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Introduction: Patients with end-stage renal disease (ESRD) experience disproportionately high cardio-

vascular morbidity and mortality. Accumulating evidence suggests a role for the circulating microbiome in

the pathogenesis of cardiovascular disease; however, little is known about its association with premature

cardiovascular mortality in ESRD.

Methods: In a pilot case-control study of 17 hemodialysis patients who died of a cardiovascular event and

17 matched hemodialysis controls who remained alive during a median follow-up of 2.0 years, we

compared the levels and composition of circulating microbiome, including Bacteria, Archaea, and Fungi, in

serum samples by quantitative polymerase chain reaction and 16S or Internal Transcribed Spacer (ITS)

ribosomal RNA (rRNA) sequencing, respectively. Associations of the circulating cell-free microbial sig-

natures with clinical parameters and cardiovascular death were examined using the Spearman rank

correlation and multivariable conditional logistic regression, respectively.

Results: Both 16S and ITS rRNA were detectable in all (except 3 for ITS) examined patients’ serum sam-

ples. Despite no significant difference in 16S rRNA levels and a diversity between cases and controls,

taxonomic analysis demonstrated differential community membership between groups, with significantly

greater Actinobacteria and less Proteobacteria observed in cases than in controls at the phylum level.

Proportions of Actinobacteria and Proteobacteria phyla were significantly correlated with plasma nuclear

factor erythroid 2�related factor 2 (Nrf2) levels (rho ¼ �0.41 and 0.42, P ¼ 0.015 and 0.013, respectively)

and marginally associated with risk of cardiovascular death (adjusted odds ratios [95% confidence

intervals] ¼ 1.12 [0.98�1.29] and 0.88 [0.76�1.02] for 1% increase, respectively).

Conclusion: Alterations of the circulating cell-free microbial signatures may be associated with higher

premature cardiovascular mortality in ESRD.
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amount of financial resources.1,2 Traditional cardiovas-
cular risk factors (e.g., dyslipidemia) have failed to
explain the increased cardiovascular risk in ESRD,3 and
interventions targeting these risk factors have been
proved largely ineffective.4–6 A growing body of evi-
dence indicates that chronic inflammation plays an
important role as a nontraditional risk factor in the excess
risk of premature cardiovascular mortality in ESRD pa-
tients.7–9 Considerable efforts have been made to reduce
the inflammatory load primarily by targeting known
2617

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
https://doi.org/10.1016/j.ekir.2021.07.023
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ksumida@uthsc.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ekir.2021.07.023&domain=pdf


CLINICAL RESEARCH K Sumida et al.: Circulating Microbiome and CV Death in ESRD
causative factors, including removal of uremic toxins and
optimization of dialysis procedures.9,10 These in-
terventions, however, are limited in their efficacy to
effectively alleviate inflammatory responses,11 and hence
the substantial disease burden attributable to uremic
inflammation remains a major health problem in the ESRD
population.

Microbial translocation into the bloodstream can
occur via different routes in patients with ESRD,
including contaminated dialysate, dialysis catheter
use, and impaired intestinal barrier, and can be a
potential cause of chronic inflammation in these pa-
tients.12 Although bacterial endotoxins (i.e., lipo-
polysaccharide [LPS]) have been extensively studied
among several microbial components identifiable in
the blood,13�17 recent advances in microbial DNA
sequencing have allowed the identification of highly
diverse microbial communities in the systemic circu-
lation, which is often referred to as “circulating
microbiome.”18 Although the detection of microor-
ganisms in the blood is traditionally interpreted as an
indication of infection, evidence of the circulating
microbial signatures is steadily accumulating among
various patient populations without overt
infections19�21 and even among apparently healthy
individuals.22�25 Furthermore, both quantitative
and qualitative changes in the circulating microbial
signatures have recently been implicated in
the pathogenesis of conditions linked to chronic
inflammation, such as cardiovascular disease, poten-
tially through their immunostimulatory, atherogenic,
and cardiotoxic properties.26�28 These results
suggest that a circulating microbiome exists in pa-
tients with ESRD and may contribute to the high rates
of chronic inflammation and premature cardiovascular
mortality in these patients. Nevertheless, to the best
of our knowledge, no previous work has described
the characteristics and roles of the circulating micro-
biome in premature cardiovascular mortality in ESRD.

