCN reaction by NAD+ were calculated from the curves normalized
to maximal oxidation rates. Data are represented as mean ± sem of six independent experiments. The (*)
indicates significant differences (p<0.05) compared with vehicle. (D) Effect of RSV on complex I cells
carrying NDUFV1mutations in the nucleotide binding site. D1: Position of the two exonic mutations on
the NDUFV1 amino acid sequence. The NADH binding site is squared in red, and the Fe/S (N3cluster)
interacting amino acids are squared in blue. D2: The NDUFV1mutant fibroblast cells and five controls were
incubated with 5 μMRSV, during 24h. The NUR activity was then measured on cell extracts. Data are
expressed as the percentage of CI activity in vehicle treated cells and are represented as mean ± sem of
n = 5 control cells or as a mean of the triplicate analyses in mutant cells. The (*) indicates significant
differences (p<0.05) between vehicle and RSV treated cells.

doi:10.1371/journal.pone.0144290.g002
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inhibition of the NADH:FeCN reaction. Ultimately at 10 mM, the inhibition of the FeCN reac-
tion by NAD+ was no longer modified by RSV, suggesting altogether a direct competition
between RSV and NAD+.

The nucleotide binding pocket is located within the 51-kDa subunit corresponding to the
human orthologue NDUFV1 [37]. To confirm the interaction between RSV and this site, we
tested whether mutations of NDUFV1 modify the effects of RSV on CI. For this purpose, we
used fibroblasts from two patients carrying compound heterozygous mutations in the
NDUFV1 subunit P1: c.156-2A>G, c.731A>G (p.Asn244Ser) and P2: c.1162+4A>C,
c.1156C>T (p.Arg386Cys). These mutations alter the FMN binding site in P1, or the FMN re-
oxidation by altering the Fe/S cluster N3 in P2 (Fig 2D1). Both mutant cell lines presented a
severe CI deficiency, with 30% residual NUR activity compared to control cells (Fig 2D2). The
mutant cells and five control cell lines were treated with 5 μMRSV for 24h. RSV treatment
resulted in a 30% increase of NUR activity in control cells, while no significant change was
detected in NDUFV1-mutant cells compared to vehicle (+5% for P1 and +7% for P2, Fig 2D2).
This result reinforces the hypothesis that the mechanism of action of RSV on CI activity
involves an interaction with the FMN and nucleotide binding site.

RSV targets specifically Complex I
Then, we checked whether RSV also modifies the activity of other respiratory chain complexes
(Fig 3). To perform these experiments, brain mitochondria were selected, as we found that
RSV induces a +80% stimulation of NUR activity in this tissue, compared to +30% in heart
mitochondria (S1 Fig), confirming previous observations of a high sensitivity of brain mito-
chondria to RSV [16, 42]. Frozen-thawed disrupted brain mitochondria were incubated with
RSV prior to enzymatic measurements. As observed on solubilized CI, 5 μM of RSV signifi-
cantly increased brain CI activity, while the activities of the CII, III and IV were not modified
compared to vehicle (Fig 3A). At a higher dose (50 μM), the effect of RSV on CI activity was
lost (Fig 3B) and the activity of CIII was significantly reduced (Fig 3B), the latter effect being
related to a higher antimycin-insensitive rate and not to an overall decrease of the reaction rate
(data not shown). This does not argue for a direct alteration of CIII catalytic properties, but
rather indicates a non-specific interaction of RSV with CIII measurement, possibly by a direct
reduction of oxidized cytochrome c or non-specific oxidation of the reduced decylubiquinone
(DQH2). Previous studies also reported an inhibition of CIII by RSV [16, 42, 43]. For instance,
Zini et al. suggested that RSV competes with DQH2 to bind CIII and directly accept electrons
from this one [16]. In accordance with this hypothesis, Pshenichnyuk and Komolov have dem-
onstrated that RSV can efficiently accept electrons [40] provided by leakage from CIII, forming
semiquinone species. This mechanism would bypass the specific DQH2 re-oxidation and
explain the apparent decrease of CIII activity.

