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Myocardial infarction is a common cardiovascular disorder caused by prolonged

ischemia, and early diagnosis of myocardial infarction (MI) is critical for lifesaving. ECG is a

simple and non-invasive approach in MI detection, localization, diagnosis, and prognosis.

Population-based screening with ECG can detect MI early and help prevent it but this

method is too labor-intensive and time-consuming to carry out in practice unless artificial

intelligence (AI) would be able to reduce the workload. Recent advances in using deep

learning (DL) for ECG screening might rekindle this hope. This review aims to take stock

of 59 major DL studies applied to the ECG for MI detection and localization published in

recent 5 years, covering convolutional neural network (CNN), long short-term memory

(LSTM), convolutional recurrent neural network (CRNN), gated recurrent unit (GRU),

residual neural network (ResNet), and autoencoder (AE). In this period, CNN obtained

the best popularity in both MI detection and localization, and the highest performance

has been obtained from CNN and ResNet model. The reported maximum accuracies of

the six different methods are all beyond 97%. Considering the usage of different datasets

and ECG leads, the network that trained on 12 leads ECG data of PTB database has

obtained higher accuracy than that on smaller number leads data of other datasets. In

addition, some limitations and challenges of the DL techniques are also discussed in

this review.

Keywords: deep learning, neural networks, electrocardiogram (ECG), myocardial infarction detection, myocardial

infarction localization

INTRODUCTION

According to the WHO’s 2019 global health estimate, ischemic heart disease (IHD) has been the
largest cause of death globally, accounting for 16% of deaths worldwide, and has increased from
more than 2 million to 8.9 million in the last two decades (1). Myocardial ischemia is the first
stage in the progression of myocardial infarction (MI) which is characterized pathologically as
the irreversible necrolysis of cardiomyocytes caused by a disruption in coronary blood supply to
the myocardium partially or completely (2). MI, also called a heart attack, can frequently occur in
patients with a history of heart disease. Heart failure, angina pectoris, and arrhythmia are the main
clinical symptoms of acute MI (3). Furthermore, studies reveal that∼22–64% of non-fatal MIs are
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silent or unrecognized MIs. Several potential factors, such
as a history of cardiovascular diseases (CVD), hypertension,
and diabetes could also increase the risk of silent MI, and
this provides evidence that the prevalence and incidence of
clinically unrecognized MI increase with patients’ age (4, 5). The
characteristics of asymptomatic andmultifactorial may be related
to a considerably increased mortality risk.

Early diagnosis of the onset of MI is a crucial step for
suspected patients to receive medical intervention timely, such as
percutaneous coronary intervention (PCI) which is an effective
way to limit infarct size and thereby reduce the risk of post-MI
complications and heart failure (6, 7). Biomarkers, cardiac image
modalities, and electrocardiographic methods play important
roles in MI diagnosis (8). In terms of urgent therapeutic
options, a non-invasive ECG is the most cost-effective and
irreplaceable one and allows continuous and remote monitoring
(9). The continuous ECG can always provide valuable prognostic
information and may help determine the status of reperfusion or
re-occlusion (10). Therefore, it is an essential diagnostic step for
suspected patients either in pre-hospital or in-hospital settings.
Additionally, the 12-lead ECG can be used to better understand
the pathogenesis of MI and to pinpoint the localization of cardiac
damage. Specific ECG leads can reflect the electrical activity
of the heart from various angles, allowing them to distinguish
between different types of MI based on the location of the
infarction in the myocardium (11). For instance, a combination
of lead V1, V2, V3, and V4 provides suggestive information
concerning anterior MI (AMI), whereas a combination of lead
II, III, and aVF can indicate inferior MI. However, the 12-
lead ECG has difficulty in localizing the posterior MI (12, 13).
Gupta et al. (14) quantified the contributions of each of 15 leads
ECG signal from the PTB database individually and observed
that the five leads: V5, V6, Vx, Vz, and II contain the most
useful information, then they were quantified in pairs using
the five best channels and results indicated that lead V6 and
lead Vz can induce the best performance of the model. Fu
et al. (15) employed an attention mechanism to select the most
essential leads under the intra-patient and inter-patient scheme
in MI detection and localization, although it just aimed to assist
proposed DL methods to effectively diagnosis not to find the
most significant leads in pathology. Treating all the leads equally
could inversely lead to limiting model performance and largely
increasing computational complexity because of redundant and
unnecessary information. Multi-lead ECGs can not only help
clinicians carry out myocardial reperfusion therapy as soon as
possible but also help interventional cardiologists make targeted
preliminary judgments on the pathological vessels related to
infarction and perform directed interventional treatment. In
addition, 12-lead ECG can also indicate whether clinicians
need to prepare rescue measures for those patients with MI
diagnosed with large infarct sizes. An overview of coronary
arteries structure and ECG 12 leads is illustrated in Figure 1A.
Different MI locations with their corresponding leads and culprit
coronary arteries can be found in Table 1.

The main manifestations of MI in ECG are ST-segment
elevation, as well as the high apex and inversion of T waves,
and the appearance of pathological Q waves (Figure 1C). Among

these manifestations, the change in the ST segment is the
most significant. The characteristics of normal sinus rhythm
and MI are shown in Figures 1B,C respectively. In a feature
visualization analysis (17), the weight assigned to the U-wave of
ECG signals is also large. It is also indicated that the U wave
may play an important role in MI detection. Furthermore, silent
MI with a Q wave accounted for 9–37% of all non-fatal MI
events (18). According to ECG waveform characteristics, that
is, whether ECG presents a specific sign called ST-elevation, MI
can be divided into two categories: ST-elevation MI (STEMI),
which refers to MI with ST-segment elevation that cannot be
rapidly reversed by nitrates, and up to 25% of acute coronary
syndrome (ACS) patients present this severe condition. Patients
with STEMI will be at significant risk of cardiac mortality
and sequelae if urgent reperfusion therapy is not provided
(19). Non-ST-elevation MI (NSTEMI) is defined as MI with an
ECG presentation of ST-segment depression, T-wave inversion,
or both. The ECG waveform deviations provide indicative
information about patients with MI. Pre-clinical ECG diagnosis
can predict the risk stratification of MI and shorten the time
to treatment. Patients with suspected STEMI who receive pre-
hospital ECG have a 20% lower risk of in-hospital mortality
(20). The interval between diagnosis and treatment is critical,
and 12-lead ECGs of patients with MI should be collected and
examined within 10min of the initial medical contact (10).
Silent patients with MI who receive treatment within 90min
of starting MI have a better chance of survival. In addition to
being inefficient, manually identifying complicated non-linear
ECG features across the 12-lead is time-consuming, and human
interpretation of the ECG differs considerably depending on
experience and competence levels. Because of intra- and inter-
individual variability, neither timeliness nor accuracy can be
guaranteed. It should be emphasized that the sensitivity and
specificity of manual AMI diagnosis are 91 and 51%, respectively
(21). As a result, prompt identification, immediate feedback,
and precise diagnosis can give a better chance for future
medical therapy.

MACHINE LEARNING FOR MI DIAGNOSIS

Machine Learning
Machine learning (ML) is the technique of enabling computers
to mimic human learning behaviors to update their existing
knowledge frame and acquire new knowledge to progressively
advance their ability to complete specific tasks (22). In cardiology,
ML methods have been extensively used in medical imaging
[e.g., CT (23), MRI (24), chest X-ray (25), echocardiogram
(26)] and ECG (27). It is especially beneficial in pre-hospital
settings, where paramedics may lack the knowledge of emergency
physicians or cardiologists when it comes to interpreting ECGs.
ECG interpretation using ML, including traditional ML, deep
learning (DL), and a combination of the two. For traditional
ML methods, extra hand-crafted feature extraction and selection
steps are needed. Morphological features are computed by the
demarcation of major ECG characteristic points such as the
QRS complex, T wave, and the J point (28). Wavelet transforms
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FIGURE 1 | Overview of coronary arteries structure and ECG 12 leads (A). The ECG characteristics of normal sinus rhythm (B) and myocardial infarction (MI) (C).

decompose ECG signals in the time-frequency domain. Principal

component analysis (PCA) (29), empirical mode decomposition

(EMD) (30), and the hidden Markov model (31) are all
commonly employed to extract representative features. The

goal of feature selection is to lower the complexity of the
computational process and ensure that ML algorithms only

employ the most informative features. Conventional threshold-
based support vector machines (SVM), random forest (RF), naive
Bayes, decision tree (DT), k-nearest neighbor (KNN), and neural
network (NN) are the commonly used classifiers, and almost
all these techniques have achieved good performance beyond
that of cardiologists, who achieved an average accuracy of 75%
for detecting ECG pathologies (32). To name a few, Kora (33)
proposed a hybrid firefly (FF) and PSO (FFPSO) algorithm
to optimize ECG features. Then, an ANN model named
the Levenberg–Marquardt Neural Network with optimization

algorithm achieved the best accuracy of 99.3% compared with
the other two ML algorithms, KNN and SVM. Acharya et al. (34)
investigated a four-level discrete wavelet transform to extract 12
types of non-linear features. An ANOVA analysis was used to
rank these features and obtain optimal features. The performance
of the proposed model was evaluated using a KNN classifier,
which had an accuracy of 98.8% for MI detection and 98.73%
for MI localization. Some recent conventional ML methods with
good performance for MI classifications are shown in Table 2.
However, these ML techniques are also confronted with some
challenges, which are concluded as follows:

• First, information loss: the feature extraction and classification
are two isolated modules in traditional ML approaches. In
feature engineering, dimensionality reduction can remove
large irrelevant features, make data analysis simpler, and lower
computational costs. The feature selection aims to choose an
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TABLE 1 | Different myocardial infarction (MI) localizations and corresponding leads and culprit coronary arteries.

MI locations ST elevation Reciprocal ST

depression

T wave or Q wave Culprit coronary

arteries

Antero-Lateral (ALM) V3 ∼ V6, I, aVL None None LAD

Anterior (AMI) V1 ∼ V6 III and aVF Hyperacute T waves

Subsequent Q wave formation in

precordial leads V1-V6

LAD

Antero-Septal

(ASMI)

V1, V2, V3, or V4 None Q waves in V1–V3 precordial leads LAD

Septal V1 and V2 None None LAD-Septal branches

Lateral (LMI) I, aVL,V5, and V6 II,III, aVF None LAD and LCx

Inferior (IMI) II, III, aVF I, aVL (sensitive marker) Hyperacute T waves

Progressive development of Q waves

in lead II, III, aVF

RCA (80%) or RCx (20%)

Posterior (PMI) Require the extra leads V7–V9 (10).

PMI accompanies 15–20% of

STEMIs, the reciprocal changes of

STEMI are sought in leads V1–V3 (16)

High R in V1–V3 with ST

depression V1–V3 >

2mm (mirror view)

Terminal T-wave inversion becomes

an upright T wave

RCA or LCx

LAD, left anterior descending coronary artery; RCA, right coronary artery; RCx or RCX, ramus circumflex artery; LCx or LCX, left circumflex artery.

TABLE 2 | Recent conventional machine learning methods for MI detection and localization.

