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Abstract

Tumor-promoting carcinoma-associated fibroblasts (CAFs), abundant in the mammary
tumor microenvironment (TME), maintain transforming growth factor-p (TGF-p)-
Smad2/3 signaling activation and the myofibroblastic state, the hallmark of activated
fibroblasts. How myofibroblastic CAFs (myCAFs) arise in the TME and which epige-
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however, poorly understood. We herein show global histone deacetylation in myCAFs
present in tumors to be significantly associated with poorer outcomes in breast can-
cer patients. As the TME is subject to glutamine (GIn) deficiency, human mammary fi-

JP16H06277 broblasts (HMFs) were cultured in GIn-starved medium. Global histone deacetylation

and TGF-B-Smad2/3 signaling activation are induced in these cells, largely mediated
by class | histone deacetylase (HDAC) activity. Additionally, mechanistic/mammalian
target of rapamycin complex 1 (nTORC1) signaling is attenuated in GIn-starved HMFs,
and mTORC1 inhibition in GIn-supplemented HMFs with rapamycin treatment boosts
TGF-p-Smad2/3 signaling activation. These data indicate that mTORC1 suppression
mediates TGF-p-Smad2/3 signaling activation in GIn-starved HMFs. Global histone
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1 | INTRODUCTION

Carcinoma cells interact with various types of stromal cells to
generate the tumor microenvironment (TME), which in turn influ-
ences tumor hallmarks, such as tumor growth and progression.l’4
Carcinoma-associated fibroblasts (CAFs), abundant in the TME, are
common in several human malignancies. Various cells of origin and
different stimuli from the TME result in the generation of distinct
fibroblast subpopulations, mainly a-smooth muscle actin (a-SMA)-
positive myofibroblastic CAF (myCAFs), inflammatory CAFs, and
antigen-presenting CAFs,> 8 although precise cause of the CAF sub-
population induction remains poorly understood.

We previously obtained evidence that resident human mammary
fibroblast (HMFs) convert to myCAFs through interaction with in-
tratumoral breast carcinoma cells. During tumor progression the es-
tablishment of self-stimulating autocrine TGF--Smad2/3 signaling
mediates the myofibroblastic state and tumor-promoting ability of
these fibroblasts.” Activated tumor-promoting traits in CAFs occur
in part through epigenetic dysregulation of particular gene expres-
sions attributable to alterations in DNA methylation, histone meth-
ylation, and/or chromatin remodeling.1°* Treatments with class |
and Il histone deacetylase (HDAC) inhibitors exert antifibrotic ef-
fects by attenuating TGF-p signaling and ECM production in cultured
myofibroblasts and human breast CAFs.*>18

Acetylation of lysine on histones H3 and H4 is associated with
transcriptional activation.” Histone acetylation turnover is dynam-
ically balanced through reciprocal reactions catalyzed by histone
acetyl transferases and HDACs. Histone acetylation is also influ-
enced by intracellular glutamine (GIn) and glucose that fuel citrate of
the tricarboxylic acid cycle to generate acetyl-CoA, an acetyl group
donor for histone acetylation.?°722

Uptake of GIn is essential for tumor cell growth?*-2° but tu-
mors often show inefficient diffusion of nutrients and oxygen
from the circulation due to leaky and collapsed tumor vascula-
tures,?¢ resulting in GIn shortage in the TME.?”?8 Glutamine defi-
ciency also suppresses activity of mechanistic/mammalian target

of rapamycin complex 1 (mTORC1), the evolutionarily conserved

ing myCAF conversion.
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deacetylation, class | HDAC activation, and mTORC1 suppression are also observed
in cultured human breast CAFs. Class | HDAC inhibition or mTORC1 activation by
high-dose GIn supplementation significantly attenuates TGF-$-Smad2/3 signaling and
the myofibroblastic state in these cells. These data indicate class | HDAC activation
and mTORC1 suppression to be required for maintenance of myCAF traits. Taken to-
gether, these findings indicate that Gln starvation triggers TGF-p signaling activation

in HMFs through class | HDAC activity and mTORC1 suppression, presumably induc-

class | HDAC, global histone deacetylation, glutamine starvation, mTORC1, myofibroblastic
carcinoma-associated fibroblast, TGF-p/SMAD

29,30

pathway for sensing growth factors and nutrients, mod-

ulating metabolism in various cancer cells for their growth and
proliferation.3?