Altogether, the results obtained in silico (Fig 1), in vitro on solubilized mitochondrial CI (Fig
2A) and on whole mitochondria (Fig 3), and in situ on treated cells (Fig 2D) point to a specific
action of RSV on CI at low doses (up to 5 μM), through the interaction with the nucleotide bind-
ing site, increasing the NADH oxidation rate (NUR and HAR activities). However, at higher
RSV concentration (50 μM), RSV lost the ability to induce CI activity and on the contrary tended
to inhibit the NADH oxidation catalysed by the Nmodule. This is in agreement with previous
studies which showed an inhibition of the CI in mouse brain and liver mitochondria incubated
with 25 μMRSV [16, 42]. Moreover, at high dose, RSV could also trigger some unspecific reac-
tions with the respiratory chain, as revealed by CIII activity measurement, and could act as an
electron carrier, bypassing CIII to provide electrons to cytochrome c. These results highlight the
importance of the RSV doses when studying its effect on mitochondrial metabolism.
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RSV increases complex I activity in brain mitochondria of RSV fed mice
but without improving respiratory chain function
Our data demonstrate that RSV targets CI activity in vitro. However, it remains to be deter-
mined if RSV could also stimulate or impair mitochondrial functions in vivo. For this purpose,
the effects of RSV on respiratory chain function were studied on brain mitochondria from
young (Y) and old (O) mice receiving a RSV-enriched diet for 12 weeks (Fig 4A). The use of a
0.04% RSV enriched diet (representing a daily intake of about 40mg/kg of RSV, [24]) was
based on previous studies which have shown that similar RSV doses induced anti-aging effects
[44], an improvement of mitochondrial oxidative metabolism under high fat diet conditions
[6, 45] and antioxidant effects [46]. Moreover, we have shown in a previous article that a 12
weeks 0.04% RSV supplementation induced an increase in substrate supplies and respiratory
chain function in liver of young and old mice [19]. Old animals were selected because of their
higher susceptibility to oxidative stress, due to respiratory chain dysfunction and decreased
antioxidant capacities [47]. In brain mitochondria from control O (O Ctl) mice, we did not
observe any difference in respiratory complex maximal activities normalized to citrate synthase
activity, compared to control Y (Y Ctl) mice (Fig 4A). However, the activities of complexes I,
III and IV and citrate synthase were all reduced by roughly 25% in the O Ctl group compared
to the Y Ctl group (data not shown). The reduced complex activities in O mice were in accor-
dance with previous studies performed in brain mitochondria, showing that activities of com-
plexes I and IV decrease linearly during aging [48–51]. RSV diet induced a significant increase

Fig 3. RSV specifically targets Complex I activity in brain mitochondria. (A) Maximal activity of
complexes in mitochondria incubated with 5 μMRSV. (B) Maximal activity of complexes in
mitochondria incubated with 50 μMRSV.Mouse brain mitochondria disrupted by frozen/thawed cycles
were incubated with either vehicle (DMSO 1/2000) or RSV (50 μM) just prior analyzing complex I to IV
activities. Data are expressed as the percentage of complex activities in vehicle treated mitochondria and are
represented as mean ± sem of n = 5 animals in duplicate. The (*) indicates significant differences (p<0.05)
between vehicle and RSV treated mitochondria.

doi:10.1371/journal.pone.0144290.g003
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in CI activity (p<0.05) in Y mice but only tended to increase CI in O mice (not significant,
p = 0.05, Fig 4A), reinforcing our in vitro observations. RSV also tended to increase CII activity
(Fig 4A, p = 0.0675) in Y mice, but not in O mice, a result that can be correlated with the stimu-
lation of tricarboxilic acid cycle enzyme activities that was reported in liver from RSV fed mice
[19]. Complexes III and IV activities were not significantly changed by the RSV diet.