References Year Feature extraction

methods

Classification

models

Number of

hand-crafted features

MI detection MI localization

Acc (%) Sen (%) Spec (%) Nc Acc (%) Sen (%) Spec (%)

(32) 2016 DWT SVM 35 95.30 94.6 96.0 5 98.1

(33) 2017 FFPSO LMNN

KNN

SVM

99.3

92.17

96.7

99.97

92.35

94.45

98.7

93.9

95.89

(34) 2016 DWT and DCT KNN 47 98.80 99.45 96.27 10 98.74 99.55 99.16

(35) 2018 SWT and sample

entropy

KNN 98.69 98.67 98.72

SVM 98.84 99.35 98.29

(36) 2018 PCA

Clinical features

SVM 96.66 96.66 96.66

(37) 2019 FBSE-EWT LSSVM 108 99.97 100 99.95

(38) 2021 SVM 24 temporal,

288 morphological,

3 non-linear

97.00 97.33 96.67

(39) 2020 DWT, PCA NN 28 (detection)

32 (localization)

98.21 97.5 98.01 6 98.22 98.14 99.40

(40) 2012 Time-Domain KNN 36 99.97 99.90 10 96.72 97.11

DWT, Discrete wavelet transform; FFPSO, Hybrid Firefly and Particle Swarm Optimization algorithm; DCT, Discrete cosine transform; SWT, Stationary wavelet transform; PCA, Principal

component analysis; FBSE-EWT, Fourier–Bessel series expansion-based empirical wavelet transform; LMNN, Levenberg Marquardt neural network; LSSVM, The least square-support

vector machine; Acc, Accuracy; Sen, Sensitivity; Spec, Specificity; Nc, Number of classes.

appropriate algorithm to rank the scores of contributions of
the features to the results so that the relevant characteristics
can be maintained (41). However, the unselected features
in the process of feature selection are directly moved out,
so it is difficult to tell if the hidden information has been
thoroughly unearthed or utilized redundantly. This form of
two independent modules gives a negative influence on the
learning ability and performance of ML models (42).

• Second, in the conventional ML framework, independent
feature extraction techniques use fixed hand-crafted features.

However, ECG characteristics may change with the influence
of some external factors such as patients’ age, gender, the
devices used for acquiring ECG data, and the generalizability
is compromised when fixed ECG features are used (43).

• Third, feature point detection cannot be guaranteed in ECG
signals due to their faintness and noise interference. When
confronted with faulty ECG tracings, traditional models can
easily lose their robustness (41).

• Fourth, the ECG characteristics of MI, such as ST-segment
deviation, are often inadequate to detect MI since they may
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be seen in other cardiac conditions, such as left ventricular
hypertrophy and left bundle-branch block (44). Moreover,
ECG abnormalities are also common in patients who have
myocarditis or Takotsubo syndrome (TTS) (45, 46) Therefore,
the low accuracy of the conventional ML methods keeps
the manual-crafted feature extraction as a central task,
which may be attributed to the traditional imperfect ECG
classification criteria.

Deep Learning
Deep learning (DL) is a subfield of ML. DL models can be
trained on huge datasets to learn the relationship between the
input features and the results automatically (47) Thus, they can
directly learn features from given input of raw data without
a specific step of feature extraction and have the capacity to
maintain good generalizability. The hidden layers of DL models
are a black box, which is responsible for automatic features
learning. The deep hidden layers make a deep neural network
that can potentially map to any function, which allows it to solve
exceedingly complicated functions. A system with 5–20 non-
linear layers may implement extraordinarily complex functions
of its inputs (47). DL has been rapidly evolving and having an
imperative impact on the accuracy in the classification of heart
diseases. Data-driven DL models rely significantly on the quality
of data and can be promoted as more data is gathered. Since 2010,
due to aging populations, the availability of easy-to-use ECG
monitoring devices in the form of wireless, mobile, and remote
technologies have greatly expanded the capture of ECG data,
and DL algorithm-based interpretation software automatically
interprets ECG data. Wearable technology, wireless sensors,
and deep learning techniques can all collaborate to create
innovative approaches to improve healthcare services (48, 49).
The improvement of AI may greatly promote the development
of ECG and expand the interoperability of healthcare. For the
limitations of conventional ML approaches mentioned in Section
Machine Learning, the advantages of DLmethods compared with
the ML approaches are concluded as follows:

• As opposed to the conventional ML algorithms, the DL
framework integrates feature extraction and classification into
a whole instead of clearly describing them as two independent
modules. That is also called the “end-to-end” model. End-to-
end models can use a single model to solve tasks with multiple
modules or steps. When solving a complex task using multiple
modules, the major drawback is the accumulation of errors,
since deviations from one module can affect the next. The
end-to-end DL models avoid this inherent defect and make
a reduction in engineering complexity. However, just as the
“no Free Lunch” theory, the interpretability of DL models
is reduced.

• From the perspective of generalization, DL is easier to deal
with massive data than conventional ML methods. It is
believed that memory training data is an important reason
for the poor generalization ability of models in conventional
view. Therefore, various regularization methods are often
used to make models “simple” and break this memory. In
Zhang et al. (50), researchers challenged this conventional

view by adopting the randomization test to compare how
the learning algorithm performs on the natural data vs.
the randomized data. The results indicate that deep neural
networks easily fit random labels and emphasize that the
effective capacity of the neural network makes it large enough
to memorize data. More importantly, researchers assessed the
effects of implicit regularizers on generalization performance
and proved implicit regularizations are not the main cause
for model generalization. Therefore, we can infer deep neural
networks make good use of their memory when they work.
In comparison, the traditional ML methods lack this memory
when they deal with complex functions.

• Compared with the rule-based features extraction, DL
approaches automate feature engineering. DL models can
better express the rich underlying information of data by
using vast amounts of raw data to automatically identify
the representations needed for classification. As a result, the
DL algorithms may “see” informative features that even the
experienced expert may not notice. Their potential for greater
generalization ability makes them better adapt to the dynamic
changes of ECG patterns and enables them to diagnose more
cardiac conditions with a greater performance than identified
by conventional ML.

Based on the summary of Ansari et al. (51) we add the DL
methods for MI detection and localization emerging from the
recent 5 years to construct the timeline in Figure 2.

OBJECTIVES AND METHODS

Other Related Work
There exist other six related works that focus on automatic
ECG analysis for the prediction of structural cardiac pathologies,
including two systematic reviews (52, 53), one meta-analysis
(54), and three comprehensive reviews (44, 51, 55). Al
Hinai et al. (52) assess the evidence for DL-based analysis
of resting ECGs to predict cardiac diseases such as left
ventricular (LV) systolic dysfunction, myocardial hypertrophy,
and ischemic heart disease. Joloudari et al. (53) focus on ML
and DL techniques for myocardial infarction disease (MID)
diagnosis but just cover 16 papers regarding DL methods.
Grün et al. (54) include a total of five reports to provide an
overview of the ability of AI to predict heart failure based
on ECG signals. Attia et al. (55) discuss AI ECG algorithms
for cardiac screening including LV dysfunction, silent atrial
fibrillation, hypertrophic cardiomyopathy, and other structural
and valvular diseases. Jothiramalingam et al. review papers
that consider ECG signal pre-processing, feature extraction
and selection, and classification techniques to diagnose heart
disorders such as LV Hypertrophy, Bundle Branch Block,
and MI. Ansari et al. (51) comprehensively evaluate several
hundred publications that analyzed the ECG signal and electronic
health records (EHR) to diagnose myocardial ischemia and
infarction automatically and point out that DL methods have
not specifically been used to detect MI and ischemia prior
to 2017.
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FIGURE 2 | Timeline of technology advances of feature extraction and classification methods for MI diagnosis.

Study Objectives
In recent 5 years, there has been an emerging number of studies
focusing on state-of-the-art DL methods for MI detection and
localization. Compared to the related work mentioned before, we
only focus on DL techniques for MI detection and localization to
consider more related papers. Covering a wide variety of studies
focused on this topic in the review, we have set the following
detailed goals: First, to describe and evaluate all public databases
and newly collected datasets, as well as the commonly accepted
assessment measures employed in the reviewed publications.
Second, to assess and compare the different DLmethods based on
their respective performance in detecting and locating MI to find
the most popular one. Finally, to discuss how these different DL
methods contribute to MI detection and localization, as well as
the primary potential obstacles of using DL algorithms in clinical
practice for MI detection.

Study Selection
We search technical papers that deployed DL methods [deep
neural networks (DNNs)] for MI detection and localization on
Google Scholar, PubMed, and Web of Science. The following
general search terms are used: (“deep learning” OR “deep neural
network” OR “artificial neural network” OR “convolutional
neural network” OR “CNN” OR “recurrent neural network”
OR “RNN” OR “long short-term memory” OR “LSTM” OR
“autoencoder” OR “deep belief network” OR “DBN” OR
“generative adversarial networks” OR “GAN” OR “Restricted
Boltzmann machines” OR “RBM”) AND (“electrocardiogram”
OR “ECG” OR “EKG” OR “electrocardiography” OR
“electrocardiograph” OR “electrocardiology”) AND (“myocardial
infarction” OR “MI” OR “acute myocardial infarction” OR
“AMI”). To avoid missing related papers, we also include some

references that have been cited by others. Figure 3 shows the
flow diagram of paper selection.

FINDINGS FROM REVIEW

Datasets
A high-quality dataset can boost the improvement of data-driven
model performance and generalizability, making DL techniques
possible to be used in clinical environments. A total of 13 datasets
are considered in all the reviewed papers. The largest database
is the ECG-ViEW II database consisting of 979,273 recordings
from 461,178 patients, which was collected over a 19-year study
period in South Korea. The smallest dataset is the Long-Term ST
Database (LTST), only covering 86 recordings from 80 subjects,
which were collected in Slovenia. Thus, these datasets differ
significantly in the number of ECG recordings. Among the
investigated papers, 47 (more than 79%) research trained DL
models on the public Physikalisch-Technische Bundesanstalt
(PTB) Diagnostic ECG database and achieved high performance
for MI classification. It makes the problem of the generalizability
of these existing DL models worth considering, and clinical
data is needed to verify the diagnostic efficacy of such models.
Other public databases such as the LTST, the PTB-XL, and the
ECG-ViEW II database are alternatives for some researchers.
Notably, 7 studies are using the new ECG collections from some
medical institutes in recent two years. For instance, Tadesse
et al. (56) collected the ECGs from 17,381 patients (11,853 MI
and 5,528 Normal cases) in the Provincial Key Laboratory of
Coronary Heart Disease, Guangdong Cardiovascular Institute
(GCI), and three subgroups: acute, recent, and old MI were
divided by cardiologists based on patients’ medical history with
a combination of ECGs. In 12/13 of these datasets, ECGs

are collected as voltage amplitude time-series signals in one
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FIGURE 3 | Flow diagram of paper selection.

dimension, however, there is also one ECG images collection for

CNN model training. Khan et al. manually collected 11,148 ECG
images from Ch. Pervaiz Elahi Institute of Cardiology Multan

in Pakistan and cardiologists annotated the images. All collected
datasets are listed in Table 3.

• Leads: Standard 12 leads ECG are included in ten datasets, but

few datasets only contain two or three leads ECG recordings

such as the LTST and The European ST-T database (ESCDB).

Each record in the PTB database includes 12 conventional
standard leads together with a vectorcardiogram (VCG) of
three Frank leads, and the 15 leads ECG can provide a more
comprehensive assessment about the heart abnormalities. It
is also the only database whose record has 15 simultaneously
measured signals in all the datasets. In the reviewed literature,
a small number of them adopted ECG signals of several
specific leads according to their different study objectives, for
instance, Lead V1, V2, V3 are adopted to detect AMI (68),
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TABLE 3A | Properties of the collected databases used in the research of MI detection and location.