However, it is yet to be elucidated whether GIn deprivation in
the TME influences mTORC1 and HDAC activities in HMFs, and its
involvement in TGF-f signaling and the myCAF state during tumor
progression remains to be determined. We sought to clarify roles of
GIn deprivation regulating HDAC and mTORC1 activities in HMFs

relevant to their phenotypic conversion to myCAFs.

2 | MATERIALS AND METHODS

2.1 | Cell culture
Cell lines including HMFs, control fibroblasts, and CAFs used in this
study were already established in our previous research.” In brief, pri-
mary HMFs were extracted from a healthy human breast tissue sam-
ple, prior to introduction of the retroviral pMIG (MSCV-IRES-GFP)
vector expressing both human telomerase reverse transcriptase and
GFP to facilitate their immortalization, and a pBabe-puro vector en-
coding a puromycin resistance gene.9

Materials and methods including cell culture, animal experi-
ments, immunohistochemistry, tissue microarray, immunoblotting,

and statistical analysis are described in Data S1.

3 | RESULTS

3.1 | Global histone deacetylation in myCAFs
present in tumor stroma of breast cancer patients

The TME often lacks GIn, essential for generating acetyl-CoA: an
acetyl group donor for histone acetylation.2%23%728 We thus inves-
tigated the global histone acetylation state on tumor sections pre-
pared from a breast cancer patient by immunohistochemistry using
antibodies for acetyl-histone H3 (acH3) and acH4, global histone
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acetylation markers. Carcinoma cells showed weaker acH3 and acH4
staining than normal epithelial cells in noncancerous regions. Pre-
vious reports consistently reported global histone deacetylation in
cancer cells of human breast carcinomas.323

We also observed very slight or absent acH3 and acH4 stain-
ing in stromal fibroblasts in tumor regions (Figure 1A), in contrast
to the strong staining in those in noncancerous regions of breast
tissue from the same individual. The decreased acH3" and acH4" fi-
broblast proportions were also observed in tumor-associated stroma
from a total of 10 breast cancer patients (Figure 1B). Immunoflu-
orescence using anti-acH4 and anti-a-SMA antibodies indicated an
abundance of acH4 a-SMA* myCAFs in human breast cancerous
regions, in sharp contrast to the acH4*«-SMA™ stromal fibroblasts in
noncancerous regions (Figure 1C).

We also observed lower proportions of acH3™ and acH4" fi-
broblasts in the tumor-associated stroma in two different murine
breast cancer models: tumor xenografts from human breast ductal
carcinoma MCF10DCIS.com (DCIS) cells®* injected orthotopically
into immunodeficient mice (Figure 1D,E) and spontaneous tumors
generated in mouse mammary tumor virus-polyoma-middle tumor
antigen (MMTV-PyMT) transgenic mice (Figure 1F,G). Collectively,
these findings indicate global histone deacetylation in CAFs of both
human and murine breast tumors.

To further examine the potential clinical relevance of this obser-
vation, we used anti-acH4 antibody for immunohistochemistry in an-
other cohortincluding 231 breast cancer patients. The acH4 staining
was positive in tumor-associated stroma in 138 of the 231 tumors
(59.7%), while being negative in 93 (40.3%). The negative stromal
acH4 staining was associated with poorer outcomes by Kaplan-
Meier analysis and univariate Cox regression analysis (Figure 1H and
Table 1). Multivariate Cox regression analysis also revealed negative
stromal acH4 staining to be an independent prognostic factor, but
there were no correlations with any clinical parameters in breast
cancer patients (Tables 1 and 2).

These observations suggest global histone deacetylation in CAFs
in the TME to be a poor prognostic marker in human breast carci-

noma patients.

