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A B S T R A C T   

Chondroitin sulfate (CS) is a glycosaminoglycan with a broad range of applications being a popular dietary 
supplement for osteoarthritis. Usually, CS is extracted from animal sources. However, the known risks of animal 
products use have been driving the search for alternative methods and sources to obtain this compound. Several 
pathogenic bacteria naturally produce chondroitin-like polysaccharides through well-known pathways and, 
therefore, have been the basis for numerous studies that aim to produce chondroitin using non-pathogenic hosts. 
However, the yields obtained are not enough to meet the high demand for this glycosaminoglycan. Metabolic 
engineering strategies have been used to construct improved heterologous hosts. The identification of metabolic 
bottlenecks and regulation points, and the screening for efficient enzymes are key points for constructing mi-
crobial cell factories with improved chondroitin yields to achieve industrial CS production. The recent advances 
on enzymatic and microbial strategies to produce non-animal chondroitin are herein reviewed. Challenges and 
prospects for future research are also discussed.   

1. Introduction 

Glycosaminoglycans (GAGs) are naturally occurring hetero-
polysaccharides with polyanionic character. They consist of repeating 
disaccharide units composed of an N-acetylated or N-sulfated hexos-
amine (glucosamine, GlcN or galactosamine, GalN) and either a uronic 
acid (glucuronic acid, GlcA or iduronic acid, IdoA) or galactose (Gal). 
There are four main types of GAGs that vary in their monomeric 
composition, glycosidic bonds and sulfation pattern: hyaluronic acid 
(hyaluronate, hyaluronan, HA); keratan sulfate (KS); chondroitin sul-
fate/dermatan sulfate (CS/DS, stereoisomers); and heparin/heparan 
sulfate (HP/HS) [1]. The chemical structures of the repeating disac-
charide units of different GAGs are represented in Fig. 1. While HA lacks 
sulfate groups, the remaining GAGs can contain sulfates at various po-
sitions. DS is distinguished from CS by the presence of IdoA. HS is the 
only glycosaminoglycan that contains a N-sulfated hexosamine and 
differs from HP by possessing less sulfated units and less content of 
epimerized entities into IdoA. Heparosan is the non-sulfated precursor to 
HS and HP. Keratan sulfate lacks uronic acids and instead contains 
sulfated Gal residues. 

In animals, GAGs usually exist as long chains covalently bound to a 
protein core, as part of proteoglycans [2]. Depending on their molecular 
structure, GAGs have a wide distribution through tissues and perform 

different physiologic functions including in structural support, cell 
recognition and signaling, matrix organization, inflammation, cell di-
vision, and tissue repair and development [3, 4], being particularly 
common in connective tissues such as the skin, bone, cartilage, and the 
intervertebral discs [5]. Some bacterial pathogens produce GAG-like 
polysaccharides as part of their capsule composition, which contribute 
to their pathogenicity [6-8]. 

The wide applications of GAGs in medicine, veterinary, cosmetics, 
and pharmaceutics have been extensively reviewed [5, 9, 10]. The most 
famous GAG clinical application is the use of HP as an anticoagulant 
drug. Furthermore, GAGs also exist as nutraceuticals in human and 
veterinary supplements, serve as cosmetic or pharmaceutical in-
gredients, or act as materials for several biomedical applications such as 
tissue engineering. 

The industrial production of GAGs can be classified in 4 types: (i) 
extraction from animal sources; (ii) chemical synthesis; (iii) enzymatic 
or chemoenzymatic production or (iv) microbial or animal cells 
fermentation. Regarding microbial fermentation, the industrial pro-
duction of HA is currently the most well established due to its simple 
structure that does not undergo sulfation or epimerization contrarily to 
the other GAGs. However, sulfated GAGs such as CS, HS, HP and KS are 
usually chemically extracted from animal sources, through a laborious 
process that requires a large amount of environmentally hazardous 
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compounds [11, 12]. Also, the use of animal sources brings concerns on 
contamination with other animal products, viruses, and prions. In 
addition, religious motivations and vegetarianism trends have also led to 
the search for non-animal sources [13]. 