Dataset Country Year Np ECG recordings information Strength Limitation Link

PTB (57) Germany 2000 47 15 leads: 12 leads + 3 Frank leads

(Vx, Vy, and Vz)

549 records from 290 subjects:

(Aged 17–87, mean 57.2; 209 men,

mean age 55.5, and 81 women,

mean age 61.6)

Length: 2min Frequency: 1 kHz

(available up to 10 kHz)

Resolution: 16 bits with 0.5 V/LSB

(2,000 A/D units per mV)

15 leads ECG are

included

Higher resolution

than LTST

Small sample size https://physionet.org/

content/ptbdb/1.0.0/ or

https://doi.org/10.13026/

C28C71

The LTST

(58)

Slovenia 2003–2007 2 2 or 3 leads

86 recordings from 80 subjects:

1,155 (ischemic), 335 (non-ischemic)

ST episodes

Length: 21–24 h

Frequency: 250Hz

Resolution: 12-bit over a range of

±10 millivolts

Annotations: locations of the PQ

junction (the isoelectric level) and the

J point, ST level time series or the ST

deviation time series

All 86 data are supplied

with detailed annotations

and ST deviation trend

plots

Data sample size is small

Just 2 or 3 leads ECG

are included

https://physionet.org/

content/ltstdb/1.0.0/ or

https://doi.org/10.13026/

C2G01T

PTB-XL

(59)

1989–1996 1 12-lead

21,837 recordings from 18,885

patients

(Male: Female = 52:48%)

(Ages: from 0 to 95 years

Median 62 and interquartile range of

22)

Length: 10 s

Frequency: 500Hz

The to-date largest freely

accessible clinical 12-lead

ECG-waveform dataset

https://physionet.org/

content/ptb-xl/1.0.1/

ESCDB

(60)

The

European

Community

1985 1 Lead 3 (L3) and Lead 5 (L5)

90 annotated ECG recordings

from 79 subjects

367 episodes of ST segment change,

and 401 episodes of T-wave change,

with durations ranging from 30s to

several minutes

Length: 2 h

Frequency: 250Hz

Resolution: 12-bit over a nominal

20mv input range

Beat by beat annotations

are included

Only 2 leads are included

and small sample size

Contains nonischemic

ST-segment changes

https://www.physionet.org/

content/edb/1.0.0/ or

https://doi.org/10.13026/

C2D59Z

ECG-ViEW

II (61)

South

Korea

1994–2013 1 12 leads

979,273 recordings from 461,178

patients over a 19-year study period

ECG parameters: QT interval, QTc

interval, RR interval, PR interval, QRS

duration, P wave axis, QRS axis, and

T wave axis

Based on real-world

clinical practice data of

patients who have taken

medicines to treat various

diseases

Consists of long-term

follow-up data

The algorithms of

calculating ECG,

parameters were not

upgraded in the period of

collecting time

Data are from one hospital

No waveform data

are provided

http://www.ecgview.org

STAFFIII

(62)

USA 1995–1996 2 12 leads

The database consists of 104

patients and a total of 152 occlusions

in the major coronary arteries

35 patients had previous MI

Frequency: 1,000 Hz

Resolution: 0.625 µV

It accounted for

inter-patient variability in

reaction to prolonged

balloon inflation as well as

variability of heart rhythm

and waveform

morphology

https://www.physionet.org/

content/staffiii/1.0.0/ or

https://doi.org/10.13026/

C20P4H

Np, number of papers.
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TABLE 3B | Description of newly collected datasets used in studied research.

Dataset’s name/description Country References Properties of ECG data

The ICBEB China (63) 825 records for ST-segment depression (STD), and 202 records

for ST-segment elevated

Length: 6–60 s

Frequency: 500 Hz

A dataset built by Chapman University, Orange, CA, USA, and

Shaoxing People’s Hospital, China

USA and

China

(64) 12-lead ECGs from 10,646 patients

Length: 10 s

Frequency: 500Hz

11 common heart rhythms and 67 additional cardiovascular

conditions, with the images labeled by cardiovascular experts

GGH China (63) 12-lead ECG from 21,241 anonymized patients

15,578 MI cases and 5, 663 normal cases

Frequency: 500 Hz

The ECGs records which were collected in the Provincial Key

Laboratory of Coronary Heart Disease, Guangdong

Cardiovascular Institute (GCI)

China (56) The 12-lead ECGs from 17,381 patients (11,853 MI and 5,528

Normal cases)

1,489 Acute (MI occurred within 7 days), 5,377 Recent (MI

occurred in <30 days but longer than 7 days) and 4,613 Old (MI

occurred beyond 30 days) MI cases

Length: 10 s

Frequency: 500 Hz

Hospital A was a cardiovascular teaching hospital and hospital B

was a community general hospital

South

Korea

(65) 12 leads

Length: 10 s

Frequency: 500 Hz

A collection of 11,148 standard 12-lead-based ECG images were

obtained from Ch. Pervaiz Elahi Institute of Cardiology Multan,

Pakistan

Pakistan (66) 2,880 images for MI

2,796 for abnormal heartbeats

2,064 for previous history of MI

3,408 for normal

114 patients enrolled in the Kerckhoff Biomarker Registry for the

training and evaluation of the deep neural networks

Germany (67) The 12-lead ECG recordings from 114 patients

Length: 10 s

Stored format: XML-based HL7v3

ECG acquisition devices: Cardiovit AT-102P, Schiller-Reomed AG,

Obfelden, Switzerland

Frequency: 0.05–150Hz; Measuring range: ±300mV;

Sampling rate: 500 data points per second/5,000 in 10 s (per

lead); Digital resolution: 5 µV/18 bit

and lead II, III, and aVF are used for detection of IMI (69).
The three VCG leads record electrical heart activities in three
orthogonal planes including frontal, sagittal, and transverse
(70). In Yadav et al. (71), the best results obtained for 3 VCG
leads were concatenated. According to Einthoven’s law, there
are linear correlations between limb leads, and these leads are
electrically equilateral (72). Therefore, 8 leads (2 limb lead
and 6 precordial leads) are considered as the non-redundant
number of leads in Zhang et al. (73) to generatemodel training.
The usage of ECG leads is shown in Figure 4A.

• Length of ECG recordings: Several databases contain short-
term ECG recordings which are less than several minutes, such
as 10 s (59) and 2min (57), while some databases include long-
term ECG data which is more than 1 h, such as 2 h (60) and
24 h (58). Sometimes, the length of 2 h is also relatively short
for MI detection and limits the use of computational methods
that analyze the signals over a longer period.

Model Performance Evaluation
Metrics
Model performance evaluation is the main step in ML-based
diagnosis. There are plenty of measurements for the performance

of various diagnostic algorithms, just like accuracy, sensitivity,
specificity, precision, F1-score, receiver operating characteristic
curve, and area under the curve. There is still a lack of consistency
in the performance metrics used for MI classification through
using robust evaluation strategies to make results comparable
and generalizable is of great importance. Figure 4B shows the
percentage of metrics used in the investigated articles. All the
metrics commonly used to assess the performance of models are
summarized in follows:

Accuracy (Acc) = TP+TN
TP+TN+FP+ FN

Sensitivity (Sen) = true positive rate (TPR) = recall (Re) =
TP

TP+ FN

Specificity (Spec) = TN
TN+ FP

Precision (Pr) = positive predictive value (PPV) = TP
TP + FP

False-positive rate (FPR) = FP
TN+ FP

Negative predictive value (NPV) = TN
TN+ FN

F1 Score (F1) = 2TP
2TP+FP+ FN

Classification Error Rate (CER%) = FP+FN
TP+TN+FP+ FN

Receiver operating characteristic (ROC) curve and the area

under the curve (AUC)
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FIGURE 4 | The number of leads used in investigated articles (A). The proportion of the usage of single lead especially the lead II ECG signals is the highest for MI

detection, even higher than the standard 12-lead ECG signals. It is because this limb lead is coaxial to the cardiac conduction, the ECG signal in lead II has the largest

forward waveform amplitude and the clearest waveform amplitude, so it can provide good ECG morphological information for MI detection (74). Furthermore, for the

objective of MI localization, only 12-lead ECG data can provide comprehensive information and reflect different regions of the heart, so standard 12 lead ECG signals

are employed in most research of MI localization. Percentage of metrics used in reviewed papers (B). Accuracy, sensitivity, and specificity are the three major metrics.

Accuracy, which is considered in 79.7% of the articles, is the most frequently used metric, followed by sensitivity and specificity, with rates of 76.3 and 66.1%,

respectively. Less than 20% of authors have considered AUC. Distribution of data splitting methods in MI diagnosis (C). They contain k-fold cross-validation (CV) such

as ten- and five-folds, train-test separation such as 90:10 and 80:20%, and train-validation-test separation such as 70:15:15 and 60:10:30%. It shows tenfold CV is

the most popular data splitting method, which has been considered in 20 articles.

Youden’s J statistic (J- Measure): J = Recall + Spec – 1 =
TP

TP+FN
+ TN

TN+FP
−1

For classification in imbalanced data, Balanced Accuracy (BACC)
and Matthew’s Correlation Coefficient (MCC) are used:

BACC = 1
2

∗ ( TP
TP+FP

+ TN
TN+ FN

)

MCC = (TP∗TN)−(FP∗FN)
√
(TP+FP)(TP+FN)(TN+FP)(TN+ FN)

where TP is a true positive, TN is a true negative, FP is a false
positive, and FN is a false negative.

Performance in MI diagnosis is often measured by accuracy.
Nonetheless, relying on accuracy alone might be misleading in
the context of imbalanced data distributions, since it is easy to
obtain a high accuracy score by simply classifying all observations
as the majority class (e.g., the low prevalence of a disease).
The AUC measures the ranking scores between predictions and

targets, andwe can identify themodel that offers the best trade-off
between specificity and sensitivity by using AUC (67). Medically
speaking, AUC is more informative than accuracy. Other than
the ROC plots and the AUC, the metrics mentioned above are all
single-thresholdmeasures and none of them can give an overview
of performance when thresholds are varied.

In the F1 score, precision and recall are weighted by a
harmonic mean. It is commonly used in binary classification
problems. F1 score accounts for precision and recall of positive
observations while accuracy reflects correctly classified positive
and negative observations. It will make a huge difference for
imbalanced problems since the model generally predicts true
negatives.When both true negatives and true positives are equally
important, then accuracy should be selected. If the dataset is
heavily imbalanced or the positive class is mostly cared about, the
F1 score is a better choice.
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FIGURE 5 | Percentages on different deep learning (DL)-based models for MI detection (A) and localization (B). Convolutional neural network (CNN) is the most

common technique used for both MI detection (with 60% contribution) and localization (with 58% contribution). Convolutional recurrent neural network (CRNN) (for MI

detection) and ResNet (for MI localization) are the next most frequently used learning techniques in articles. Distribution of articles focused on each DL method in

recent 5 years (C). This figure shows the usage changes over the years of the six methods. Another four types of DL methods have been emerged for MI diagnoses

from 2019 compared to that in 2018, while only CNN and CRNN were used in 2017 and 2018. CNN dominated the model categories in each year, and the proportion

of CNN shows a gradual upward trend from 2019 to 2021 (33, 47, and 79 in 2019, 2020, and 2021, respectively).