3.2 | Global histone

deacetylation and TGF-$-Smad2/3 signaling
activation are induced in GIn-starved HMFs in a class
| HDAC-dependent fashion

As global histone deacetylation was seen in myCAFs present in
breast tumors susceptible to GIn deficiency (Figure 1C), we investi-
gated whether global histone deacetylation is also triggered in HMFs
cultured in GIn-starved medium. Expression levels of acetylated H3
and H4 relative to their total proteins (acH3/H3 and acH4/H4 ratios,
indicative of global histone acetylation) were indeed attenuated in
GlIn-starved HMFs by 65.7% and 53.8%, respectively, as compared
to those in GIn-supplemented fibroblasts (Figure 2A).

Given that global histone deacetylation is shared between GIn-
starved fibroblasts in culture and myCAFs present in breast carcino-
mas, we reasoned that GlIn starvation could trigger TGF-f signaling
activation, a hallmark of myCAFs. As anticipated, the ratio of phos-
phorylated Smad2 relative to Smad2/3 protein (pSmad2/Smad2/3,
indicative of canonical TGF-B signaling), was upregulated in Gin-
starved HMFs by 3.6-fold as compared to that in GIn-supplemented
fibroblasts (Figure 2B). TGFB1 and TGFB2, and TGF-p-target genes
such as SERPIN1 and SMAD? but not ACTA2, the gene encoding a-
SMA protein, were also significantly upregulated at the mRNA level
(Figures 2C and S1A).

Next, to address whether TGF-p signaling relies on HDAC ac-
tivity in GlIn-starved HMFs, these fibroblasts were treated with
different concentrations of a class | and class Il HDAC inhibitor,
trichostatin A (TSA). The acH3/H3 and acH4/H4 ratios were
dramatically upregulated while the pSmad2/Smad2/3 ratio and
TGF-p-target gene expressions were dose-dependently down-
regulated, as compared to control DMSO treatment (Figures 2D
and S1B). Another class | and class Il HDAC inhibitor, suberoylan-
ilide hydroxamic acid (SAHA), and a selective inhibitor for class
| HDACs, entinostat,35 also strongly inhibited elevations of the
pSmad2/Smad2/3 ratio in Gln-starved HMFs (Figure 2E). These
observations indicate that GIn deficiency induces global histone
deacetylation and TGF-f signaling activation in HMFs, mediated
by class | HDAC activity.

3.3 | Roles of mTORC1 suppression on TGF-f
signaling in GIn-starved HMFs

We anticipated that TGF-f signaling activation in GIn-starved HMFs
is due to their increased TGF-f production that can act in an auto-
crine fashion, although active TGF-$ production was undetectable
in conditioned medium harvested from these cells (Figure S1C). We
then checked mTORC1 signaling, an evolutionarily conserved sens-

ing pathway for amino acids including GIn,2%3°

employing immuno-
blotting using an antibody for phosphorylation of p70 Sé kinase at
the threonine 389 (pS6K), a target site of mMTORC1. The pS6K/S6K
ratio, indicative of mTORC1 signaling activity was indeed strongly
attenuated in GIn-starved HMFs (Figure 3A). Inhibition of mTORC1
signaling in Gln-supplemented HMFs by rapamycin also increased
the pSmad2/Smad2/3 ratio by 2.6-fold, but not a-SMA expression,
as compared to DMSO treatment (Figure 3A,B). These data indicate
that mTORC1 suppression mediates TGF-3-Smad2/3 signaling acti-
vation in Gln-starved HMFs.

To further investigate the link among GIn, mTORC1, and TGF-$
signaling, Gln-starved HMFs were supplemented with 4mM GIn
leading to mTORC1 activation, as indicated by the increased pS6K/
S6K ratio (Figure 3C,D). As anticipated, TGF-B-Smad2/3 signaling
was strongly attenuated in these fibroblasts (Figure 3C,E). Impor-
tantly, mTORC1 suppression by rapamycin restored the decreased
TGF-p-Smad2/3 signaling by 42.3% (Figure 3C-E), further indicating
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FIGURE 1 Global histone deacetylation in myofibroblastic carcinoma-associated fibroblasts (myCAFs) of mammary tumors associated
with poorer outcomes in breast cancer patients. (A) Immunohistochemistry of sections prepared from human breast cancer tissues using
anti-acetyl-histone H3 (acH3) and -acH4 antibodies. acH3" and acH4™ fibroblasts (arrows) as well as acH3™ and acH4~ CAFs (arrowheads)
are present in noncancerous and cancerous regions, respectively. (B) Quantification of acH3" and acH4" fibroblasts in noncancerous and
cancerous regions in tumor-associated stroma in specimens from 10 human breast cancer patients. **p <0.01 by paired t-test. (C) Double
immunofluorescence for sections prepared from human breast cancer tissues using anti-acH4 and -a-smooth muscle actin (a-SMA)
antibodies. acH4*a-SMA™ fibroblasts (closed arrows) and acH4 a-SMA* CAFs (arrowheads) are present in the stroma. a-SMA™* myoepithelial
cells (open arrow) can be seen in the epithelium. (D-G) Immunohistochemistry of sections prepared from tumor xenografts developed