We hypothesized that the microorganisms,
including not only Bacteria but also Archaea and
Fungi, are chronically present in the cell-free blood
fraction of patients with ESRD, and that individuals
who died of a cardiovascular event would have
different quantitative and qualitative circulating mi-
crobial profiles compared with those without such an
event. In this pilot case-control study, we therefore
aimed to measure the circulating cell-free microbial
profile in the serum of patients with ESRD receiving
maintenance hemodialysis and to examine its associa-
tion with cardiovascular death in these patients.
2618
MATERIALS AND METHODS

Study Design

This was a prospective study of anonymized samples
and statistically deidentified clinical data obtained from
a biorepository assembled by DaVita Clinical Research
(Minneapolis, MN). Anonymized samples and statisti-
cally deidentified data were made available to the
researcher for academic research via a grant program
called BioReG.

Study Population

The DaVita Clinical Research biorepository comprises
blood samples and clinical data from 4028 individuals
with prevalent end-stage renal disease who received
hemodialysis at a large dialysis organization between
May 2011 and October 2013.29 The biorepository
sampling protocol was reviewed and approved by an
Institutional Review Board (IRB) (Quorum IRB, Seattle,
WA), and patients provided written informed consent
prior to the initiation of sample collection. Patients
with hemoglobin <8.0 g/dl, who were <18 years of
age, who were pregnant, or who had any physical,
mental, or medical condition that prevented the ability
to provide informed consent were excluded from
participation.

For the present pilot case-control study, we used
biospecimens and data at baseline (i.e., first blood
sampling date) from a total of 34 hemodialysis patients
within the repository housed at the University of
Tennessee Health Science Center (UTHSC) (UT-DaVita
hemodialysis cohort; n ¼ 978).30 Cases (n ¼ 17) were
hemodialysis patients who died of a CV event, whereas
controls (n ¼ 17) were those who remained alive over
the entire follow-up, matched 1:1 by age, sex, race, and
dialysis vintage to account for major nonmodifiable
cardiovascular risk factors. The study was approved by
the IRB at UTHSC (IRB protocol numbers 16-04357-XP
and 17-05299-XP).

Biorepository Biospecimen and Clinical Data

Collection

Under the biorepository study protocol, blood samples
were collected from each subject at baseline and
thereafter every 3 months for up to 1 year. Pre-dialysis
blood samples were collected and processed according
to a standardized protocol: specimens were shipped on
refrigerated packs on the day of collection to a
centralized laboratory, where they were aliquoted and
stored at �80�C. Specimens with cause for rejection
(e.g., unspun tubes, insufficient volume, or thawed
specimens) or that were received >48 hours from the
time of collection were rejected. Anonymized plasma
samples were shipped from the centralized laboratory
to the researchers on dry ice at �80�C. In the present
Kidney International Reports (2021) 6, 2617–2628
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case-control study, we used blood samples collected
only at baseline.

Clinical and hemodialysis treatment data for each
biorepository subject were collected by the large dialysis
organization during the course of routine care and were
maintained in the organization’s electronic health record.
Clinical and hemodialysis treatment data were provided
to the researchers by DaVita Clinical Research in statis-
tically deidentified form. Cardiovascular death was
defined as death caused by acute myocardial infarction,
atherosclerotic heart disease, cardiomyopathy, cardiac
arrhythmia, cardiac arrest, or congestive heart failure.

DNA Extraction, Quantification,

and Metagenomic Sequencing

Circulating microbial DNA was extracted from serum
samples (200�500 ml) using lyticase and proteinase K
according to our previously published methods.31 16S
and Internal Transcribed Spacer (ITS) ribosomal RNA
(rRNA) copy numbers (per microliter [ml] of serum) were
assessed using quantitative polymerase chain reaction
(qPCR) in samples of 32 (of 34) patients who had suffi-
cient samples for DNA quantification using qPCR
primers for 16S (F: 5’-TCC TAC GGG AGG CAG CAG T-
3’, and R: 5’-GGA CTA CCA GGG TAT CTA ATC CTG
TT-3’) and ITS (F: 5’-GTG AAT CAT CGAATC TT GAA-
3’, and R: 5’-TCC TCC GCT TAT TGA TAT GC-3’). Pu-
rified DNA samples of all 34 patients underwent
amplicon sequencing at the Argonne National Labora-
tory (Lemont, IL), using the NextGen Illumina MiSeq
platform for 16S and ITS (Supplementary Appendix).
Isolated DNA was amplified using universal Bacterial
and Archaeal primers for the 16S rRNA-encoding gene
(F: 5’-AGA GTT TGA TCC TGG CTC AG-3’, and R: 5’-
TGC TGC CTC CCG TAG GAG T-3’ for Bacteria and
Archaea) and modified versions of the fungal primer set
for the ITS region of ribosomal DNA (ITS1F and ITS2).32

To minimize potential contamination, blank sample
controls were run through all steps of the workflow.