Data Splitting
In DL methods, data splitting is of great importance for
performance evaluation. The model will likely fit the data
to a maximum extent if all the original data are used to
train the model while performing terribly for new data.
Training-validation-testing data splitting is commonly used to
prevent the over-fitting problem of the models. The three
subsets perform different functions: the training set is used
to train models and adjust parameters. The validation set
evaluates whether the efficiency of model training goes in a
bad direction and participated in the process of parameter
tuning (hyperparameter), and the test set is used to evaluate
the generalization capability of models. The proportion of
data splitting varies in different studies, and there may be no
validation set in some studies. K-fold cross-validation (CV) is a
dynamic validation technique that aids in mitigating the impacts
of data partitioning. The dataset is separated into k folds in k-
fold CV. The model is trained using K-1 folds, and its accuracy
is evaluated using the remaining 1-fold. This procedure will be
repeated k times, with the final model performance calculated by

averaging the results. Figure 4C depicts the distribution of data
splitting approaches in the investigated MI research.

In some research, the class-based and the patient-specific
experiments are designed to explore intra-individual variability
(AIV) and inter-individual variability (RIV), respectively. It
comes down to two different ways of data splitting. AIV can be
investigated when the same individual patient’s ECG heartbeats
simultaneously appeared in both the training and testing datasets,
whereas a patient-independent evaluation paradigm needs to
confirm no overlap of individual patient data between the two
datasets. In all the pieces of literature that employed both intra-
and inter-patient experiments simultaneously, we can see that
the models deployed in an intra-patient experiment always have
overestimated prediction, this is due to the data in the test
dataset has been partly occurred in the training dataset. Training
and testing with the same data results in overfitting that yield
to overestimated performance of the algorithm. Therefore, this
kind of excellent performance does not mean this model can
classify and detect unseen things very well in the future. RIV is
a significant challenge for automated diagnosis since the ECG
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beats of the patients showed different characteristics, so this type
of data splitting which is employed in an inter-individual scheme
accords with the real world more than that in an intra-individual
one. The evaluation results of the model deployed in the inter-
patient experiment would better represent the real performance
in real-world applications since networks are trained using a
dataset of recorded patient data but applied to new patients and
obtain better generalizability.

Pre-processing
Instead of relying on the complex steps of feature extraction,
DL methods learn the intrinsic characteristics directly from raw
or low-level processed data. Relatively little preprocessing such
as resample, denoise, segmentation, and data balance are also
necessary for some research. Resampling ECG data to obtain a
consistent sampling rate is essential to maintain consistency. In
this stage, the ECG beats are changed into the same periodic
length for the DL models. ECG waveforms can be subsequently
deformed by two major artifacts including high-frequency noise
as well as baseline wander (BW) caused by breathing and patient
movement (75). Wavelet transform methods performed well
in eliminating the ubiquitous ECG noises. Daubechies wavelet
6(db6) mother wavelet basis function and Savitzky-Golay (SG)
smoothing filter are commonly used to filter out high-frequency
noise and correct baseline wanders. In Acharya et al. (76) and
Liu et al. (77), the ECG signals with noise and without noise
are both used for CNN models to compare the performance,
and the results illustrated that the higher quality denoised ECG
signals can improve the performance of models. However, in
Zhang et al. (78), heartbeats with and without noise are adopted
in contrast experiments to verify the model’s robustness to noise,
and the research results indicated that the experiment using ECG
heartbeats with noise achieved better performance. The main
reason for this anomaly is that some informative features will be
missed while using wavelet to denoise since the noise domain has
an unescapable overlap with the information domain. Heartbeats
are segmented by distinctive points, notably fiducial R-point
since R-wave has an extremely high amplitude and plainly visible
peak. Pan Tompkins algorithm is the most widely used R-
peak and QRS-wave detection method and modified Nagatomo’s
method was conducted to automatically update the algorithm
of R-peak threshold in Sugimoto et al. (79). According to the
position of R-peak, sliding windows are generated with the
same number of heartbeats to control the size of ECG records
which inputted into the model due to the length of ECG signals
varies in datasets. Data imbalance occurs when the number of
samples for different classes varies greatly in a classification
task, and it is another common issue of influencing model
performance since it almost exists in all datasets. Low-degree
imbalanced data does not matter much whereas there is a great
deal of highly imbalanced data in medical diagnostics of the
clinical setting. Large data skew can affect the prediction results.
Several approaches have been discussed in reviewed literature
to best address the problem of imbalance. Rai and Chatterjee
(80) proposed a Synthetic Minority Over-sampling Technique
(SMOTE) to create synthetic samples for minor classes instead of
copies. SMOTE is a representative algorithm of the oversampling

method. Hammad et al. (81) and Dai et al. (82) added a new
loss function called focal loss (FL) to address data imbalance
and results in Tripathy et al. (83) indicated that FL increased MI
detection accuracy by 9%. Cao et al. (84) chose Balanced Cross-
Entropy, which is a modified version of the cross-entropy loss
function. To forcibly strengthen the robustness of DL models,
data augmentation is also used to deal with the scarce class
data and to supplement the trained model with more diverse
and representative data. Alghamdi et al. (85) investigated MI
ECG segments with and without the augmentation technique
in the proposed model, and results indicated that the model
with data augmentation technique achieved better performance
than that without one. Besides that, in Darmawahyuni et al.
(86), researchers introduced two performance metrics Balanced
Accuracy (BACC) and Matthew’s Correlation Coefficient (MCC)
to evaluate the performance in their proposed study which the
imbalanced ratio reaches 4.57. Notably, the balanced data helps
to improve the model performance, nevertheless, there is a gap
between balanced distribution and real condition (87).

Furthermore, to solve the problems of amplitudes scaling
and eliminating offset effect, some researchers centralized and
normalized each heartbeat, respectively (43, 68, 84). Rare
studies converted one-dimensional (1-D) ECG data into two-
dimensional (2-D) images and treated them as computer
vision tasks. In this research, signal preprocessing steps can be
nearly avoided.

Architectures
A plethora of studies have utilized DL algorithms to vastly
improve ECG waveform-based heart diseases classification. With
a focus on MI classifications, aside from binary classifiers
for detection of MI and non-MI, more studies have also
accomplished multiple-class classification for localizing the
distinct injury parts of the myocardium. According to a content
review, six main types of DL models are concluded: CNN,
LSTM, CRNN, ResNet, AE, and GRU. The popularity of each
type of model in MI detection and localization is illustrated in
Figures 5A,B, respectively. The usage changes over the years of
the six methods are illustrated in Figure 5C. The popularity of
the CNN model can be reflected in terms of research purposes
and annual classification models. In the following sections, each
of these models will be discussed in more detail.

CNN
Convolutional neural network (CNN) is not only well-known for
its ability to complete computer vision tasks but also excellent
in speech recognition, natural language processing, and signal
analysis. CNN’s basic structure is composed of a convolution
layer followed by batch normalization layer, rectified linear
activation function, pooling layer, and fully connected layer. The
convolution process entails convolution of the input maps by
kernels and then adding a bias to make the output maps. Multiple
convolution layers and pooling layers are generally selected and
set alternately, and the different convolution layers could extract
different levels of features. The direct use of raw ECG data
effectively alleviates the information loss which results from the
process of handcraft feature extraction and selection. Table 4 lists
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TABLE 4 | Properties of some notable convolutional neural network (CNN)-based ECG MI detection and localization.

References Year Data used Architecture of

CNN

Data

splitting

Performance Inter-/intra-

patient analysis
Detection Localization

(76) 2017 PTB, lead II

MI: 40,182

HC: 10,546

11-layer 10-fold CV Acc = 95.22%

PPV = 98.43%

Sen = 95.49%

Spec = 94.19%

Intra-patient

analysis

(88, 89)* 2018 LTST, 2 or 3 leads

ST: 266,275

Non-ST: 300,000

(Image samples)

Pretrained model:

Google’s Inception

V3

80:10:10% AUC = 89.6%

F1 score = 89.2%

Sen = 84.4%

Spec = 84.9%

NR

(77) 2018 PTB, lead II

MI: 13,577

HC: 3,135

13-layer CNN: 10-folds CV Acc = 99.34%

Sen = 99.79%

Spec = 97.44%

NR

(87) 2018 PTB

Lead V2, V3, V5,

and aVL

Multi-lead CNN

(ML-CNN)

5 folds CV Acc = 96.00%

Sen = 95.40%

Spec = 97.37%

NR

(43) 2018 PTB, 12 leads

MI: 48,690

HC: 10,646

(Six classes)

Multiple-Feature-

Branch

Convolutional

Neural Network

(MFB-CNN)

NR Intra-: Acc = 99.95%

Sen = 99.97%

Spec = 99.90%

Inter-: Acc = 98.79%

Sen = 98.73%

Spec = 99.35%

Intra-: Acc = 99.81%

Inter-: Acc = 94.82%

Inter- and

intra-patient

analysis

(68) 2018 PTB

Lead V1, V2, V3

MI: 41,087

HC: 18,640

Multi-Channel

Lightweight

Convolutional

Neural Network

(MCL-CNN)

NR AUC = 95.50%

Acc = 96.18%

Sen = 93.67%

Spec = 97.32%

NR

(69) 2018 PTB

Lead II, III, and AVF

IMI: 3,222

HC: 3,055

Three inception

blocks

NR Acc = 84.54%

Sen = 85.33%

Spec = 84.09%

(Detection of IMI)

NR

(78) 2019 PTB

lead II

MI: 50,486

HC: 10,289

The lightweight

CNN-like model

(PCANet)

5 folds CV Intra-: Acc = 99.49%

Sen = 99.78%

Spec = 98.08%

Inter-: Acc = 93.17%

Sen = 93.91%

Spec = 89.20%

Inter- and

intra-patient

analysis

(90) 2019 PTB, 12 leads

MI: 485,752

HC: 125,652

10-layer 70:15:15% Overall Acc = 99.78% NR

(91) 2019 PTB

12 leads

20 layers 10-fold CV

80% : 20%

Acc = 93.53%

Sen = 93.71%

NR

(83) 2019 PTB, 12 leads

MI: 14,274

HC: 2,826

Multichannel 1-D

shallow CNN as

classifier

70:30% Acc = 99.84%(Seven

classes)

NR

(92) 2019 Training: 483 MI, 474

non-MI

Testing: 340 MI,

260 HC

CNN-based 7-fold CV Acc = 94.73%

Sen = 96.41%

Spec = 95.94%

F1-score = 93.79%

NR

(67) 2020 ECG and MRI

114 patients enrolled

in the Kerckhoff

Biomarker Registry

CNN with fully

connected

feedforward

network

6-fold CV AUC = 0.89

Acc = 78%

Sen = 70%

Spec = 84.3%

(Detection of

myocardial scar)

Intra- and

inter-patient

analysis

(93) 2020 PTB, 12 leads

148 MI

141 non-MI (records)

6 layers CNN 10 different

training/

validation/test

sets

F1-score = 83%

Acc = 81%

NR

(Continued)
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TABLE 4 | Continued

References Year Data used Architecture of

CNN

Data

splitting

Performance Inter-/intra-

patient analysis
Detection Localization

(94) 2020 PTB, Lead II

MI: 368

HC: 80 (records)

DenseNet Intra-patient:

10 folds CV

Intra-: Acc = 99.74%

Sen = 98.67%

Spec = 99.83%

Inter-: Acc = 96.92%

Sen = 89.18%

Spec = 97.77%

Intra- and

inter-patient

analysis

(95) 2020 PTB, Lead II

MI: 44214 (6362, 7

parts)

HC: 6,157

Binary

Convolutional

Neural Network

(BCNN)