This review is focused on the recent advances of production pro-
cesses for animal-free chondroitin and CS production, including enzy-
matic and microbial strategies, which are areas with great advances in 
the last few years. With the increasing knowledge on biosynthesis, 
regulation, transportation, bottlenecks, metabolic engineering strate-
gies, bioprocess optimization, and with the discovery of new enzymes, a 
sustainable process for the microbial production of value-added natural 
and artificial chondroitin derivatives is closer to becoming a reality. 

2. Occurrence and biological functions of chondroitin and its 
derivatives 

Chondroitin is the unsulfated precursor of CS, the most abundant 
GAG in the human body. It comprises a repeated disaccharide struc-
turally composed by a glucuronic acid (GIcA) residue and a N-acetyl-D- 
galactosamine (GaINAc) residue linked by β(1–3) and β(1–4) bonds, 
respectively (Fig. 1, Table 1). According to its sulfation pattern, CS is 
mainly classified into CS-A, CS-C, CS-D, CS-E and CS-O (unsulfated 
chondroitin) [2, 14]. However, novel CS disaccharide units have been 
discovered in natural sources (CS-F, CS-G, CS-K, CS-L, CS-M, CS-S and 
CS-T) [15-17] or chemically synthesized (CS-R, CS-U and CS-V) [18]. 
Considered by some authors as a type of CS, DS (CS-B) is distinguished 
by the presence of at least one IdoA residue, resulting from the epime-
rization of GlcA. In higher animals, CS exists anchored to proteins as part 

of proteoglycans, being the predominant types CS-A and CS-C, and is 
present in connective tissues, for example, cartilage, cornea, bone, skin, 
arterial walls [19]. Examples of natural sources of CS and DS are pre-
sented in Table 1. CS has biological roles in inflammation prevention, 
immune modulation, maintenance of the structure, elasticity and 
shock-absorbing properties of cartilage, regulation of cell adhesion to 
the extracellular matrix, facilitation of nutrient and oxygen diffusion, 
mediation of tumor growth and metastasis, pathogen adhesion, angio-
genesis, osteogenic differentiation and in brain development, plasticity 
and regeneration [20, 21 – 23, 24]. Interestingly, CS biological functions 
depend on the chain length, sulfation pattern and percentage of the 
structural units, which vary upon animal age and tissue. DS is pre-
dominant in skin, heart valve, tendons, and blood vessels [25, 26, 27]. 
The physiologic roles of DS include regulation of transforming growth 
factor-β activity, cell proliferation, cell development, cell adhesion, 
homeostasis, collagen organization, anticoagulant activity, tumorigen-
esis, infection, wound repair, fibrosis and stabilization of the basement 
membrane [25, 28, 29, 30, 31, 32]. Particularly, the well-studied anti-
coagulant activity of DS occurs by its binding to HP cofactor II. The 
resulting complex can inhibit the procoagulant effect of thrombin, while 
not affecting the clotting cascade (factor X) or the platelet function. DS 
selective inhibition of thrombin makes it an interesting alternative to HP 
[33, 34]. 

In bacteria, unsulfated chondroitin backbone is produced as capsular 
polysaccharide by pathogens Pasteurella multocida Type F and Avi-
bacterium paragallinarium genotype I [35, 36], while a chondroitin 
decorated with fructose residues is produced by Escherichia coli K4 [37]. 
Bacteria use these capsular polysaccharides to mask their infection and 

Fig. 1. Structures of the main glycosaminogly-
cans (GAGs) a) hyaluronic acid, b) keratan 
sulfate, c) chondroitin and chondroitin sulfate, 
d) dermatan sulfate, and e) heparosan, heparan 
sulfate and heparin. Monomers of the disac-
charide building blocks are abbreviated as GlcA 
- D-glucuronic acid, GlcNAc – N-acetyl-D- 
glucosamine, Gal – D-galactose, GalNAc – N- 
acetyl-D-galactosamine, IdoA – L-iduronic acid, 
GlcN, D-glucosamine. Hyaluronic acid (a) does 
not go under post-polymerization modifica-
tions. Keratan sulfate (b) has di-sulfated, mono- 
sulfated and non-sulfated disaccharide units 
(each R6 = H or SO3H) due to O-sulfo-
transferases action. Chondroitin (c) is the sim-
ple non-sulfated backbone (R2, R3, R4 and R6 =