Microbiome Data Processing

Sequencing data were processed and analyzed using
Quantitative Insights Into Microbial Ecology (QIIME)
1.9.1. Sequences were first demultiplexed, then
denoised and clustered into sequence variants. Repre-
sentative bacterial sequences were aligned via Python
Nearest Alignment Space Termination (PyNAST), and
taxonomy was then assigned using the Ribosomal
Database Project (RDP) Classifier to determine commu-
nity profiles. For Fungi, sequences were aligned, and
taxonomy was assigned using the UNITE (dynamic
setting) database.33 Processed data were imported into
Calypso 8.84 for further analysis and data visualiza-
tion.34 Bacterial a diversity was assessed by Shannon,
Kidney International Reports (2021) 6, 2617–2628
Simpson, Chao1, Richness, Fisher’s alpha, and Evenness
indices.35–37 b Diversity of Bacteria was assessed using
principal coordinate analysis (PCoA) by Bray�Curtis,
and significance was determined using permutational
multivariate analysis of variance (adonis), which
measured the interindividual differences in taxa dis-
tribution within each sample (intersample).38 Fungal
operational taxonomic units were assessed for a di-
versity using Chao1 indices.39 Community differences
were analyzed by Spearman’s rank correlation coeffi-
cient, which is presented as heatmaps. Network anal-
ysis was performed to explore possible correlations
between key microbial taxa using Spearman correla-
tions, where positive correlations with a false discovery
rate�adjusted P < 0.05 were presented as edges.40

Biomarker Measurements

In addition to the variables available from the labora-
tory measurements obtained during routine care,
plasma LPS and specific inflammatory markers
including C-reactive protein (CRP), tumor necrosis
factor�a (TNF-a), interleukin-6 (IL-6), monocyte che-
moattractant protein�1 (MCP-1), and nuclear factor
erythroid 2�related factor 2 (Nrf2) were additionally
measured in our pilot study. Plasma LPS levels (EU/ml)
were quantified in duplicate using a Pierce LAL
Chromogenic Endotoxin Quantitation Kit (Thermo-
Fisher Scientific, Waltham, MA) as per the manufac-
turer’s protocol. Plasma levels of CRP, TNF-a, IL-6, and
MCP-1 were measured and verified using the Magnetic
Luminex (Magpix) platform from R&D systems (R&D
Systems, Minneapolis, MN) following the manufac-
turer’s recommendations.41 Nrf2 levels in whole blood
were quantified by its relative gene expression against
GAPDH using TaqMan Gene Expression Assays spe-
cific to Nrf2 (Hs00975961_g1; Applied Biosystems,
Carlsbad, CA) and GAPDH (Hs02758991_g1; Applied
Biosystems, Carlsbad, CA), as previously described.30

Statistical Analysis

Baseline patient characteristics by cardiovascular case
status were presented as number (percentage) for cat-
egorical variables and as mean (SD) for continuous
variables with a normal distribution or as median
(interquartile interval [IQI]) for those with a skewed
distribution. Variables with a skewed distribution were
treated as log-transformed continuous variables, as
appropriate. Differences between groups were assessed
using the Fisher exact test, t test, or Wilcoxon rank-
sum test, as appropriate. Because Actinobacteria and
Proteobacteria were the only phyla significantly
different in proportion between groups, only these 2
bacterial phyla were considered in further analyses.
Correlations of serum 16S and ITS rRNA levels, a
2619
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diversity (Shannon and Chao1 Indices for bacterial and
fungal communities, respectively), proportions of
Actinobacteria and Proteobacteria, and selected
continuous parameters (i.e., age, dialysis vintage,
plasma LPS, inflammatory markers [i.e., CRP, TNF-a,
IL-6, MCP-1, and Nrf2]) were evaluated using the
Spearman rank correlation (rho).