10 folds CV Acc = 90.29%

Sen = 90.41%

Spec = 90.16%

NR

(96) 2020 ECG-VIEW II

MI: 201

Non-MI: 71 records

16 layers CNN 10 folds CV

80:10:10%

Acc = 91.1%

Sen = 95%

Spec = 80%

Ppv = 93%

F1 = 94%

NR

(85) 2020 PTB, Lead II

MI: 80,364

HC: 21,092

Pre-trained

VGG-Net

VGG-MI1

VGG-MI2

10 folds CV

60:30:10%

Acc = 99.22%

Sen = 99.15%

Spec =

99.49% (VGG-MI2)

NR

(84) 2020 PTB, Leads v2, v3, v5,

and aVL

AMI: 38,536

HC: 18,640

Multi-Channel

Lightweight

Convolutional

Neural Network

(MCL-CNN)

10 folds CV

70:10:20%

Acc = 96.65%

Sen = 94.3%

Spec = 97.72%

NR

(81) 2021 PTB Lead II

MI: 368

HC: 181

22-layer CNN

model

5 folds CV Acc = 98.84%

Sen = 97.63

Ppv = 98.31%

F1 score = 97.92%

NR

(56) 2021 GGH and GCI

datasets, 12 leads

MI: 218,101

HC: 105,032

CNN based

feature extraction

NR AUC = 94%

(Prediction of

occurrence- time in

MI)

NR

(98) 2021 PTB

Lead II

10 layers CNN 10 folds CV Ppv = 99.58%

Acc = 99.95%

Sen = 99.95%

Spec = 99.95%

NR

(71) 2021 PTB

3 VCG leads

7 layers deep CNN NR Sen = 99.88 %

Spec = 99.65%

Acc = 99.82%

NR

(82) 2021 PTB

Lead II and 12 leads

3s: 17,972

11-layer CNN 10 folds CV Acc = 99.84%

Sen = 99.52%

Spec = 99.95%

NR

(64) 2021 PTB-XL and private

dataset

12 leads

10 NNs with same

parameters but

different

initializations

NR AUC: LMI: 0.969,

IMI: 0.973

ASMI: 0.987, AMI:

0.961

ALMI: 0.996

NR

(14) 2021 PTB, 15 leads

MI: 148

HC: 52

ConvNetQuake, (8

layers CNN)

NR Intra-: Acc = 99.43%

Sen = 99.40%

Spec =99.45%

PPV = 99.46%

Inter-: Acc = 97.83%

Intra- and

inter-patient

analysis

(99) 2021 PTB

MI: 312

12 lead-branch

CNN

5 folds CV

10 folds CV

Acc = 95.76% Acc = 61.82% NR

(100) 2021 PTB

MI: 50315

HC: 10593

DenseNet to

obtain key features

10 folds CV Acc = 99.87%

Sen = 99.84%

Spec = 99.98%

NR

(Continued)
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TABLE 4 | Continued

References Year Data used Architecture of

CNN

Data

splitting

Performance Inter-/intra-

patient analysis
Detection Localization

(101) 2021 ESCDB lead L3 2-D CNN

7 layers

Dataset1

(DS1), DS2,

and DS3.1

for intra-

analysis

DS3.2 for

inter-

analysis

Acc = 99.26%

Sen = 97.8%

Spec = 100%

Intra- and

inter-patient

analysis

(102) 2021 PTB

VCG signals

Multi-channel

multi-scale deep

CNN

10-fold CV Acc = 99.58%

Sen = 99.18%

Spec = 99.87%

Acc = 99.86% NR

(17) 2021 PTB

Detection: 4,136 MI

Localization:

50,579 MI

MI-CNN (For

detection)

LL-CNN

(For localization)

10-fold CV Acc = 99.51%

Sen = 99.71%

Spec = 99.35%

Ppv = 99.25%

Recall = 99.05%

F1-score = 99.14%

NR

(*) This means the model performance in this article is better than another one. HC, healthy control; CV, cross-validation; NR, not reported; ALMI, Antero-lateral myocardial infarction;

AMI, Anterior myocardial infarction; ASMI, Antero-septal myocardial infarction; LMI, Lateral myocardial infarction; IMI, Inferior myocardial infarction.

the details of reviewed papers using the CNN model for MI
detection and localization.

• Single-lead and multi-lead CNN. As shown in Section

Datasets, the ECG data of lead II is commonly used for MI
detection. In a highly cited paper (76), a deep 11-layer CNN

was implemented using ECG beats of lead II for MI detection

and obtained an average accuracy of 95.22 and 93.53% without
noise and with noise, respectively. The data between leads

is independent and the combination of ECG signals from
multi-lead reflects heart features on multiple scales, so several

methods are employed to ensure the data independence
among different leads, such as the multi-channel technology

(68, 84), the lead asymmetric pooling (LAP) and sub-2-D

convolutional layers (103), independent feature branch (43),
and inception blocks (69). In these multi-lead CNN models,
correlations containing intra-beat, inter-beat, and inter-lead
are captured. Each lead is in line with an independent channel
or feature branch, and the feature map of each lead will be
concatenated and integrated into fully connected layers for
detection and localization. Through training samples, each
lead can find which 1-D kernel is most suitable for them.
In Cao et al. (84), the results show that the comparative
single-channel CNN model forcibly used the same kernel in
different lead data and performed worse than multi-channel
CNNwhich can obtain better feature representation. It is well-
demonstrated that the proposed multi-channel CNN model
meets the independence of data. Instead of multi-lead ECG
data, a multi-branch CNN was proposed by Hao et al. (92)
by dividing ECG images evenly into 12 branches based on 12
leads and contributing to 12 separate networks.

• 1-D and 2-D CNN. In CNN-based MI detection methods,
the two types 1-D CNN and 2-D CNN are commonly used.
1-D voltage amplitude ECG data which is represented as a
time-series signal is input to the 1-D CNN model. Because

of that using ECG images as inputs of the CNN model is
more corresponds to the way that cardiologists diagnose and
analyze abnormalities, an emerging number of researchers
adopted 2-D CNN when ECG signals are treated as an image.
The 2-D CNN models used for detection are always trained
through a transfer-learning scheme including the pre-trained
Google Inception V3, GoogLeNet, MnasNet, and VGG-Net
rather than trained from the ground up, and that is the
idea of retraining the existing models. The 2-D grayscale
image models use the snapshots of 10 s or two consecutive R-
peaks ECG images which are transformed from continuous
ECG temporal dynamics. The feature encoding of time-
frequency spectrograms is also performed as a computer vision
task, and it contains multiscale waveform features and the
spatial correlations between these features. Using the Gramian
Angular Summation/Difference Fields (GASF/GADF)method
to transform 1-D ECG signal into a 2-D image, Zhang et al.
(78) developed a PCANet for detecting prominent features.
In terms of this transformation, the loss of information that
results from preprocessing such as noise removal can be
prevented. Alghamdi et al. achieved the highest accuracy of
99.02 and 99.22% using VGG-MI1 and VGG-MI2 models,
respectively, which are fine-tuned from pre-trained VGG-Net
so that their proposed automatic diagnosis system obtains
the ability to deploy in urban healthcare (85). Notably, the
aforementioned sub-2-D convolutional layers employed in
multi-lead feature analysis differ from conventional 2-DCNNs
since, in traditional 2-D CNN, the convolutional calculations
are performed in both row and column directions, whichmake
it suitable for image recognition. However, this convolution
operation undermines the independence of different leads
because the ECG data of different leads (column direction)
within the same time (row direction) will be convolved.
Some intra-lead local changes in multi-lead ECG cannot
be captured in conventional 2-D convolutions, and normal

Frontiers in Cardiovascular Medicine | www.frontiersin.org 15 March 2022 | Volume 9 | Article 860032

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Xiong et al. Deep Learning for Myocardial Infarction

pooling based on a single pooling factor cannot efficiently
utilize the multiscale features. These characteristics make
the conventional 2-D CNN very unreasonable for multi-lead
ECG classification.

• CNN for further detection. In the investigated studies based on
CNN, MI detection and localization are two main objectives.
However, there are also several extended research such as
detection of myocardial scar (MS) (67) and prediction of
occurrence-time in MI (56). MI results in myocyte necrosis,
which is replaced by fibrous scars due to the myocardium
being very weak at regeneration, leading to arrhythmias,
heart failure, and even sudden death. MS is the indicator
of IHD, and cardiac magnetic resonance imaging (CMI)
with late Gd enhancement (LGE) is the standard method
for diagnosing MS and assessing structural conditions of the
myocardium (104) Gumpfer et al. (67) first try to adopt a deep
learning model to predict MS based on ECG and additional
clinical parameters and achieved better performance with an
AUC score, sensitivity, specificity, and accuracy of 0.89, 70,
84.3, and 78%, respectively, on combine model (ECG data
together with clinical parameters) than that on ECG model.
The results suggest that further information on patients’
clinical characteristics can improve the prediction outcomes.
Compared to the DL method applied for ECG analysis, there
is also large research focusing on automatic approaches for MS
detection from MRI. In Moccia et al. (105), a 2D CNN model
toward automatically segments MS for MI quantification
based on ENet is proposed and the best-performing achieved
97% median accuracy and ∼71% Dice coefficient over a 30-
subject cohort, however, the computational training time is
too long. The ECG interpretation for the detection of MS
is insufficient and complex for healthcare professionals to
diagnose MS so that ECG cannot be applied as an alternative
for MRI currently, but the disadvantages of MRI are also
obvious, such as expensiveness and limited usability for
patients with severe renal impairment. Further exploration of
automatic techniques for the detection of MS is needed.

LSTM
Based on recurrent neural networks, Hochreiter and
Schmidhuber (106) first proposed the concept of LSTM.
This network gained great popularity in speech recognition and
machine translation in recent years. It is an expert in dealing
with sequential data and could handle the vanishing or exploding
gradient problem in the backward pass by entering a gate
mechanism, which makes it more applicable than a recurrent
neural network. The sequential characteristic of ECG data is in
line with the dependency relationship between input and output
data. The vanilla version of the LSTM unit is composed of four
parts: input gate, memory block, forget gate, and output gate.
Input and output gates are responsible for updating information
across time-steps, while gate mechanisms control the input
and output flow of information to the memory cells so that the
LSTM can store or discard data selectively. Notably, researchers
prefer to employ an LSTM-based method to detect MI not to
localize myocardial infarct regions. Table 5 lists the details of
papers using the LSTM model for MI diagnosis. Darmawahyuni

et al. (86) compared the performance of LSTM with that of
other two sequential model classifier standard RNN and GRU
within different data splitting and results indicated that a
simple LSTM network with 90:10% for training and testing set
presented the best specificity of 97.97% for MI detection than
RNN and GRU. The bidirectional LSTM (Bi-LSTM) network
is a variant of LSTM. In Zhang and Li (107), the proposed
Bi-LSTM model provided the input sequence in both forward
and backward ways, which simultaneously capture past and
future information, and the heartbeat-attention mechanism
was incorporated to improve the 2% accuracy of MI detection
and reached 94.77%. In Zhang et al. (108), researchers used 8
leads ECG data to detect AMI and IMI and achieved the highest
accuracy of 99.91%.