by human breast cancer DCIS cells injected orthotopically into NOG mice (D) or autochthonous tumors developed in mammary glands

of MMTV-PyMT mice (F). acH3" and acH4" fibroblast-like cell proportions (%) are quantified in breast tumors and normal breast tissues
(E, G). **p<0.01, ***p <0.001 by Student's t-test (h=5-6, E; n=3, G). Error bars indicate SE. Dots indicate tumors or mammary fat pads
(E, G). (H) Kaplan-Meier plot indicating overall survival of breast cancer patients. Patients are grouped according to the indicated stromal
acH4 staining in breast carcinoma specimens. p value was determined by applying log-rank test. Scale bars, 40um (A, D, F) and 30pum (C).
Ep, epithelium; St, stroma; Tu, tumor (A, C, D, F).
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mTORC1 suppression to be required for induction of TGF-$-Smad2/3
signaling in GIn-starved HMFs.

We next explored cross-talk between class | HDAC activity
and mTORC1 signaling following TGF-f signaling activation in GIn-
starved HMFs. Rapamycin treatment failed to influence the global
histone acetylation state in GIn-supplemented HMFs (Figure 3F,G).
Treatment with TSA did not raise mTORC1 suppression in Gin-
starved HMFs to mediate the TGF-p-Smad2/3 signaling suppression
(Figure 3H). These observations indicate little cross-talk between
HDAC activity and mTORC1 signaling in these cells.

Collectively, these data suggest that class | HDAC activity and
mTORC1 suppression independently contribute to TGF-$-Smad2/3

signaling activation in GIn-starved HMFs.

3.4 | Histone deacetylase activity is required for
TGF-g signaling activation and myofibroblastic state
in human breast CAFs

We next investigated whether global histone acetylation is also atten-
uated in cultured human breast CAFs by using several human breast
CAF lines (designated exp-CAFs), as exemplified by TGF-p signaling
activation and the myofibroblastic state.” As anticipated, lower acH3/
H3 and acH4/H4 ratios were observed in all of the different exp-CAFs
(544,542 M, and 546 M) as compared to those in the control fibroblast
line (522) and the parental HMF line (218TGpp) (Figures 4A and S2A,B).
The exception was another control fibroblast line (533) whose ability
to affect tumor growth had been poorly examined (Figure S2A,B). For
the following experiments, we thus used well-characterized fibro-
blast lines from our previous in vitro and in vivo studies®3%: tumor-

promoting exp-CAF, 544 (designated exp-CAF2 cells) and a scarcely

tumor-promoting control fibroblast line, 522 (designated control
fibroblasts).

Given global histone deacetylation in the different exp-CAFs (Fig-
ures 4A and S2A,B), we speculated that HDAC activity mediates TGF-f
signaling activation in these cells. The TSA and SAHA treatment in-
deed upregulated global histone acetylation (Figures 4B and S3A) and
progressively attenuated the pSmad2/Smad2/3 ratio in exp-CAF2
cells by 58.0% (at 12h) and 61.7% (at 18h), respectively, as compared
to DMSO treatment (Figures 4C and S3B). ACTA2 mRNA and a-SMA
protein expressions were also substantially and dose-dependently de-
creased in exp-CAF2 cells treated with different concentrations of TSA
(Figure 4D,E). The GSEA revealed greater enrichment of TGF-p-target
genes in exp-CAF2 cells relative to control fibroblasts (Figures 4F and
S3C). Treatment of exp-CAF2 cells with TSA or SB431542, a TGF-$
receptor | (TBR-I) inhibitor, attenuated the markedly increased TGF-p
target gene enrichment, indicating HDAC activity and TpR-I to medi-
ate TGF-p signaling in these fibroblasts (Figures 4F and S3C). These
experiments, taken together, indicate that HDAC activity is required
for maintenance of TGF-B-Smad2/3 signaling activation and the myofi-
broblastic state in myCAFs.