We fit multivariable conditional logistic regression
models to examine the risk of cardiovascular death
associated with circulating microbial signatures, using
serum 16S and ITS rRNA levels, Shannon and Chao1
Indices (for bacterial and fungal communities,
respectively), and proportions of Actinobacteria and
Proteobacteria as exposures of interest, respectively.
Given the limited sample size of this pilot study, these
predictors were treated as continuous variables, and
the following incremental models were used to ac-
count for potential confounders on the basis of theo-
retical consideration and data availability: model 1
was unadjusted; model 2 included age and dialysis
vintage to account for residual imbalance of these
continuous matching factors; and model 3 was addi-
tionally adjusted for vascular access type. Because no
between-group dissimilarity was observed for dia-
betes, ischemic heart disease, liver disease, HIV/AIDS,
malignancies, infectious hospitalization, culture-
positive bacteremia, and antibiotic use, as well as
categorical matching factors (i.e., sex and race), these
variables were not accounted for in this analysis. All
analyses were performed in patients with complete
data available.

A threshold of statistical significance was set at the
level of P < 0.05 for all analyses unless otherwise
specified. Statistical analyses were conducted in
STATA/MP Version 15 (StataCorp, College Station, TX).
RESULTS

Baseline Characteristics

Patients’ baseline characteristics by cardiovascular case
status are presented in Table 1. Cases and controls were
of similar age at baseline (means of 63.4 � 9.9 and 61.9
� 10.0 years, respectively) and by design did not differ
for other matching factors, including sex (52.9% male
in both), race (70.6% African American in both), and
dialysis vintage (5.2 � 3.0 and 5.4 � 2.8 years,
respectively). Compared with controls, cases were less
likely to use a dialysis catheter and tended to have
higher levels of blood hemoglobin and plasma CRP,
TNF-a, and IL-6, although none of the differences
reached statistical significance. In both groups, no pa-
tients had evidence of active bacterial infection,
including infectious hospitalization, culture-positive
bacteremia, and antibiotic use (Table 1).
2620
Levels of Circulating Microbiome

16S rRNA was readily detectable in all serum samples
examined (n ¼ 32), whereas ITS rRNA was detected in
all but 3 serum samples examined (i.e., 2 in cases and 1
in controls). There was no significant difference in
serum 16S rRNA copy numbers between cases and
controls (58,672 � 19,546 and 64,424 � 26,259 copy
numbers/ml, respectively, P ¼ 0.48) (Figure 1).
Compared with cases, controls tended to have higher
serum ITS rRNA copy numbers, but no significant
between-group difference was observed (8,728 [6,123,
19,426] and 19,357 [8,320, 22,144] copy numbers/ml in
cases and controls, respectively) (Supplementary
Figure S1). Although our analysis targeted inclusion
of Archaeal taxa, almost no evidence (minimal reads in
a single control patient) was found for the existence of
intact Archaeal DNA in circulation.

No significant correlations were observed for 16S
and ITS copy numbers with age, dialysis vintage, LPS,
and inflammatory markers, respectively (Table 2 and
Supplementary Table S1).

Composition of Circulating Microbiome
a and b Diversity

There were no significant differences in bacterial a
diversity, as assessed by the Shannon Index, between
cases and controls (2.3�0.4 and 2.3�0.5, respectively,
P ¼ 0.60) (Figure 2a) as well as by the Simpson, Chao1,
Richness, Fisher a, or Evenness Index (Supplementary
Figure 2A�E).

We did not observe major separation in bacterial b
diversity between groups (adonis R2 ¼ 0.026; P ¼ 0.63)
(Figure 2b). Fungal community a diversity assessed
using the Chao1 Index demonstrated significantly
increased diversity in cases versus controls (36.5 � 9.0
vs. 31.2 � 5.1, P ¼ 0.044) (Supplementary Figure S3).

In the correlation analysis, except for a significant
positive correlation between bacterial a diversity
(Shannon Index) and CRP levels (rho¼0.40, P¼0.025)
(Table 2), none of the correlations with bacterial and
fungal a diversity were statistically significant
(Table 2, Supplementary Table S1).

Taxonomic Analysis

Taxonomic analysis demonstrated a striking difference
in the bacterial community membership between
groups. Globally, this is displayed by the heatmap in
Figure 3a. Although the circulating microbial taxa were
dominated by Firmicutes (~50%) followed by Actino-
bacteria and Proteobacteria at the phylum level in each
group, cases (vs. controls) displayed significantly
greater Actinobacteria (29.0% vs. 17.7%, P < 0.01)
and less Proteobacteria (8.9% vs. 25.2%, P ¼ 0.013)
(Figure 3b, c). At the genus level, Staphylococcus was
markedly elevated in cases compared with controls,
Kidney International Reports (2021) 6, 2617–2628



Table 1. Baseline patient characteristics by cardiovascular case status
Characteristic Cases (n [ 17) Controlsa (n [ 17) P