We then determined if RSV effects on enzymatic activities in vivo were followed by func-
tional change of the respiratory chain. Old mice showed a significant reduction of CI associated
respiration rate compared with the Y ones (Fig 4B, O Ctl vs Y Ctl: - 47%, p<0.05). RSV diet
increased maximal CI activity (Fig 3A), but did not change the respiration rates in both Y and
O RSV fed mice (Fig 4B CI, 4B CII and 4B CIII). Nevertheless, in O-RSV mice, RSV diet
strongly increased the CIV-linked respiration (Fig 4B +300% CIV, p<0.01), suggesting an
increase in cytochrome c oxidase capacity. However, CIV maximal activity was unchanged in
O-RSV animals (Fig 3A). Thus, these results suggest that the increased respiration could be
due to an important electron leak in O-RSV mice. Indeed, under stress conditions, cytochrome
c may also be involved in ROS detoxification, oxidizing O2-. to dioxygen [52]. The released
electron can then be transferred to CIV, thereby stimulating the respiration rate [53]. In our
study the high increase in CIV-supported respiration rate without any increase in its maximal
activity could therefore result of such an antioxidant role of cytochrome c. Incubation of brain
mitochondria with H2O2 or with succinate in absence of rotenone (a condition known to
favor a reverse-electron flow to complex I generating ROS overproduction [32]), confirmed

Fig 4. Functional consequences of RSV treatment onmitochondrial energymetabolism in brain
mitochondria. (A) Maximal enzymatic activities of respiratory chain complexeswere measured on
isolated brain mitochondria from young (Y, white bars) and old (O, grey bars) control (Ctl, open bars) and
RSV-treated (hatched bars) mice. Results are normalised to citrate synthase activity and represented as
mean ± sem of n = 5 animals in duplicate. The (*) indicates significant differences (p<0.05) between Ctl and
RSV fed mice. (B) Respiration rates measured on brain mitochondria of young (Y) and old (O) Ctl (open
bars) and RSV (hatched bars) treated-mice using different substrates of the respiratory chain and saturating
ADP concentration (0.5 mM. Data are represented as mean ± sem of n = 6 (young) or n = 5 (old) animals for
each group. The (+) indicated a significant effect of aging (p<0.05).

doi:10.1371/journal.pone.0144290.g004
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that oxidative stress led to increased CIV driven respiration (S2 Fig). The concept of an elec-
tron leak in O-RSV mice was further supported by the measurement of NADH cytochrome c
reductase (NCCR, complexes I+III) activity, shown to be reduced when brain mitochondria
were exposed to RSV, while the activities of NADH:FeCN reductase (NFR, NADH dehydroge-
nase activity) and NADH Ubiquinone Reductase (NUR) were significantly increased with
5 μM of RSV (Fig 5). Hence, the decreased NCCR activity suggested that RSV affects the elec-
tron transfer from CI to CIII, thus reinforcing the concept of an electron leakage at CI, which
could trigger ROS overproduction.

A lower electron coupling has already been correlated to ROS overproduction in various
experimental models [54, 55], in particular after RSV treatment [16, 43]. RSV interacts with
the FMN/nucleotide binding site, considered as the major site of ROS production in CI [56–
59] and increases the NADH dehydrogenase activity of the CI. The stimulation of NADH
dehydrogenase activity by RSV could increase the reduced state of FMN and decrease the
FMN/FMNH2 turnover, a condition favoring ROS production [16, 43]. Alternatively RSV
could efficiently accept electrons, forming semiquinone species [40]. Thus, the interaction of
RSV with the FMN/nucleotide binding site could initiate redox cycling reactions, as described
for other electron acceptor compounds [16, 43], leading to ROS production.

RSV induces anti-oxidant defenses in brain mitochondria
To address the hypothesis of a higher ROS production within mitochondria from RSV fed
mice, the mitochondrial manganese superoxide dismutase (MnSOD) expression was evaluated
by Western blot in enriched mitochondrial fractions (Fig 6).