CRNN
A CRNN is the combination of two parts: CNN and RNN. As
GRU, LSTM, Bi-LSTM, and Bi-GRU are all variants of RNN,
CRNN comes in various forms such as CNN-LSTM (90, 100,
111–115), CNN-BiLSTM (116, 117), and CNN-BiGRU (15).
Heart rate variability (HRV) is a measure of the amount of
variation in the R-R interval from beat to beat (118). Some CNN-
based methods just classified single heartbeat or ECG segments
so that the beat-to-beat HRV cannot be utilized by them, whereas
LSTM is well-suited to process heartbeat sequences and can
analyze the beat-to-beat variations of the ECG morphology after
the convolutional layers. Convolution networks extract spatial
features and temporal properties are acquired through LSTM.
According to the characteristics of the two networks, some
researchers prefer to combine CNN with LSTM to create hybrid
models. Theoretically, the combination of the two-deep learning
techniques can capture any subtle morphological changes as well
as beat-beat HRV and makes it excellent applicability in MI
detection and localization. It is adopted by replacing one fully
connected layer of the CNN classifier with an LSTM layer to
create the CNN-LSTM classifier in Lui and Chow (119), and
the technique of stack encoding is also added into the hybrid
model to exhibit improved performance. Based on MFB-CNN
in Liu et al. (43, 116) added a Bi-LSTM into a single model to
abstract all 12 feature branches in total, and the model with the
Bi-LSTM module can achieve better performance than the one
without Bi-LSTM, notably, this is possible because Bi-LSTM is
efficient in logical dependencies. Similarly, a shallow 1D CNN
and a Bi-LSTM layer (117) were used to classify MI subjects
from 21 temporal features which were collected from the 12-
lead data. In Tadesse et al. (97), a 2D spectral-based CNN
which enables cross-domain transfer learning from pre-trained
GoogLeNet was used to encode frequency-time characteristics,
and the corresponding spectral dense features are then fed
into LSTM-based longitudinal modeling. Just one researcher
hybrid the CNN with BiGRU (15), a novel MLA-CNN-BiGRU
framework with multi-lead attention mechanism integrated for
automatic MI detection and localization is employed, satisfactory
performance was obtained in MI detection under intra- and
inter-patient experiments but the MI location under inter-
patient scheme needs further improvement. Table 6 lists the
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TABLE 5 | Properties of some notable long short-term memory (LSTM)-based ECG MI detection.

References Year Data used Architecture of

LSTM

Data splitting MI detection Inter-/intra-

patient analysis
Acc (%) Sen (%) Spec (%) Pr (%) F1 score

(108) 2019 PTB, 8 leads

54,753 heartbeats

LSTM 90:10% 99.91 NR

(107) 2019 PTB, 12 leads

MI: 369

HC: 79 (records)

Bi-LSTM 70:30% 94.77 95.58 90.48 NR

(109) 2019 PTB

MI: 10,144

HC: 2,215

Standard RNN

1,2,3 hidden

LSTM layers

80:20% 91 91 0.90 NR

(86) 2019 PTB

15 leads

RNN

LSTM

GRU

90:10% 97.56 98.49 97.97 95.67 96.32% NR

(110) 2021 PTB, Lead II

MI: 50,732

HC: 10,123

3 layers LSTM 10 folds CV 89.56 91.88 80.81 Inter- and

intra-patient

analysis

specifications of investigated papers using the CRNN model for
MI diagnosis.

AE
Autoencoder (AE) was introduced as early as 1994, and it is
another form of artificial neural network (ANN) for reducing
dimensionality. The extended capability of this model is strong,
and it can be applied to data dimension reduction, feature
extraction, and data visualization analysis (79). It contains an
encoder and decoder. The coding process involves converting
the input vector to a hidden representation and then returning
it to its original form in the decoding process. The efficiency of
the learning process can be improved because the input vector
is transformed into a lower-dimensional representation in the
coding process. Staked Sparse Autoencoders (SAEs) (74) and
convolutional autoencoder (CAE) (78) are both variants of an
autoencoder and are used for feature extraction. Table 7 lists the
properties of some AE models for MI classification. Zhang et al.
(74) structured shallow SAEs which were trained in unsupervised
learning to extract discriminative features, nevertheless, the
classification was completed by the shallow classifier TreeBagger.
Sugimoto et al. (79) constructed a CAE-based model to learn
the temporal features of normal beats and calculate the deviation
from the normal waveform for the input signals. Finally, the KNN
classifier was employed to categorize the error vectors into one
of 11 classes. In Zhang et al. (78) and Cho et al. (65) proposed
a variational autoencoder (VAE) to reconstruct a precordial 6-
lead ECG using a limb 6-lead ECG. The encoder and decoder
comprised 6 CNN layers each and were connected by a 1-D dense
layer. The DL-based algorithm with VAE is one novel point of
this retrospective research, and it outperformed conventional DL
methods for interpreting MI or STEMI using 6-lead ECG.

ResNet
Deep residual networks were originally conceived for visual
recognition tasks to overcome the degradation phenomenon that
occurs in deeper networks with the network depth increasing.

In 2015, ResNet was introduced by He et al. on the ILSVRC &
COCO 2015 competitions and achieved excellent performance in
image detection and classification tasks which greatly exceeded
the level of other approaches in the previous years, consequently
winning 1st place on ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC (124).
The obvious characteristic of ResNet is the considerable depth
which enables the network to have an extremely strong ability
of representation. Recently, the generic ResNet framework has
been applicable in time series classification tasks. Table 8 lists
the details of notable papers using the ResNet model for MI
classifications. The existing residual skip CNN was trained
to detect MI and improved 4% in the accuracy compared
with benchmark performance in Gopika et al. (125). In
Strodthoff’s approach, the two variants of CNN including fully
convolutional architectures and ResNet-inspired architectures
with skip-connections were adopted to distinguish AMI and IMI,
and both architectures showed similar performance when applied
to ECG data with multiple leads. In this research, the ECG signal
matrix was the form of input and directly fed into the first 2-D
convolutional layer of the ResNet (126). Differently, in Jafarian
et al. (39), a single 1-D convolutional layer of each ECG lead
was treated as a front-end to extract a pseudo-time-frequency
representation and summarized as multi-lead discriminative
features which are then input the first 2-D convolutional layer,
and then three residual blocks were followed. The performance
results showed that there is just one miss-classifiedMI in the five-
folds cross-validation so that the average accuracy, sensitivity,
and specificity of MI detection and localization reached almost
100%, respectively. Similarly, Han and Shi (127) developed a
unique multi-lead ResNet with three residual blocks and feature
fusion using ECG recordings from 12 leads to detect and
localize 5 types of MI. Following three residual blocks, the
global average pooling (GAP) layer and dropout are applied
to improve generalizability. Furthermore, experiments under
intra- and inter-patient schemes were both implemented and
achieved an accuracy of 99.92 and 95.49% for the two schemes,
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TABLE 6 | Properties of some notable convolutional recurrent neural network (CRNN)-based ECG MI detection and localization.

References Year Data used Architecture of

CRNN

Data

splitting

Performanc Inter-/intra-

patient

analysis
Detection Localization

(119) 2018 PTB and

AF-Challenge,

lead I

368 MI, 80 HC

CNN-LSTM stacking

decoding classifier

10-fold CV Sen = 92.4%, Spec = 97.7%

Pr = 97.2%, F1 score = 94.6%

NR

(120) 2019 PTB, lead I

148 MI, 52 HC

16-layer CNN-LSTM 10-fold CV Acc = 95.4%, Sen = 98.2%

Spec = 86.5%, F1 score

= 96.8%

NR

(121) 2019 PTB, Lead II

Total 150,268

16-layer CNN-LSTM 10-fold CV Acc = 98.51%, Sen = 99.30%

Spec = 97.89%,

Pr = 97.33%

NR

(116) 2019 PTB, 12 leads

MI: 148

HC: 52

(368 records)

CNN combined with

Bidirectional LSTM

5-fold CV Intra-: Acc = 99.90%,

Sen = 99.97%

Spec = 99.54%,

Pr = 99.91%

Inter-: Acc = 93.08%,

Sen = 94.42%

Spec = 86.29%,

Pr = 97.21%

Intra- and inter-

patient analysis

(122) 2019 PTB, 12 leads Multiple 1-D

convolution layers and

LSTM layers

Acc = 83%

Sen = 79%

Spec = 87%

NR

(97) 2020 PTB, 12 leads

148 MI, 52 HC

CNN features and

LSTM-based network

5-fold CV AUROC = 94% NR

(123) 2020 PTB

15 leads

Enhanced Deep Neural

Network (EDN)

CNN:84.95%

LSTM: 85.23%

EDN:88.89%

NR

(44) 2020 PTB

12 leads

632,940 MI

127,188 HC

2-D CNN and

bidirectional gated

recurrent unit (BiGRU)

framework

(MLA-CNN-BiGRU)

5-fold CV Intra-: Acc = 99.93%

Sen = 99.99%, Spec = 99.63%

inter-: Acc = 96.50%

Sen = 97.10%, Spec = 93.34%

Intra-: Acc = 99.11%

Sen = 99.02%, Spec =

99.10%

inter-: Acc = 62.94%

Sen = 63.97%, Spec

= 63.00%

Intra- and

inter-patient

analysis

(117) 2021 PTB 12 leads

80 HC

70 non-MI

367 MI records

Combination of only a

shallow 1D CNN layer

and 1 bi-LSTM layer

5-fold CV Acc = 99.246%

Sen = 99.25%

Spec = 99.62%

F1 = 98.86%

Intra-patient

(80) 2021 PTB and MIT

Lead-II

123,998 beats

23 layers hybrid model

21 layers CNN

NR Acc = 99.89%

Spec = 99.77%

F1 = 99.64%

NR

TABLE 7 | Properties of some notable autoencoder (AE)-based ECG MI detection and localization.

References Year Data used Architecture Data splitting MI detection MI localization

Acc (%) Sen (%) Spec (%) AUC Nc Acc (%) Sen (%) Spec (%)

(79) 2019 PTB, 12 leads

MI: 295,344

HC: 58,296

CAE

KNN

10 folds CV 99.87 99.91 99.59

(74) 2019 PTB lead II

50,336 MI

10,588 HC

Feature

extraction: SAE

Classify:

Tree Bagger

10 folds CV 99.90 99.98 99.52 11 98.88 99.95 99.87

(65) 2020 12 leads and 6

limb leads

CNN + AE NA STEMI

MI

89.2

80

92.0

81.8

0.974

0.880

CAE, convolutional autoencoder; SAE, staked sparse autoencoder.
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TABLE 8 | Properties of some notable ResNet-based ECG MI detection and localization.

References Year Data used Model Data

splitting

Performance Inter-/intra-

patient analysis
Detection Localization

(125) 2019 Trained: 12,952

Tested:

1,600 (heartbeats)

Deep residual skip

CNN

Acc = 99.3%

Pr = 0.99%

Sen = 99%, F1 = 0.99

NR

(126) 2019 PTB, 12 leads

MI: 127

HC: 52 (records)

Fully connected

and ResNet

LSTM

10-fold CV Sen = 93.3%

Spec = 89.7%

NR

(128) 2019 PTB

AMI: 25,539

IMI: 25,181

HC: 10,354

Multi-lead

ensemble neural

network (MENN)

5-fold CV AMI: Sen = 98.35%

Spec = 97.49%, AUC = 97.92%

IMI: Sen = 93.17%

Spec = 92.02%, AUC = 92.60%

Inter-patient analysis

(39) 2020 PTB, 12 leads

5,968 segments

Feature extraction

+ shallow NN

End-to-end CNN

5-fold CV

60:10:30%

Acc = 98.21%, Sen = 97.50%

Spec = 98.01%

Acc = 99.99%, Sen =

100%

Spec = 100%

(Detection

and localization)

NR

(127) 2020 PTB, 12 leads

17,212 MI

6945 HC

Multi-lead ResNet

Fusion of features

5-fold CV Intra-: Acc = 99.92%

Sen = 99.98%, Spec = 99.77%

Inter-: Acc = 95.49%

Sen = 94.85%, Spec = 97.37%

Intra-: Acc = 99.72%

Sen = 99.63%, Spec =

99.72%

Inter-: Acc = 55.74%

Sen = 47.58%, Spec

= 55.37%

Intra- and

inter-patient analysis

respectively. Attractively,Wang et al. (128) proposed amulti-lead
ensemble neural network (MENN) with three sub-networks and
generated 15 and 12 sub-networks for AMI and IMI detection,
respectively. The architecture of Net1 includes two residual
blocks with reference in Xie et al. (129) to extract features, and
using ResNeXt, Net3 realized a multi-branch residual network by
adding group operations to the convolutional operation of the
residual blocks. Furthermore, Net2 used two inception blocks.
The three sub-networks extracted ECG features in different levels
and the ensemble of three nets had superior performance on
detection of AMI and IMI.