Age, yrs 63.4 � 9.9 61.9 � 10.0 0.95

Male sex 9 (52.9) 9 (52.9) 1.00

Race 1.00

White 4 (23.5) 4 (23.5)

African American 12 (70.6) 12 (70.6)

Others 1 (5.9) 1 (5.9)

Dialysis vintage, yrs 5.2 � 3.0 5.4 � 2.8 0.85

Dialysis membrane materials 1.00

PAES/PVP 14 (82.3) 13 (76.4)

Polysulfone 2 (11.8) 2 (11.8)

Cellulose triacetate 1 (5.9) 2 (11.8)

Vascular access type 0.34

Arteriovenous fistula 14 (82.3) 10 (58.8)

Arteriovenous graft 2 (11.8) 3 (17.7)

Catheter 1 (5.9) 4 (23.5)

Body mass index, kg/m2 31.4 � 8.2 31.3 � 6.2 0.97

Systolic BP, mm Hg 147.1 � 23.3 154.5 � 22.5 0.35

Diastolic BP, mm Hg 77.5 � 16.8 78.3 � 20.7 0.90

Body temperature, �F 97.0 � 1.0 97.1 � 0.8 0.85

Charlson Comorbidity Index 5.7 � 1.7 6.0 � 1.7 0.62

Comorbidities

Diabetes mellitus 12 (70.6) 12 (70.6) 1.00

Ischemic heart disease 3 (17.7) 3 (17.7) 1.00

Congestive heart failure 3 (17.7) 1 (5.9) 0.60

Liver disease 1 (5.9) 1 (5.9) 1.00

HIV/AIDS 0 (0) 0 (0) 1.00

Malignancies 0 (0) 0 (0) 1.00

Infectious hospitalization 0 (0) 0 (0) 1.00

Culture-positive bacteremia 0 (0) 0 (0) 1.00

Laboratory parameters

Blood hemoglobin, g/dl 11.3 � 1.4 10.5 � 0.9 0.054

Serum albumin, g/dl 4.0 � 0.3 3.9 � 0.3 0.38

Serum calcium, mg/dl 9.3 � 0.6 9.0 � 0.7 0.13

Serum phosphorus, mg/dl 5.2 � 1.8 5.2 � 1.6 0.90

Serum ALP, U/l 106.2 � 35.8 109.9 � 58.2 0.82

Serum intact PTH, pg/ml 409 [288, 692] 351 [253, 492] 0.33

Plasma LPS, EU/ml 0.10 [0.07, 0.12] 0.12 [0.11, 0.18] 0.097

Plasma CRP, mg/l 2.4 [0.7, 3.8] 1.8 [0.9, 3.0] 0.98

Plasma TNF-a, pg/ml 9.9 � 2.6 8.9 � 3.3 0.36

Plasma IL-6, pg/ml 5.3 [2.4,10.6] 2.7 [2.2, 3.6] 0.11

Plasma MCP-1, ng/ml 156.8 � 61.5 173.8 � 45.2 0.37

Nrf2 expression, �10�2, RQ) 6.9 � 0.9 7.4 � 1.2 0.14

Medications

Antibiotics 0 (0) 0 (0) 1.00

Oral irons 0 (0) 0 (0) 1.00

Immunosuppressants 0 (0) 0 (0) 1.00

ESAs 13 (76.5) 13 (76.5) 1.00

Phosphate binders 15 (88.2) 15 (88.2) 1.00

Vitamin D analogs 5 (29.4) 3 (17.6) 0.69

NSAIDs 0 (0) 0 (0) 1.00

Data are presented as number (percentage), mean � SD, or median [interquartile interval].
ALP, alkaline phosphatase; BP, blood pressure; CRP, C-reactive protein; ESAs, erythropoiesis-stimulating agents; IL-6, interleukin-6; LPS, lipopolysaccharide; MCP-1, monocyte che-
moattractant protein�1; NSAIDs, nonsteroidal anti-inflammatory drugs; Nrf2, nuclear factor erythroid 2�related factor 2; PAES/PVP, polyarylethersulfone/polyvinylpyrrolidone; RQ,
relative quantity; TNF-a, tumor necrosis factor�a.
aMatched by age, sex, race, and dialysis vintage.

K Sumida et al.: Circulating Microbiome and CV Death in ESRD CLINICAL RESEARCH
whereas Sphingomonas, Pseudomonas, Dermacoccus, and
Thermoanaerobacterium were greater in controls, albeit
not reaching statistical significance (Figure 3d).
Kidney International Reports (2021) 6, 2617–2628
Network analysis independently confirmed the associ-
ation of co-occurring bacterial genera between the
respective groups (Figure 3e). Although no significant
2621



Figure 1. 16S rRNA copy numbers (per microliter [ml] of serum) in
cardiovascular cases and controls. rRNA, ribosomal RNA.