H) which can be modified by different tissue- 
specific O-sulfotransferases to form chon-
droitin sulfate (each R2, R3, R4 and R6 = H or 
SO3H). Dermatan sulfate (d) is formed from 
chondroitin through epimerization of GlcA into 
IdoA by tissue-specific epimerases followed by 
O-sulfotransferases (each R2, R4 and R6 = H or 
SO3H). Heparosan (e) has non-modified sugar 
moieties, that can be further modified through 
actions of tissue-specific N-sulfotransferases, C5 
epimerases and O-sulfotransferases to generate 
the sulfated forms heparan sulfate and heparin 
(R2 from uronic acid = H or SO3H; when the 
hexosamine unit is GlcN, R2 in that unit =
SO3H, while R2 = Ac when the unit is GlcNAc; 
other groups R3, R6 

= H or SO3H). Heparin has 
more sulfate groups and IdoA content than 
heparan sulfate. Depending on the GAG type 
and source the molecular size can generally 
vary between 4 and 200 mer (n = 4 – 200). 
Exceptionally, the highest size can be found for 
hyaluronic acid that can achieve 20,000 
repeating units.   
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thus increase their pathogenicity [6]. 
Commercial CS is usually provided as a mixture of CS-A and CS-C, the 

most common CS in animal cartilage [67], which is obtained through 
chemical extraction and purification from animal cartilaginous tissues, 
mainly from bovine, porcine, shark and chicken. The structural 
composition, molecular weight and yields of CS obtained from extrac-
tion vary not only with the extraction method but also with the animal 
and tissue used. Some of the reported CS yields include: extraction from 
shark fin resulted in 150.5 mg/g dry cartilage [68]; from blue shark head 
wastes 120.8 mg/g dry cartilage was obtained; crocodile hyoid, rib, 
sternum, trachea cartilages generated 91 – 274 mg/g of dry cartilage 
[68]; 75 mg/g of dry weight has been achieved by extraction from ray 
[68]; buffalo nasal, joint and tracheal cartilages generated 60 to 62 
mg/g of dry cartilage [69]; using chicken keel, 24.8 mg/g of wet carti-
lage were obtained [70]; from different sea cucumbers, fucosylated CS 
(fCS) yields varied from 63 to 110 mg/g weight [54]; and from fish 
by-products, yields from 19 to 137 mg/g dry cartilage have been ach-
ieved [71]. In addition to the relatively low yields, the shortage of such 
materials and the concerns on intraspecies contamination led to studies 
on artificial synthesis of the chondroitin backbone, either using chemical 
synthesis, enzymatic, chemo-enzymatic and microbial fermentation 
strategies. 

3. Clinical applications of CS 

Given the growing potential applications of CS, and the rising 
prevalence of osteoarthritis due to the increase in average life 

expectancy among the population, a boost in its demand and market 
volume has been registered. The global CS market size was valued as 
USD 1.17 billion in 2020 and is expected to grow at a compound annual 
growth rate (CAGR) of 3.0% from 2020 to 2028 [72]. In 2018, China was 
the biggest producer accounting for 83.7% of CS produced globally [73]. 

Depending on their application, different systems have been imple-
mented for the administration of chondroitin and its derivatives, 
including oral administration as food additives, in pharmaceutical 
preparations, nutraceuticals or veterinary supplements [74, 75, 76, 77]; 
incorporation in intra-articular or intravenous injectables [78]; inte-
gration in skin dermatology/cosmeceutical and ophthalmic products 
[79, 80, 81]; as part of medical devices [82, 83, 84, 85]; or as bio-
materials for regenerative medicine [9, 86]. 

The current main application of CS is as nutraceutical to treat oste-
oarthritis symptoms and retard cartilage degradation [77, 87]. These 
supplements have been widely prescribed for humans and animals and 
are usually formulated with glucosamine. Although the results on the 
efficacy of chondroitin or its combination with glucosamine in joint 
repair and pain relief compared with placebo have not always been 
concurrent [88, 89, 90, 91], CS and glucosamine have been recom-
mended in guidelines, prescribed by general practitioners and rheuma-
tologists as over-the-counter drugs and suggested by the European 
League Against Rheumatism (EULAR) to patients with knee and hand 
osteoarthritis [92]. The variable efficacy of CS is in part attributed to its 
highly variable composition. Since they are over-the-counter supple-
ments, they are not tightly controlled and can differ in the biological 
source, purification method and ingredient amount and type, thus 

Table 1 
Examples of natural sources of different types of chondroitin, chondroitin sulfate (CS), and dermatan sulfate (DS) and their biological functions in humans. In higher 
animals, different types of GAGs can occur in different proportions and sizes depending for example on the animal, tissue, age or diet.  