Our results revealed that aging reduces the protein expression of MnSOD (Fig 6), in agree-
ment with previous studies describing a compromised antioxidant enzymatic status in brain
mitochondria from aged rats compared to young animals [58]. The RSV diet increased
MnSOD expressions in O animals (Fig 6). Such an induction of mitochondrial anti-oxidant
defenses by RSV had already been described in other experimental models, exerting neuropro-
tective and anti-aging effects [60–63]. Recently, the so called hormetic effects of RSV were
described, [64], showing that at low doses (<10 μM), RSV could act as an antioxidant, stimu-
lating the cellular proliferation and the antioxidant response [5], while at higher concentrations
(>50μM), it can become a prooxidant molecule, inducing cellular damages and decreasing cell

Fig 5. RSV increases the NFR and NUR activities but decreases the NCCR activity.Control young mice
brain mitochondria were incubated with either DMSO (1/2000, vehicle) or 5 μMRSV (30 minutes) and NADH
Ubiquinone Reductase (NUR), NADH:FeCN reductase (NFR), and NADH cytochrome C reductase (NCCR)
activities were measured on incubated mitochondria. Data are represented as mean ± sem of n = 3 animals in
duplicate. The (*) indicates significant differences (p<0.05) between vehicle and RSV treated mitochondria.

doi:10.1371/journal.pone.0144290.g005
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viability [65–69]. In addition, it was reported that up to 5μM, RSV exerts a beneficial effect on
sodium arsenite-induced cytotoxicity, promoting cell viability and proliferation, while it had
opposite effects at a concentration of 20 μM [12]. These studies emphasized that low RSV concen-
trations reduce the level of oxidative stress, while higher concentrations are responsible for ROS
overproduction shedding light on the importance of the redox cellular status and on the dose of
RSV used. Moreover, the increased expression of anti-oxidant enzymes, as seen in the present
study, could also reflect an adaptive response to the oxidative stress induced by the RSV itself.

RSV increases anti-oxidant defenses but does not protect against
oxidative stress in isolated brain mitochondria
To test the hypothesis of a protective effect of RSV against oxidative stress, isolated mitochon-
dria were subjected to two different oxidative injuries, either using H2O2, to generate an exoge-
nous oxidative stress, or using succinate without rotenone, to promote endogenous electron
leakage from CI by a reverse electron flow [32] (Fig 7). In mitochondria from Y control mice,

Fig 6. RSV increases the expression of anti-oxidant enzymes in brain mitochondria. Expression of
MnSODwas analyzed byWestern blotting (normalised to the quantity of VDAC protein) on mitochondrial
fractions from young (Y) and old (O) control (Ctl) and RSV-treated mice. (A) Representative blot of two
duplicate experiments on n = 4 animals. (B) Quantification of MnSOD expression. Data are represented as
means ± sem of four animals in duplicate. The (+) indicates significant differences (p<0.05) between young
and old animals and the (*) shows a significant effect of the RSV-diet (p<0.05).

doi:10.1371/journal.pone.0144290.g006

Fig 7. RSV does not prevent stress-induced inhibition of the respiratory chain. Brain mitochondria of
young (A) and old (B) Ctl (open bars) and RSV treated (hatched bars) mice were incubated 30 minutes with
10 nM H2O2 (light grey) or 10 mM succinate (dark grey) without rotenone. Respiration rates were then
measured using different substrates of the respiratory chain complex I to IV and saturating ADP
concentration (0.5 mM). Data are represented as mean ± sem of five animals for each group. The (#)
indicated a significant effect of H2O2 or succinate treatment, the (*) indicated a significant effect of the RSV
diet (p<0.05).