CLINICAL RESEARCH K Sumida et al.: Circulating Microbiome and CV Death in ESRD
taxonomic differences were observed in the fungal
community between groups, cases (vs. controls)
exhibited differential fungal community signatures at
the genus level (Supplementary Figure S4).

In the correlation analysis, the Actinobacteria
phylum had a significant negative correlation with
Nrf2 levels (rho ¼ �0.41, P ¼ 0.015) (Table 2), with
lower Nrf2 levels detected in patients with a higher
proportion of Actinobacteria. In contrast, a significant
positive correlation with Nrf2 levels was observed for
the Proteobacteria phylum (rho ¼ 0.42, P ¼ 0.013)
(Table 2).

Associations of Circulating Microbial Signatures

With Cardiovascular Death

Table 3 shows the associations of 16S rRNA levels,
bacterial a diversity (Shannon Index), and proportions
Table 2. Correlations of levels and composition of the circulating microb
Characteristic Age Vintage LPS C

16S rRNA –0.18 0.014 0.11

16S Shannon Index 0.093 0.081 –0.017

Actinobacteria 0.26 0.13 –0.039 –

Proteobacteria –0.30 0.17 0.26

Data are presented as Spearman rank correlation (rho).
CRP, C-reactive protein; IL-6, interleukin-6; LPS, lipopolysaccharide; MCP-1, monocyte chemoa
RNA; TNF-a, tumor necrosis factor�a.
aValues were log transformed.
bP <0.05.

2622
of Actinobacteria and Proteobacteria phyla with car-
diovascular death, using univariable and multivariable
conditional logistic regression analyses. In the uni-
variable model, Actinobacteria and Proteobacteria
phyla were marginally associated with cardiovascular
death, with its higher risk seen in patients with higher
and lower proportions of Actinobacteria and Proteo-
bacteria, respectively (odds ratios [ORs] [95% confi-
dence interval {CI}] for 1% increase ¼ 1.11
[0.99�1.22] and 0.92 [0.84�1.01], respectively, in
model 1) (Table 3). These marginal associations of
Actinobacteria and Proteobacteria phyla with cardio-
vascular death remained largely similar even after
adjustment for age, dialysis vintage, and vascular ac-
cess (adjusted ORs [95% CI] ¼ 1.12 [0.98�1.29] and
0.88 [0.76�1.02], respectively, in model 3) (Table 3). No
significant associations were observed for fungal ITS
rRNA levels and a diversity with cardiovascular death
(Supplementary Table S2).

DISCUSSION

In this pilot case-control study of ESRD patients
receiving maintenance hemodialysis, we found that
patients who died of a cardiovascular event had
significantly greater Actinobacteria and less Proteo-
bacteria phyla in their serum than those without a fatal
cardiovascular event, although 16S rRNA levels and
bacterial a diversity were similar between the 2
groups. Furthermore, we demonstrated that a higher
proportion of Actinobacteria and a lower proportion of
Proteobacteria were marginally associated with higher
risk of cardiovascular death, independent of age, sex,
race, dialysis vintage, and vascular access type.

With recent scientific interest in the microbiome,
mounting evidence points to the role of the circulating
microbiome in the pathogenesis of cardiovascular dis-
ease, potentially through the processes mediated by its
quantitative and/or qualitative changes.42 In terms of
quantitative changes, bacterial DNA contains unme-
thylated cytosine–guanine dinucleotide, with 2 purine
5’ and 2 pyrimidine 3’ (CpG) terminations, which are
the structures required to interact with toll-like re-
ceptors (TLRs) expressed on both immune and
iome with selected clinical parameters in hemodialysis patients
RPa TNF-a IL-6a MCP-1 Nrf2

0.27 0.30 –0.20 –0.33 –0.078

0.40b 0.016 0.094 0.12 0.22

0.13 0.20 0.095 –0.086 –0.41b

0.28 0.0011 0.13 0.10 0.42b

ttractant protein�1; Nrf2, nuclear factor erythroid 2�related factor 2; rRNA, ribosomal

Kidney International Reports (2021) 6, 2617–2628



Figure 2. Bacterial (a) a diversity assessed using Shannon Index and (b) b diversity (Bray�Curtis) in serum of cardiovascular cases and
controls.