We next addressed the molecular mechanisms underlying at-
tenuated TGF-p signaling in TSA-treated CAFs. We found upregu-
lated mRNA expressions and greater acetylated histone H3 lysine
27 (H3K27ac) enrichment at promoters in three TGF-f negative
regulators, that is, PEG10,3” NEDD4L,® and BAMBI,*" in TSA-treated
exp-CAF2 cells (Figure S4A-D). However, siRNAs that strongly in-
hibited PEG10 or NEDDA4L protein expressions in these cells failed
to significantly restore TGF-p signaling, as compared to the control
siRNA (Figure S4E). Collectively, our observations indicate that
these TGF-p negative regulators contribute minimally, if at all, to the
attenuated TGF-p signaling in TSA-treated exp-CAF2 cells.

TABLE 1 Cox proportional hazards model analysis of stromal acetyl-histone H4 (acH4) staining and other prognostic factors in breast

cancers

Variable Hazard ratio 95% Cl Unfavorable/favorable p value

Univariate analysis
Stromal acH4 expression 2.24 1.131-4.435 Negative/positive 0.0207*
Age (years) 1.293 0.618-2.704 265/<65 0.4946
Grading 1.59 0.796-3.176 G2-3/G0-1 0.1887
Luminal type status 1.366 0.696-2.678 Others/luminal type 0.3647
HER2 status 2.109 0.955-4.66 HER2 type/others 0.0650
pT factor 3.656 1.415-9.449 T2-3/T1 0.0074*
pN factor 5.769 2.512-13.252 N1-2/NO <0.0001*

Multivariate analysis
Stromal acH4 expression 2.134 1.076-4.23 Negative/positive 0.0300*
pT factor 2.45 0.927-6.476 T2-3/T1 0.0709
pN factor 4.589 1.957-10.761 N1-2/NO 0.0005*

Note: Cox proportional hazards model analysis was carried out by using tissue microarray data from 231 breast cancer specimens.

Abbreviations: Cl, confidence interval; HER2, human epidermal growth factor receptor type 2.

*p<0.05 by Wald test.
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TABLE 2 Association of stromal acetyl-
histone H4 (acH4) staining with clinical
parameters of 231 breast cancer patients

FIGURE 2 Glutamine (GIn) starvation
induces global histone deacetylation and
transforming growth factor-g (TGF-p)-
Smad2/3 signaling activation in human
mammary fibroblasts (HMFs) in a class |
histone deacetylase-dependent fashion.
(A-C) Immunoblotting (A, B) and real-time
PCR (C) of HMFs cultured in medium

with or without GIn for 24 h. *p<0.05,

**p <0.01 by Welch's t-test (=3, C).

Error bars, SE. Dots indicate biological
replicates (C). (D, E) Immunoblotting

of HMFs cultured in medium with or
without GIn for 24 h. Fibroblasts were
simultaneously incubated with DMSO,
trichostatin A (TSA; 1 M), suberoylanilide
hydroxamic acid (SAHA; 10puM), or
entinostat (10 pM) for 24 h. a-tub, a-
tubulin.

3.5 |

Parameter

Age (years)

Grading

pT factor

pN factor

Luminal type

status

HER2 status

= 4381
Cancer Science Auiian

Stromal acH4 expression

Total Positive Absent

231 138 93 p value
<65 173 100 73 0.3541
265 58 38 20
GO-1 113 68 45 >0.9999
G2-3 118 70 48
T1 86 50 36 0.7816
T2-3 145 88 57
NO iz 82 51 0.5006
N1-2 98 56 42
Luminal type 137 84 53 0.5866
Others 94 54 40
HER2 type 32 17 15 0.4412
Others 199 121 78

Note: Associations of stromal acH4 staining with clinical parameters were statistically evaluated
by using tissue microarray data from 231 breast cancer specimens. p values were determined by