GRU
A Gated recurrent unit (GRU) is likewise intended to solve the
vanishing gradient problem of RNN. GRU has fewer trainable
parameters and lowers computational complexity than LSTM,
making it an enhanced form of LSTM with a faster training
process. The reset gate and the update gate are the two most
significant gates. The update gate is a merge component of input
and output gates in standard LSTM, and it focuses on the past
information of the previous moment which should be kept.
The reset gate controls the previous information that should be
disregarded in the current hidden state. In Prabhakararao and
Dandapat (130), the GRU is chosen as the basic unit of RNN,
and two multi-lead diagnostic attention-based RNN (MLDA-
RNN) models were proposed for the classification of three MI
severity stages including early, acute, and chronic MI. When
RNN encoding size and latent-space size are adjusted to 32 and
64, respectively, the proposed model achieved the best accuracy
of 97.79%. Based on (130), three GRUmodels were designed with
no attention, only intra-lead attention, and intra- and inter-lead

attention (IIL) modules respectively in Prabhakararao and
Dandapat (131). The intra-lead attention module concentrates
on the most discriminative ECG characteristics of each lead to
generate a lead-specific attentive representation (LSAR), whereas
the inter-lead attention module integrates all 12 representations.
The two modules are used for reducing intra- and inter-lead
redundancies. An ablation model with IIL modules as well
as patients’ clinical features was proposed to detect MI and
outperformed other existing models, showing an accuracy of
98.3%. Be analogous to Bi-LSTM, a basic Bi-GRU consists of
backward- and forward-propagating GRU units, and it can utilize
information of past and future time step. The Bi-GRU model
was adopted on eight ECG leads to locate five classes of MI and
obtain an overall accuracy of 99.84% in Zhang et al. (73), and such
excellent performance enables it to be applied to the computer-
aided diagnostic platform as a MI localization algorithm. Table 9
summarizes the properties of the GRU model for MI detection
and localization.

Model Performance
Each original research covered in this review yielded encouraging
diagnostic performances regarding the utility of DL in ECG
interpretation. The advantages and disadvantages of the six
different DL methods are reviewed in Table 10. To compare
the most reported performance concerning the six different
DL methods, Figures 6A,B display the maximum, average, and
minimum accuracies of each DL technique for MI detection
and localization, respectively. The maximum accuracies of DL
techniques that were trained on reviewed ECG databases and
used the different number of leads are summarized in Figure 6C.
It provides us reference about selecting the appropriate data
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TABLE 9 | Properties of some notable GRU-based ECG MI detection and localization method.

References Year Data used Architecture Data splitting Performanc Inter-patient/

intra-patient
Detection Localization

(73) 2019 PTB, 8 leads

54,753 heartbeats

ML-BiGRU 90%:10% Acc = 99.84% NR

(130) 2020 STAFF III: 3,609 EMI

PTB: 2,107 AMI, 3,618 CMI

1,902 non-MI, 3,024 HC

RNN

encoding

block

5-fold CV Acc = 97.79%, Sen = 97.6%

Spec = 99.43%, AUC = 0.98

F1 = 97.65

Inter-patient

analysis

ML-BiGRU, Multi-lead bidirectional gated recurrent unit neural network; EMI, early MI; AMI, acute MI; CMI, chronic MI.

TABLE 10 | Advantages and disadvantages of the six different deep learning (DL) methods.

Models Advantages Disadvantages

CNN The weight sharing strategy reduces the parameters that need to be trained 1. Amount of valuable information will be lost in the pooling layer

2. Poor interpretability

LSTM 1. Suitable for processing sequence signals

2. Overcoming the vanishing gradient problem occur on the timeline

The form of the LSTM neural network model is more complicated, and

there are also problems like long training and prediction time

CRNN It integrates the advantages of CNN and RNN (In MI research, recurrent

layers are used to analyze the beat-to-beat variations of the ECG

morphology after the convolutional layers)

High computational cost

ResNet 1. Training the network deeper

2. Fixed side effects of increased depth (degradation)

3. Reducing the problem of information loss compared to CNN

The training time is longer

GRU Making the structure simpler compared to LSTM but maintain the effect of

LSTM

The performance of GRU is inferior to that of LSTM in the case of large

datasets

AE Performing feature dimension reduction, and facilitate data visualization

analysis

The compression ability only applies to samples that similar to training

samples

leads and datasets according to the purpose of the research since
some smart bands and smartwatches record single-lead ECG and
multi-lead Holter monitors. It is a little difficult and arbitrary
to make a comparison of model performance among studies
according to a single measurement due to variability that exists
between different datasets and variousmetrics for measurements.
However, some authors have conducted studies that compare
different classification algorithms in their research, and using the
same dataset makes the model performance more comparable.
Table 11 summarizes the only six pairs of DL models reported in
the investigated paper. This is also a flaw in MI studies. Studies
comparing multiple DL techniques are expected to be conducted
in future works.

DISCUSSION, OPPORTUNITIES, AND
OPEN ISSUES

The number of articles about DL methods that were specifically
used for the detection of MI has been largely increasing in recent
5 years. It also suggests that more and more researchers have
explored the possibility of improving the performance of the
diagnostic methods in DL. According to the detailed findings
from the review, we also find some limitations about data
quality, robustness, and interpretability of models. In addition to
discussion about these limitations and challenges, new research
opportunity regarding DL methods for detecting and localizing

MI related to other current technologies such as the Internet of
Health Things (IoHT) is also emerging. Besides that, open issues
about privacy in healthcare data, the lack of annotated data of
admissible quality, and the explainability of DL models are also
being discussed.

Limitations
Data Quality
First, the most mentioned limitation is the need for good quality
and a large number of datasets. The sample size is smaller than
300 in five datasets investigated in this review, thus, sizable
data is needed. PTB database has been the first choice in nearly
80% of research for MI detection and localization, although
that includes using multiple different datasets simultaneously
containing PTB. The usage of a singular dataset result leads
to DL algorithms being too over-fitted to this dataset, hence
the robustness of DL models cannot be guaranteed. Second,
the demographic diversity of subjects which could affect the
generalizability of DL models to ECG interpretation remains a
challenge. From the used datasets in the reviewed papers, all
the 13 datasets were collected from just a few continents, such
as Europe (German, Slovenia, and European community), Asia
(China, South Korea, and Pakistan), and North America (USA).
When researchers in distant countries train their models using
a uniform data set, the racial difference perhaps makes biased
model predictions. It is important to focus on the problem of
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FIGURE 6 | Maximum, average, and minimum accuracies of each DL technique for MI detection (A). The reported highest accuracy for MI detection is 99.99% in the

ResNet model, followed by CNN with an accuracy of 99.95%. The investigated papers with the reported highest accuracy for each model are all beyond 97%, and

the average accuracy for each model is all beyond 93%. The reported minimum accuracy for MI detection appears in the CNN model with 78%. Maximum, average,

and minimum accuracies of each DL technique for MI localization (B). The reported highest accuracy for MI localization is 99.87% in the CNN model. There is no

research focusing on applying the LSTM model to MI localization, and only one research for AE and GRU model, respectively, applied to MI localization. Therefore, the

maximum and average accuracies of autoencoder (AE) and gated recurrent unit (GRU) models are the same, but the minimum is vacant. The minimum accuracies of

the remaining three models are all below 65% in MI localization. Maximum accuracies of DL techniques which were trained on investigated ECG datasets and used

the different number of leads (C). Generally, the network that trained on 12 leads ECG data of PTB database has gained higher performance than that on smaller

number leads of ECG data. ResNet model with 12 lead ECG data of PTB database achieved the highest accuracy 99.99% in MI localization. The usage of only lead II

ECG data has also achieved good results in CNN, CRNN, and AE methods on the PTB database. The main reason is probably the three research with high

performance that used only lead II ECG data are just for MI detection, and they cannot obtain matching results in MI localization.

racial bias when considering AI into disease diagnosis since
the diagnosis results to be biased by race are not expected.
Several examples confirm the existence of this problem. For
instance, Google’s algorithm for diagnosis of diabetic retinopathy
performed poorly in populations in India outside where the
model had been developed (132) while Amazon recently created
a facial recognition system, “Rekognition,” that was proficient
at detecting lighter-skinned men but had trouble identifying
darker-skinned women and men (133). Noseworthy et al.
conducted a retrospective cohort analysis to assess the impact of
race on the performance of their CNN model to detect low left
ventricular ejection fraction (LVEF), but the prediction results
did not correspond with the ethnic disparities. That suggests that
the ECG features associated with LVEF rather than ECG are race-
invariant. However, the effect of racial disparity onDL algorithms
for other disease diagnoses should be further explored (134).

Performance
With the success of CNN architectures in these diverse domains
such as image recognition and natural language process,
researchers have applied them to time series analysis (111).
In this review, CNN obtains the most popularity and gets
as good performance as ResNet models in both MI detection
and localization according to the previous statistical analysis.
The analysis indicates that most researchers prefer to choose
such a relatively old but proven reliable model and gradually
improve this model to make the performance better and better
in MI detection and localization. Then, it can be shown that
the difference between the maximum accuracies of each DL
technique for MI detection and localization is relatively small in
Figures 6A,B. For instance, the difference between themaximum
accuracies of CNN, CRNN, AE, and ResNet in MI detection, and
the maximum accuracies of CNN and LSTM in MI localization
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TABLE 11 | Comparison of the methods that were reported in the articles.

Model Positive/Negative MLP CNN LSTM

CNN + *7.68% (85)

CRNN + *12.73% (85) *4.68% (85)

+ 34.74% (15) 0.13% (68)

– 4.7% (150) 4.3% (150)

ResNet + 1.8% (91) 2.23% (91)

– *4.56% (104)

GRU + 1.20% (73)

The method in the corresponding row is more accurate than the method in the

corresponding column when the number is positive and less accurate when the number is

negative. (*) means the percentage is calculated by the precision of the twomethods in the

corresponding row and column. Only six pairs of model performance had been compared

to each other in the investigated reviewed papers. Such comparisons are based on the

same dataset. MLP: multiple layer perceptron.

are all <0.1%. Even the maximum accuracy of ResNet in MI
detection is 0.04% higher than that of CNN, and the maximum
accuracy of AE in MI localization is 0.01% higher than that
of CNN. When these two tasks of detection and localization
are considered simultaneously, CNN just wins a narrow victory.
Finally, simply comparing the accuracy of different models in
different experimental settings (data, model training, etc.) is a
bit arbitrary, the lack of a unified standard for measuring and
comparing is the main limitation. Another important problem is
related to data imbalance. In the investigated studies, the ratio
of different classes of data is generally below 1:4, it shows a
slight imbalance and just a few researchers add techniques to deal
with the problem. The AUC is an important statistical metric in
the medical domain and is robust to imbalance distribution of
positive and negative samples, and it can visualize this problem
in plots, however, most researchers use accuracy to evaluate
the model performance instead of AUC. To merely analyze the
experimental data in the investigated papers, we found the size
of the data seems to have an impact on the model performance.
For instance, the accuracies of models trained on larger datasets
(17, 43, 85, 90, 100) are higher than those on smaller datasets (67,
69). However, model performance is emphatically not influenced
by a single factor. In most situations, more data is usually better,
but more data does not always equivalent to a more accurate
model since high bias models will not benefit from more training
examples. Overfitting should also be considered.