doi:10.1371/journal.pone.0144290.g007
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exposure to H2O2 induced a drastic inhibition of CI-linked respiration (-60%, Y Ctl + H2O2
vs Y Ctl) and a mild decrease in CII-linked respiration (-30%, Y Ctl + H2O2 vs Y Ctl). Similar
effects were observed when incubating with succinate without rotenone (-56%, Y Ctl + Succ vs
Y Ctl for CI and -30%, Y Ctl + H2O2 vs Y Ctl for CII, Fig 7A). Despite we did not directly mea-
sure the mitochondrial superoxide production in this experimental condition, the decrease of
both CI and CII-linked respirations would argue in favor of the presence of an oxidative stress
induced by reverse electron flow, as already reported [70]. In O mice, the respiration inhibition
due to oxidative injuries was less pronounced (Fig 7B:- 30% for both CI and II respiration
rates, Y Ctl + H2O2 and Y Ctl + Succ vs Y Ctl) possibly due to the lower basal respiration levels.
The inhibition of mitochondrial respiration by either exogenous H2O2 or endogenous succi-
nate without rotenone was not prevented in mitochondria from mice receiving a RSV-diet (Fig
7A and 7B, Y (O) Ctl + H2O2 vs Y (O) RSV + H2O2). The inhibition of CII-linked respiration
due to the exposure of H2O2 or succinate was even stronger in Y mice receiving a RSV-diet
compared to Y Ctl mice (-66% for Y Ctl RSV + H2O2 vs -30% for Y Ctl + H2O2, Fig 7A). Alto-
gether, these results suggest that RSV does not protect against oxidative stress in isolated brain
mitochondria and could even exacerbate the inhibition of respiration rates induced by an acute
stress.

We further addressed the hypothesis of the presence of a higher oxidative stress in vivo, in
brain mitochondria of RSV-treated mice, by analyzing the level of oxidative cellular damages
(Fig 8). Two markers of oxidative damages, the protein thiol (SH) content, a sensitive target of
H2O2 oxidation [71], and the HEL and 4-HNE modifications, as biomarkers for the initial
stage of peroxidation [72], were quantified by spectrophotometry and by Western blotting,
respectively. While protein-SH content was slightly, not significantly, decreased in O RSV-
treated mice (p = 0.058, Fig 8A), HEL-peroxided protein level was significantly increased in
Old RSV-treated mice (Fig 8B, O Ctl vs O RSV p = 0.0104). Similarly, the content of 4-HNE
modified proteins was increased in O RSV compared with the Ctl ones (p = 0.0104) (S3 Fig).

Taken together, these results strongly suggested that RSV diet induces a higher electron leak
from the respiratory chain, leading to oxidative damages in the O mice, despite an increase in
the expression of antioxidant enzymes such as MnSOD. Our results did not support the
hypothesis of an hormetic action of RSV in our model as the increase in antioxidant defenses
induced by RSV did not protect against but rather worsened the oxidative stress in aged mouse
brain mitochondria. Because of high oxygen consumption, special membrane lipid composi-
tion and relatively low antioxidant defenses, brain tissues are highly sensitive to oxidative dam-
ages [73].

Here, we showed that in brain from O mice, RSV diet induced an electron leak from the
respiratory chain, which overwhelmed antioxidant defenses in the context of aging with
reduced antioxidant capacity.

Fig 8. RSV increases oxidative stressmarkers. (A) Protein thiols contentmeasured on brain
homogenates of n = 4 animals for each group (B) HEL-modified protein content on brain homogenates of
young (Y) and old (O) control (Ctl) and RSV-treated mice. Left, representative blot of two duplicate
experiments on n = 2 animals; right, quantitation of HEL content by Western blotting on n = 6 animals. Data
are represented as means ± sem. The (*) showed a significant effect of the RSV-diet (p<0.05).

doi:10.1371/journal.pone.0144290.g008
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Many studies indicated that RSV supplementation may convey resistance to oxidative stress
[68, 74]. However, others studies show weak beneficial effects [75, 76] or even more detrimen-
tal side effects of RSV [77–79]. In particular, from a mitochondrial point of view, RSV has been
shown to activate apoptosis, stimulating mitochondrial damages and ROS production [12, 80,
81]. It should be underlined that the mitochondrial toxicity could depend on the cell type,
organism and/or the dose and duration of exposure to RSV [6, 82]. Most importantly, the effect
of RSV could also differ on the presence or absence of cellular stress. Indeed, almost all experi-
mental studies that pointed beneficial effects of RSV diets were conducted in a context of meta-
bolic or/and oxidative stress (high fat diet, [6, 45, 83], diabetes or ischemia reperfusion [84]).
However, these effects seem to vary depending on the stress context. Indeed, in vivo, the study
by Rocha et al., [76] on RSV-treated rats (30 days, 1 mg/kg/day) demonstrated that RSV have
beneficial effect in the animals with a high fat diet but rather displayed some potential adverse
effects in the standard-fed diet (enhanced oxidized glutathione and decrease GSH/GSSG ratio).
Similarly, in human, RSV supplementation does not improve metabolic function in non-obese
women with normal glucose tolerance [85] and RSV was shown to blunt the positive effect of
exercise training on cardiovascular biomarkers and maximal oxygen uptake on aged men [78].