Fisher's exact test.
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As HDAC1 and HDAC2 are major isoforms for class | HDACs,
their expressions were investigated in several exp-CAFs as well as
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control fibroblast lines. HDAC1 and HDAC2 expressions were simi-
lar among different fibroblasts (Figure S5A,B). However, GSEA anal-
ysis indicated HDAC1 and HDAC2 target genes to be enriched not
only in exp-CAF2 cells, but also in tumor-associated stroma from
laser microdissected human breast carcinoma specimens, available
as public data (GSE14548)*° (Figure 4G,H), indicating that HDAC1
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FIGURE 3 Glutamine (GlIn) starvation induces TGF-p-Smad2/3 signaling activation in HMFs through mTORC1 suppression. (A, B)
Immunoblotting of HMFs cultured in medium with or without GIn for 24 h. Fibroblasts were simultaneously incubated with DMSO or
rapamycin (Rapa; 20nM) for 24 h. *p <0.05 by Welch's t-test (pSmad2, n=4; a-SMA, n=3; B). (C-E) HMFs cultured in medium with or without
4mM GIn for 12h (lanes 1 and 2). GIn-starved cells were subsequently treated with saline (lane 3) or 4mM GIn with DMSO or rapamycin
(25nM) (lanes 4 and 5) for 12h. Signal intensity ratios are indicated in (D) and (E). *p <0.05, ***p <0.001 by Student's t-test (n=4). (F, G)
Immunoblotting for the same samples as in (A, B). *p<0.05, ***p<0.001 by Welch's t-test (G, n=_3). (H) Immunoblotting of HMFs cultured in
medium with or without GIn for 24h. DMSO or TSA (1uM) was simultaneously administered for 24 h. Horizontal lines indicate specific bands
detecting phospho- or pan-p70 Sé6 kinase (S6K) (A, H). Error bars, SE (B, D, E, G). Dots indicate biological replicates (B, D, E, G).

and HDAC2 activities are elevated in CAFs present in human breast
carcinomas.

As treatment with scriptaid, an HDAC1/3/8 inhibitor, reportedly
inhibited a-SMA expression in human breast CAFs,*® we prioritized de-
termining the specific roles of HDAC1 in exp-CAF2 cells. Inhibition of
HDAC1 expression by each of two shRNAs (shHDAC1, 2) produced sub-
stantial decreases in the pSmad2/Smad2/3 ratio, a-SMA protein, and
ACTA2 mRNA expressions (Figure 4l,J), while the acH3/H3 and acH4/
H4 ratios tended to increase (Figure S5C,D), in exp-CAF2 cells. These
data therefore indicate that HDAC1 expression is required for mainte-
nance of TGF-B-Smad2/3 signaling activation in these fibroblasts.

We also noted a tendency for decreasesin TGF-$1,2,and 3 mRNA
expression and active TGF-p protein in exp-CAF2 cells expressing

shHDAC1-1 and -2 (Figure S5E,F), suggesting that HDAC1 expres-
sion mediates TGF-f signaling activation in exp-CAF2 cells, possibly
through active TGF-$ production.

To investigate the role of HDAC1 expression in the tumor-
promoting ability of CAFs, we comixed DCIS cells with exp-CAF2
cells expressing shHDAC1-1, prior to subcutaneous injection into
immunodeficient mice. Inhibition of stromal HDAC1 expression
by shRNA reduced the weights of tumors (by 11.8%) as compared
to the effect of control shGFP, but without statistical significance
(Figure S5G). These data indicate that HDAC1 activation medi-
ates activated TGF-p-Smad2/3 signaling and the myofibroblastic
state while only minimally impacting tumor-promoting abilities in
CAFs.
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FIGURE 4 Histone deacetylase 1 (HDAC1) expression is required for increased TGF-B-Smad2/3 signaling and myofibroblastic
characteristics in exp-CAF2 cells. (A) Immunoblotting of control fibroblasts (522; Cont. fibro.) and exp-CAF2 cells (544). (B, C)
Immunoblotting of exp-CAF2 cells treated with DMSO and TSA (1 uM) for indicated times. (D) Real-time PCR of the indicated cells treated
with DMSO or TSA for 24 h. ***p <0.001 by Dunnett's test (n=3). (E) Immunoblotting of control fibroblasts and exp-CAF2 cells treated with
DMSO or TSA (250 and 500nM) for 48 h. (F) Enrichment plots of Gene Set Enrichment Analysis (GSEA) showing significant enrichment of
TGF-B downstream targets in DMSO-treated exp-CAF2 cells relative to DMSO-treated control fibroblasts (left), exp-CAF2 cells treated with
TSA (1M, middle), or SB431542 (10 uM, right) for 24 h. (G, H) GSEA enrichment plots of gene sets regulated by HDAC1 and HDAC2 between
the indicated cells (G) and between human mammary tumor-associated stroma and normal stroma (GSE14548) (H). p values were determined
by applying permutation test (F-H). (I, J) Immunoblotting (l) and real-time PCR (J) of the described cells expressing GFP- and HDAC1-shRNAs.
*p<0.05, **p<0.01 by Dunnett's test (n=5). Error bars, SE (D, J). Dots indicate biological replicates (D, J). NES, normalized enrichment score.