GAG type Disaccharide repeat Natural sources Biological functions References 

CS-A GlcA(β1–3)GalNAc(4S)(β1–4) Dogfish, shark and whale cartilage; 
human, bovine, porcine and chicken 
cartilaginous tissues 

mediates malaria-infected erythrocytes adhesion; negatively 
regulates axonal guidance and growth; activates metastatic 
cascate 

[13, 22, 38, 39, 
40] 

DS (CS-B) GlcA/IdoA(2S)(β/α1–3)GalNAc 
(4S)(β1–4) 

Animal skin/hide, cornea, cartilage, 
heart valve, tendons, blood vessels, 
and bone 

regulates growth factors activity; has anticoagulant activity; 
promotes proliferation of serveral cell lines; mediates 
homeostasis, tumorigenesis, infection, wound repair, 
collagen organization, fibrosis and stabilization of the 
basement membrane 

[25, 26, 27, 28, 
29, 30, 31, 32] 

CS-C GlcA(β1–3)GalNAc(6S)(β1–4) Dogfish and shark cartilage; human, 
bovine, porcine and chicken 
cartilaginous tissues 

may promote progression of epilepsy; neuroprotective 
properties in Alzheimer’s disease 

[13, 38, 41, 42, 
43] 

CS-D GlcA(2S)(β1–3)GalNAc(6S) 
(β1–4) 

Shark cartilage; animal brain promotes neuron growth; interacts with humoral factors [22, 44, 45, 46] 

CS-E GlcA(β1–3)GalNAc(4, 6diS) 
(β1–4) 

Squid cartilage; animal lung mediates angiogenesis; acts as cell surface receptor for herpes 
virus; modulates humoral factors; stimulates neurite 
outgrowth; promotes neural stem cells proliferation; mediates 
osteogenic differentiation 

[22, 24, 32, 46, 
47, 48] 

Fucosylated CS 
(fCS, CS-F) 

different types of CS with L- 
fucosyl branches usually 
attached to the O-3 of GlcA unit 

Sea cucumbers – [49, 50, 51, 52, 
53, 54] 

CS-G different types of CS with 
glucose attached to the O-6 of 
GalNAc unit 

Squid cartilage – [55] 

CS-H (highly 
sulfated DS) 

IdoA(α1–3)GalNAc(4S, 6S) 
(β1–4) 

Hagfish notochord – [56] 

CS-K GlcA(3S)(β1− 3)GalNAc(4S) 
(β1–4) 

Squid, king crab and octopus – [57, 58, 59, 60] 

CS-L GlcA(3S)(β1− 3)GalNAc(6S) 
(β1–4) 

Squid – [60] 

CS-M GlcA(3S)(β1− 3)GalNAc(4, 6diS) 
(β1–4) 

Squid – [60] 

Unsulfated 
chondrotin (CS- 
O) 

GlcA(β1–3)GalNAc(β1–4) Pasteurella multocida Type F; 
Avibacterium paragallinarium 
genotype I 

– [35, 36] 

Fructosylated 
chondroitin 

GlcA(3Fru)(β1–3) GalNAc(β1–4) E. coli K4 – [37, 61, 62, 63, 
64, 65] 

N-glycolyl 
chondroitin (Gc- 
CS) 

GlcA(β1–3)GalNGc(β1–4) Serum of humans who eat red meat 
(beef, lamb, and pork) 