K Sumida et al.: Circulating Microbiome and CV Death in ESRD CLINICAL RESEARCH
nonimmune (fibroblast, endothelial, epithelial, and
cardiomyocyte) cells.43–45 Increased bacterial DNA can
therefore trigger various cell signaling pathways
including key regulators of inflammation (e.g., the
Nrf2-antioxidant response element pathway)45 and
have been involved in endothelial injury through in-
duction of endothelial cell apoptosis.46 Furthermore,
bacterial DNA has also been shown to cause dose-
dependent suppression of cardiac myocyte contrac-
tion in vitro.47 Although our pilot results showed no
significant association of 16S rRNA copy numbers with
cardiovascular death, a few larger clinical studies have
demonstrated the independent association of higher
plasma bacterial DNA levels with higher risk of car-
diovascular events in ESRD patients.48,49

In contrast to these observations, less is known
about the roles of qualitative and compositional
changes in the circulating microbiome in cardiovascu-
lar disease. In a pioneering cohort study investigating
the longitudinal association between circulating mi-
crobial signatures and cardiovascular events in the
general population, a higher (vs. lower) relative abun-
dance of Proteobacteria phylum in peripheral blood
leukocytes was significantly associated with a higher
risk of incident cardiovascular events, independent of
traditional cardiovascular risk factors.26 Similar to this
finding, a subsequent cross-sectional study demon-
strated a significantly higher relative abundance of
Proteobacteria phylum in whole blood of patients with
cardiovascular disease compared with that of appar-
ently healthy individuals.27 These studies, however,
did not include patients with prevalent kidney disease,
including those with ESRD on hemodialysis, who
display unique phenotypic features (e.g., premature
Kidney International Reports (2021) 6, 2617–2628
cardiovascular morbidity and mortality) that are
distinct from those of other patient populations.11,50 In
addition, the circulating microbial signatures in these
previous studies was assessed using leukocyte-
containing blood fractions, the nature of which may
be different from that of the circulating “cell-free”
microbial signatures. More specifically, compared with
microbial DNA that is located predominantly in the
buffy coat (which contains the platelets and leuko-
cytes) presumably due to the bacterial entrapment by
leukocytes,24 the circulating cell-free microbiome
located in the serum or plasma may exert its potential
biological effects on cardiac myocytes and on immune
system cells in a more direct manner (through their
surface receptors [e.g., TLR-9]43), which could there-
fore serve as a novel diagnostic/prognostic biomarker
with a potential for immediate clinical applicability.
For these reasons, we used serum samples to assess the
circulating microbial signatures in the present study.
Despite the perceived concern about the detectability
of microbial DNA in the cell-free blood fraction, we
have successfully shown the detectability of circulating
microbial signatures, including not only Bacteria but
also Fungi, in a serum fraction of ESRD patients
without clinical evidence of systemic infection. Most
importantly, we preliminarily demonstrated, for the
first time, that the qualitative changes in microbial
community membership in circulation may be associ-
ated with risk of cardiovascular death. Although our
results showing a lower proportion of Proteobacteria in
cardiovascular cases (vs. controls) seems contradictory
to the findings of the aforementioned previous studies,
this may be explained by the differences in study
population and/or blood fractions used to assess the
2623



Figure 3. Compositional changes in the circulating microbiome in cardiovascular cases and controls. (a) Heatmap of bacterial community at the
genus level. (b) Relative abundance of bacterial taxa* at the phylum level. (c) Relative abundance of Proteobacteria and Actinobacteria phyla.
(Continued)
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circulating microbial signatures between studies.
Nonetheless, it is important to note that similar taxo-
nomic changes (i.e., greater Actinobacteria and less
Proteobacteria phyla) have also been reported in a
plasma fraction of patients with cardiovascular disease
(vs. healthy individuals).28

Although the precise mechanisms underlying the
association between qualitative changes in the circu-
lating microbial signatures and cardiovascular disease
remain unclear, the significant correlations of Actino-
bacteria and Proteobacteria phyla with Nrf2 levels
observed in this study may be of a particular value,
with potential clinical and research implications. Nrf2,
a master regulator of antioxidative responses, is known
2624
to play a critical role in the regulation of innate im-
munity against bacterial infection.45 The dysregulation
of Nrf2 activation has in turn been implicated in the
pathogenesis not only of immune dysfunctions but also
of various pathological conditions such as neuro-
degeneration, cancer, and cardiovascular disease,51�54

all of which are commonly seen in patients with
ESRD. Albeit speculative, the lower Nrf2 levels asso-
ciated with both greater Actinobacteria and lesser
Proteobacteria phyla may therefore serve as a possible
explanation for the observed association between these
taxonomic changes and risk of cardiovascular death in
this population. This may also be supported by a
recent study demonstrating the inverse correlation
Kidney International Reports (2021) 6, 2617–2628