Every antioxidant is in fact a redox agent and has the potential to become a prooxidant. Die-
tary polyphenols with phenol rings undergoing oxidation formed prooxidant radicals [86].
Resveratrol is known to form phenoxyl radical in the presence of metal cations [68]. In this
context, RSV can react with of Cu(II) and induced DNA breakages. This prooxidant effect has
also been observed with trivalent iron (Fe3+) in presence of H2O2 [86]. Aging is characterized
by an accumulation of transition metal ions (such as iron [87] and copper [88]), a phenomenon
that has been shown to be upregulated in neurodegenerative disorders [87]. In brain of old ani-
mals, the oxidative cellular context can therefore account for the major prooxidant effect of
RSV. Thus assessing RSV effects on brain tissues represents a critical issue, as this drug has
been envisioned as a neuroprotective molecule preventing neuronal damages in aging, Alzhei-
mer’s and Parkinson’s diseases, and after cerebral ischemia [63, 89, 90].

Conclusion
In summary, we showed that RSV binds to the CI nucleotide binding site, which either stimu-
lates or inhibits its activity, according to RSV concentration. In addition, the targeting of CI by
RSV stimulates key signaling pathways, including the antioxidant defenses. While the increase
in ROS production would participate to the hormetic effects of RSV, in a context of reduced
antioxidant capacity seen for instance in mouse aged brain, this process could also trigger dam-
aging oxidative stress. Thus, this study emphasized that key parameters, such as the dose but
also the age at the time of treatment, can modulate the intracellular and mitochondrial redox
status, switching from beneficial to deleterious effects of RSV. Our study also shed light on the
importance of a thorough characterization of the other possible molecular targets of RSV
before moving further to clinical studies.

Supporting Information
S1 Fig. Comparison of RSV effect on complex I activity in brain and heart isolated mito-
chondria.Mice brain and heart mitochondria disrupted by frozen/thawed cycles were incu-
bated with either vehicle (DMSO 1/2000) or in the presence of increasing RSV concentrations
(5 nM to 5 μM) just prior analyzing the rate of NADH:Ubiquinone oxido-reduction (NUR
reaction). Reactions were started by the addition of 0.1 mMNADH. Data are presented as a
percentage of vehicle-treated mitochondria, as mean ± sem of three independent experiments.
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The (�) indicates significant differences (p<0.05) compared with vehicle.
(TIF)

S2 Fig. Measurement of TMPD-induced respiration rates in stress conditions. (A) TMPD-
induced respiration rates (state IV, no ADP added) were measured in control brain mitochon-
dria incubated during 30 minutes with either vehicle only (DMSO, 1/2000) or with10 nM
H2O2, 10 mM succinate without rotenone (Succ) or 0.1 μMRSV (diluted in DMSO, 1/2000
final concentration). (B) The inhibition of TMPD-induced respiration by N-AcetylCysteine
(NAC, 2 mM) added as an antioxidant was measured in control brain mitochondria incubated
with vehicle (DMSO) or 0.1 μMRSV. Data are represented as mean ± sem of five animals. The
(�) indicated a significant effect of the treatment compared to vehicle condition (p<0.05).
(TIF)

S3 Fig. RSV increases oxidative stress markers. HNE-modified protein content on brain
homogenate of young (Y) and old (O) control (Ctl) and RSV-treated mice. Left, representa-
tive blot of two duplicate experiments on n = 2 animals; Right, quantitation of 4-HNE modified
protein content by Western blotting on n = 6 young and n = 5 old animals. Data are repre-
sented as means ± sem. The (�) showed a significant effect of the RSV-diet and the (+) showed
a significant difference between old and young mice (p<0.05).
(TIF)
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