Robustness
The robustness of a model refers to its ability to withstand
perturbations or accurately classify the input data without
adjusting its initial parameters. In brief, robustness can be
understood as the tolerance of the model to data changes. In
the reviewed studies, researchers adopted specific techniques
to denoise, and the noise-free ECG signals were then input
to networks. In real-world applications, the clinical setting
is complicated and changeable, and ECG waveforms can be
deformed by many external forces. The original ECG signal with
noise will be the input for automatic devices. Therefore, adding
some noise to the training samples is necessary and can improve

the robustness of the models. Zhang et al. (78) has proved it.
Zhang et al. adopt heartbeats with and without noise in contrast
experiments to verify the model’s robustness to noise, and the
results indicate that the experiment using ECG heartbeats with
noise indeed achieves 1% higher accuracy than that without
noise. Notably, too much noise will make the training error
larger. However, in Han et al. (135), show that even a model
with very high accuracy could misclassify a normal sinus rhythm
(NSR) recording as atrial fibrillation (AF) with high certainty by
adding small perturbations to an ECG.

Explainability
The effect of “black box.” This limitation is also mentioned in
Section Machine Learning for MI Diagnosis. The characteristic
of learning features automatically from raw data rather than
done manually makes the interpretability of DL approaches
remains a general challenge, which is especially important for
medical applications (112), because the mysterious processes
may not be acceptable for medical professionals. There have
been most research put forward exploratory studies for the
application of interpretability methods in computer vision,
whereas few applications covered time series ECG data. For
example, attribution methods were investigated in Strodthoff
and Strodthoff (126), which allows qualitative study if the
DL algorithm uses similar features as human cardiologists. In
some studies (67), explainable artificial intelligence (XAI) is still
regarded as the future work to elucidate the mechanisms of
DL models.

Opportunities
Wearable devices have shown their potential for risk assessment,
screening, early diagnosis, and patient management in some
cardiovascular diseases such as hypertension, atrial fibrillation,
heart failure, peripheral vascular disease, coronary artery disease,
and so on (113). The MiCORE study in Marvel et al. (114)
proved wearables’ value of ECG monitoring in MI prevention.
Two hundred patients with type I MI are enrolled, and the
wearables include an Apple Watch and a Bluetooth BP cuff.
Preliminary results showed a 43% lower likelihood of the first
readmission within 30 days among patients in the Corrie Health
Digital Platform (Corrie) than among participants in a historical
comparison group. In the investigated studies, most researchers
just build the DL models for MI detection and localization by
using a fixed ECG dataset and few have deployed their developed
models with great performance in wearable devices. Rashid
et al. (95) designed a Binary Convolutional Neural Network
(BCNN) for low-power and low-memory wearable devices with
a single lead sensor, the microcontroller is similar to that of
the SmartCardia device. The energy consumption evaluation
shows that their model achieves 8× and 12× energy efficiency
compared to other related works, so it is energy efficient and
memory-saving for wearables. The current power consumption
constraints of wearables might make researchers try to compress
the DL models since the memory of digital devices is limited, and
models using different lead data can be used in different devices.

Cloud computing offers some help to healthcare providers,
such as hospitals and clinics, who need quick access to
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large storage facilities and computing. With cloud computing,
healthcare providers can easily share healthcare data across
regions, eliminating delays in patient care to realize smart
medical monitoring. Cloud computing can be integrated into a
platform for interaction and data sharing, especially for remote
and personalized patient care in the medical (115). In medical
diagnosis, various algorithms with promising performance have
been proposed in large amounts of research, but they are rarely
applied to an interactive platform and non-related professional
and technical personnel have trouble using these models.
Recently, an easy-to-operate platform LINDA which is designed
for online medical image recognition has been proposed for
common users without specific knowledge in the diagnostic area
(136). The contribution of the LINDA system reflects in three
aspects: firstly, it uses computational intelligence to recognize
abnormalities instead of knowledge-based feature extraction.
Second andmost importantly, an application of image processing
can be shared with other professionals to obtain more shared
data for the improvement of model performance. Data privacy
must be considered when involves data sharing. In the LINDA
system, the hash code is used to prevent parameters from passing,
and the number of requests to the prediction API is limited to
reduce service attacks. In addition, the traffic assessment tools
are also conducted. The third contribution is that it supports
creating a large image database to self-improve. Similarly, in MI
diagnosis, DL techniques can also be integrated into such a cloud
platform to achieve data sharing and remote diagnosis, which
further works are expected to explore.

Open Issues
We are in the era of data explosion, the usage of smartphones,
wearables, and IoT devices makes new data generate all the time.
There is a lot of information that can be mined by DL algorithms
in the massive data, but it also raises challenges about privacy. DL
methods are data-driven methods. In the medical domain, the
ethics related to patients’ data that are being used for DL model
prediction is of utmost importance. It makes sense to develop
a solution that tries to find a balance between data utilization
and privacy protection. The four stages of the life cycle model
of big data in healthcare involve data collection, storage, sharing,
and analysis process (137). Healthcare data subject involves
individual patients, healthcare institutions, government, research
institutions, and industry. Privacy leakage concerns can exist
in every aspect and need to take the corresponding technical
approaches to deal with. In data collection, data anonymity and
differential privacy are the main technologies. Due to the size of
sensors and wearables are getting smaller, lightweight, and less
complex differential privacy algorithms are needed to adapt to
such devices. Cloud computing is largely used to store big data
in healthcare, and it is common to use encryption and auditing
to ensure data confidentiality and integrity. The risks from data
sharing could be effectively controlled through access control
technology. In this way, novel technologies such as blockchain
have been considered in encryption. In Khalid et al. (138), a
decentralized authentication and access control mechanism is
proposed and can apply to many scenarios. In Parah et al. (139),
a novel high payload and reversible EHR embedding framework

based on left data mapping (LDM), pixel repetition method
(PRM), RC4 encryption, and checksum computation is proposed.
In addition to technical support, policies, laws, and regulations
are also necessary such as the European General Data Protection
Regulation (GDPR). Hedlund et al. draw up a data sharing
policy to provide guidelines for activities in the Analytic Imaging
Diagnostics Arena (AIDA) (140). Privacy protection techniques
in data analysis are especially important since lots of hidden
information can be dug for only after data is analyzed. A research
hotspot of model privacy is machine unlearning (141), and it
is expected to realize model forgetting with less computational.
To achieve smooth interoperability between the different parties,
making data management is important.

In the medical domain, the input samples are always
accompanied by various artifacts which lead to the lack of
annotated data of admissible quality. However, the limited
available input data in real-world practice make ML models may
capture specifically these artifacts which are nothing to do with
the diagnostic task (142). In terms of the problem of imperfect
data quality, solutions including data augmentation techniques,
transfer learning, and domain adaptation provide help. How to
generate high-quality input samples instead of simply producing
more training data through data augmentation has become
the key issue. Recently, there are quite a few related studies,
such as the classic Synthetic Minority Oversampling Technique
(SMOTE), MixUp (ReMix), Hard Negative Mixing (143), and
good-enough example extrapolation (144) all aim to improve
the quality of resampling of small samples. The transfer learning
emerges for solving the problem of insufficient annotation
data, so it can be carried out under fast modeling, annotation
deficiency, and small data modeling. However, the parametric
transfer learning methods are time- and cost-consuming to
tune, hence restricting the wide applicability in computational
constraints of wearables devices. In Wang et al. (145), propose
a first easy non-parametric transfer learning approach, the
result of the extensibility experiment shows this easy approach
can efficiently achieve good performance without requiring
feature learning algorithms. Domain adaptation (DA) is an
important part of transfer learning to solve the problem that data
distribution between the source domain and target domain does
not correspond with the independent and identically distributed
(IID) condition. Gradient reversal layer (146) and generative
adversarial network (GAN) (147) have been successfully applied
in unsupervised domain adaptation.

In terms of input samples with artifacts mentioned before,
another helpful solution is the interpretability of the models. The
interpretability could enable it to notice abnormal predictions
before being widely used as a diagnostic tool. The methods to
achieve interpretability enable people with specific experience
to have the maximum understanding of a specific model when
given specific data and tasks. Based on the existing methods,
we can divide the methods to achieve interpretability into three
stages, that is, before, during, and after model training. Before
model training, the objective of interpretability lies in data
analysis, and what we’re trying to do is learn about the data
to the maximum extent. The methods used generally include
data visualization and statistical analysis such as maximummean
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discrepancy (MMD). In modeling, directly building interpretable
models is a vital method. Linear regression models and specific
neural networks with an explicit pooling structure are all self-
explanatory models. Linear models and some of their variants
have good explainability due to a very solid statistical foundation.
Attention mechanisms are always adopted to provide insight into
model prediction. In Samek et al. (148), four post-hoc explanation
techniques have been summarized as follows: interpretable local
surrogates, occlusion analysis, gradient-based techniques, and
layerwise relevance propagation (LRP). A popular approach
of local surrogates is the Locally Interpretable Model-agnostic
Explanations (LIME) (149), which proposes to explain single
predictions of any ML classifiers, and attribution method based
on Shapley values which is a framework firstly proposed in game
theory is a kind of occlusion analysis (150).

CONCLUSION

Ischemic heart disease has been a major killer endangering
human health. Myocardial ischemia leads to myocardial damage
and necrosis, resulting in MI. Mild symptoms such as
arrhythmias, ventricular premature, and ventricular block can be
treated early but severe cases like cardiac arrest or even sudden
death are catastrophic. Looking back on the news reported
by the media in recent years, more and more young people,
such as students, white-collar workers, and so on, are in a
state of physical and mental fatigue for a long time due to the
pressure of study and work, and unfortunately die suddenly.
It suggests that this heart disease, which mainly occurs in the
elderly, gradually tends to be younger. Therefore, achieving
the early prevention of MI with long-term detection through
ECG is vital to lifesaving. Based on the development of AI, big
data, wearable devices, cloud healthcare, etc., automatic real-
time monitoring of ECG data has become possible. In recent

years, an emerging number of researchers engaged in the DL

field, and DL methods have generally achieved outstanding
performance in ECG interpretations. This review systematically
summarizes the progress of DL methods for MI detection and
localization, recaps some general limitations from the aspects
of data, models, performance, and prospects the application
of these DL technologies in clinical scenarios. It is hoped to
provide some suggestions and references for researchers in
related fields in model selection, the dataset used, and the
construction of a cloud platform for real-time monitoring and
diagnosis of ECG data. With the problem of data privacy
always challenging, in the future, this monitoring paradigm could
revolutionize cardiovascular care as soon as data security and
other concerns are addressed. It is believed thatmore patients and
sub-healthy patients can benefit from it and the mortality rate of
cardiovascular diseases could decrease significantly.
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