Figure 3. (Continued) (d) Relative abundance of selected bacterial taxa at the genus level. (e) Network analyses of bacterial community by
group and by genus. *Bacteria phyla with a mean relative abundance >1% are presented.
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between Proteobacteria phylum in subgingival plaque
and systemic inflammation,55 suggesting a possible
influence of oral microbiota on the circulating micro-
bial signatures. Given the Staphylococcus genus being
the dominant microbial component in dysbiotic oral
microbiota,56,57 our results showing a higher propor-
tion of Staphylococcus genus in the blood of cases (vs.
controls) might further support this speculation. These
plausible mechanisms may deserve future in-depth
investigation.
Kidney International Reports (2021) 6, 2617–2628
The study results must be interpreted in light of
several limitations. Our study sample was not repre-
sentative of patients with ESRD who are heteroge-
neous with various etiologies and comorbidities.
Because of the small sample size of this pilot study, we
were unable to fully account for potential confounders
despite matching. Also, we were underpowered to
detect a clear association between circulating micro-
bial signatures and cardiovascular death, and a type
II error (false negative) cannot be excluded. It is
2625



Table 3. Odds ratios and 95% confidence interval for cardiovascular death associated with levels and composition of the circulating
microbiome in hemodialysis patients

Characteristics

Model 1 Model 2 Model 3

OR (95% CI) P OR (95% CI) P OR (95% CI) P

16S rRNAa, per log10 ng/ml 0.28 (0.005–15.1) 0.53 0.13 (0.001–16.1) 0.40 0.38 (0.002–85.7) 0.73

Shannon Index, per unit 0.75 (0.21–2.71) 0.66 1.09 (0.24–4.87) 0.91 0.92 (0.17–4.92) 0.71

Actinobacteria, per percent 1.11 (0.99–1.22) 0.053 1.14 (0.99–1.30) 0.067 1.12 (0.98–1.29) 0.086

Proteobacteria, per percent 0.92 (0.84–1.01) 0.095 0.90 (0.81–1.01) 0.080 0.88 (0.76–1.02) 0.099

All models matched for age, sex, race, and dialysis vintage. Model 1 is unadjusted: model 2 is adjusted for age and dialysis vintage to account for residual imbalance; and model 3 is
adjusted for the variables in model 2 plus vascular access type.
CI, confidence interval; OR, odds ratio; rRNA, ribosomal RNA.
aValues were log transformed.
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impossible to determine whether circulating micro-
bial DNA were derived from living or dead micro-
organisms. Our study lacked associated measurement
of microbiomes in other body sites, such as stool,
oral, and skin microbiomes, which may have influ-
enced the circulating microbial signatures. Concur-
rent measurement of microbiomes at different body
sites would allow comparison of their composition
and would help to elucidate the biological link be-
tween them. Nevertheless, it is possible that the
circulating microbiome could exert its biological ef-
fects as a downstream site of action in the entire
body, reflecting the dysbiotic changes of highly
complex microbial communities in different body
sites, potentially making the circulating microbiome
(vs. microbiome from other body sites) a more
promising biomarker and therapeutic target in ESRD
patients. Similarly, although contamination of blood
cannot be completely excluded, associational analyses
should not be meaningfully influenced, as the
contamination is likely nondifferetial between cases
and controls. Finally, as with all observational
studies, we cannot infer any causal relationships and
eliminate the possibility of unmeasured confounders
that might have affected the association between the
circulating microbial signatures and cardiovascular
death.

In conclusion, in this pilot case-control study of
prevalent hemodialysis patients, we found a taxonomic
difference in circulating cell-free microbiome between
patients who died of a cardiovascular event and those
who did not, with significant correlation with Nrf2
levels and marginal association with subsequent risk of
cardiovascular death. Our findings suggest a potential
pathogenic contribution of changes in the circulating
cell-free microbial signatures to premature cardiovas-
cular mortality in patients with ESRD. Further in-depth
and larger studies are needed to clarify the character-
istics and roles of circulating microbiome toward the
development of a novel diagnostic and prognostic
biomarker and personalized therapeutic strategies for
premature mortality in these patients.
2626
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