3.6 | mTORC1 suppression is necessary for TGF-f for pS6K and/or phosphorylation of S6 at serine 235 and 236
signaling activation and myofibroblastic state in CAFs (pS6), another marker for mTORC1 signaling activation. As an-

ticipated, we found lower pS6K/S6K and pS6/Sé ratios in exp-

We next determined whether mTORC1 signaling is attenu- CAF2 cells by 36% and 64%, respectively, compared with

ated in human breast CAFs by immunoblotting using antibodies those in control fibroblasts (Figure 5A). Additionally, mTORC1
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signaling was considerably suppressed in all other exp-CAF
lines (Figure S6A,B). These observations indicate that mTORC1
suppression is sustained in CAFs, even when cultured with GIn-
supplemented regular medium.

We thus speculated that mTORC1 suppression contributes to
TGF-p-Smad2/3 signaling activation and the myofibroblastic state in
CAFs. To address this possibility, exp-CAF2 cells were supplemented
with high-dose GIn (33mM) that resulted in an increased pS6K/
S6K ratio for 6-12h compared to those cultured in 3.3mM GIn-
supplemented medium (Figure 5B,C). Of note, pSmad2/Smad2/3
and a-SMA/a-tubulin ratios were decreased in these cells by 73.4%
and 62.3%, respectively, at 72h posttreatment (Figure 5D,E). These
data therefore indicate that mTORC1 suppression is required for
maintenance of activated TGF-$-Smad2/3 signaling and the myofi-
broblastic state in CAFs.

We also addressed whether CAFs with mTORC1 suppression
are still sensitive to GIn starvation further attenuating mTORC1
signaling and increasing TGF-p signaling. exp-CAF2 cells were thus
cultured with Gln-starved medium for 12h, resulting in a markedly
decreased pS6K/S6K ratio and an increased pSmad2/Smad2/3 ratio
(Figure 5F-H). The increased pSmad2/Smad2/3 ratio was also atten-
uated by 4mM GIn supplementation, and this effect was inhibited
by rapamycin (Figure 5F-H), the response resembling that observed
in HMFs (Figure 3C-E). These findings suggest that exp-CAF2 cells
remain sensitive to the extracellular GIn level, further modulating
mTORC1 and TGF-p-Smad2/3 signaling.

We next investigated cross-talk between HDAC activation and
mTORC1 suppression in CAFs. High-dose GIn supplementation
(33mM) restored the lower acH3/H3 ratio in exp-CAF2 cells (Fig-
ure S6C,D). Glutamine supplementation (3.3mM) also raised the
markedly decreased acH3/H3 and acH4/H4 ratios in GIn-starved
exp-CAF2 cells, but these elevations were not inhibited by rapamy-
cin (Figure S6E), presumably indicating mTORC1-independent reg-
ulation of HDAC activity. Treatment with TSA also did not elevate
mTORC1 signaling in exp-CAF2 cells to mediate TGF-p signaling
suppression (Figure S6F). These data series indicate that mTORC1
suppression and HDAC1 activation independently mediate TGF-f-
Smad2/3 signaling activation in CAFs, an observation mirroring that
in Gln-starved HMFs (Figure 3F-H).

4 | DISCUSSION

Our previous work showed that resident HMFs acquire self-
stimulating TGF-p-Smad2/3 autocrine signaling to be converted
into myCAFs by interacting with mammary cancer cells in tumors.’
However, epigenetic and metabolic alterations through which
HMFs are converted into myCAFs during tumor progression re-
main uncertain.

Herein, we show global histone deacetylation in myCAFs
within tumors to be significantly associated with poorer out-
comes in breast cancer patients (Figure 1A-H). To mimic GIn de-
ficiency in the TME, HMFs were cultured in GIn-starved medium.
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Global histone deacetylation and TGF-$-Smad2/3 signaling acti-
vation are notably induced in these cells through class | HDAC
activity. Gln starvation also inactivates mTORC1 to mediate
TGF-B-Smad2/3 signaling activation in HMFs. Importantly, global
histone deacetylation, class | HDAC activation, and mTORC1 sup-
pression are maintained in exp-CAF2 cells even when cultured
in Gln-supplemented medium, during in vitro propagations (Fig-
ures 4A,G, 5A, S2A,B, and S6A,B), suggesting reprograming of
these features in human breast CAFs. Inhibition of class | HDAC
activation and restoration of mTORC1 suppression by high-dose
GIn supplementation significantly inhibits TGF-p-Smad2/3 sig-
naling activation and the myofibroblastic state in CAFs. These
unprecedented findings reveal molecular mechanisms underlying
myCAF conversion from HMFs: GIn starvation in the TME triggers
class | HDAC activation and mTORC1 suppression to boost TGF-
B-Smad2/3 signaling activation in HMFs, presumably mediating
myCAF conversion (Figure 5I).

The myofibroblastic state is not induced in HMFs cultured in
Gln-starved or rapamycin-treated medium (Figures 3A,B and S1A).
This might be attributable to severe inhibition of protein synthesis
including a-SMA and TGF-$ under such culture conditions. Long-
term treatment of HMFs with TGF-$ under GIn-starved and hypoxic
three-dimensional culture conditions, precisely mimicking the TME,
might be required for complete and stable conversion into myCAFs.

Our results indicate that HDAC1 is required for maintenance
of TGF-p-Smad2/3 signaling and the myofibroblastic state of CAFs
(Figure 41,J). Given that HDAC1 was similarly expressed in control
fibroblasts and CAFs (Figure S5A,B), elevated class | HDAC activity
in CAFs might be mediated by posttranslational modifications such
as phosphorylation, acetylation, and ubiquitination of HDAC1.** A
previous study showed that HDAC1 directly deacetylates Smad7, an
inhibitory Smad, to facilitate ubiquitination leading to proteasomal
degradation.42 Molecular mechanisms underlying activation of class
I HDACs including HDAC1 and the subsequent TGF--Smad2/3 sig-
naling in CAFs awaits further study.

mTORC1 suppression mediates TGF-$-Smad2/3 signaling ac-
tivation in Gln-starved HMFs and CAFs (Figures 3A-E and 5F-H).
These findings are consistent with previous studies, demonstrating
mTORC1 inhibition to upregulate TPR-1 expression, thereby acti-
vating TGF-B-Smad2/3 signaling in affected murine skin keratino-
cytes deficient for Raptor, the mTORC1 component, and Rheb, the
mTORC1 activator.*® Valencia et al. also reported mTORC1 suppres-
sion and increased TGF-p1 and a-SMA expression in p62-deficient
mouse prostatic fibroblasts,** raising the interesting possibility of
p62 deficiency-induced mTORC1 suppression and TGF-p signaling
activation in breast myCAFs. However, the molecular mechanisms
underlying the mTORC1 suppression-induced TGF-p signaling acti-
vation have yet to be clarified.

This study suggests that GIn starvation-triggered class | HDAC
activation and mTORC1 suppression serve as epigenetic and met-
abolic alterations that initiate TGF-p signaling activation and give
rise to myCAF differentiation during tumor progression. These ob-
servations further our understanding of how myCAFs are induced,
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and how their activated states are reprogramed to retain their
tumor-promoting ability, key steps toward developing novel myCAF-

targeted therapeutic approaches.
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