– [66]  
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resulting in heterogenous CS mixtures with different sulfation patterns 
or even containing other GAGs as contaminants. Condrosulf (fish CS, 
IBSA Institut Biochimique SA, Lugano, Switzerland), Condrosan (bovine 
CS, Bioiberica S.A.U, Barcelona, Spain), and Structum (avian CS, Labo-
ratoires Pierre Fabre, Paris, France) are examples of commercialized 
pharmaceutical-grade CS products that have shown benefits for osteo-
arthritis in clinical trials [93, 94, 95, 96, 97, 98, 99, 100]. In these 
studies, CS has shown to be safe and, generally, exhibited slight to 
moderate efficacy over placebo in pain relief and function improvement 
in osteoarthritis patients. Also, CS is included in eye drop solutions for 
dry eyes [79, 80]. Preservative-free ophthalmic solutions combining 
xanthan gum and CS or combining sodium HA and CS showed similar 
efficacy compared to polyethylene glycol and propylene glycol solutions 
in the treatment of dry eye disease. The CS oral supplementation in 
combination with glucosamine hydrochloride has also shown improved 
therapeutic benefits in reducing systemic inflammation in overweighted 
individuals, over placebo [101]. For interstitial cystitis, the intravesical 
treatment with CS achieved improved efficiency in pain reduction and 

nocturia and had superior tolerability over DMSO, a standard approved 
therapy [84]. CS is also found in solutions for preserving corneas [102], 
or in injectable devices to protect the eye during cataract surgery 
(phacoemulsification) [82, 83]. The ophthalmic viscosurgical devices 
containing HA and CS (DisCoVisc, Viscoat and Duovisc) showed greater 
efficiency during phacoemulsification, and improved protection of 
corneal endothelium, compared to hydroxypropylmethylcellulose [82] 
and to HA and lidocaine hydrochloride (Visthesia) injectables [83]. 

In addition, the potential applications of exogenous CS are wide- 
ranging since CS exhibits anti-inflammatory activity [50, 103, 104, 
105, 106], anticoagulant properties [53, 54, 107], promotes the 
regeneration of different tissues [108, 109, 110], has antiviral activity 
[111 – 116], and can be used in cancer treatment [47, 105]. Specifically, 
CS-E has been considered a powerful antiviral agent against flavivirus 
dengue, herpes viruses and T-cell leukemia virus type I [111, 112, 114], 
tobacco mosaic virus is inhibited by CS-A and CS-C [113], fCS showed 
inhibitory activity against human immunodeficiency virus type-1 [115] 
and against severe acute respiratory syndrome coronavirus 2 (SAR-
S-CoV-2) [116]. CS has also potential applications in engineering scaf-
folds for regenerative medicine and tissue engineering, by combination 
with other biopolymers such as HA and collagen [117, 118]. 

DS exhibits several reported therapeutic applications. Drug formu-
lations of DS have been marketed for the prevention of venous throm-
boembolism under the commercial names Mistral (Mediolanum 
Farmaceutici, Milan, Italy) [119] and Venorix (Laboratório Medinfar, 
Amadora, Portugal). It is also a component of sulodexide, a more 
widely-used antithrombotic agent [120]. 

Table 2 lists clinical trials with recently published results where CS or 
DS are used as treatment for different conditions, either as single GAG in 
the formulation or when formulated with other GAGs. 

4. Enzymatic and chemoenzymatic CS production 

Enzymes can be used to produce CS oligosaccharides by degrading 
CS polymers or by synthesizing CS oligosaccharides/polymers through 
polymerization. The main advantages of using enzymes over chemical 
approaches is that enzymes catalyze stereoselective and regioselective 
reactions, potentially resulting in homogeneous CS in an eco-friendlier 
and faster manner [136, 137]. However, these enzymatic steps are 
often combined with chemical synthesis or modifications (chemo-
enzymatic strategies) to either provide synthetic precursors or to 
perform the sulfation step. The depolymerizing/ degrading enzymes and 
the polysaccharide substrates used are relatively inexpensive [136]. 
However, the commercial polysaccharides are usually from animal 
sources which raises the concerns already mentioned. The degrading 
enzymes will be briefly discussed since they can give insights on struc-
tural analysis of CS, and because they can perform the contrary poly-
merization reaction under certain conditions. Enzymatic synthesis of CS 
from natural and unnatural precursors is the alternative for the prepa-
ration of homogeneous CS that most resembles the biological process. 
However, the high cost of such precursors generally limits the industrial 
implementation of these enzymatic methods. 

4.1. Enzymatic depolymerization of CS polysaccharides 

CS depolymerizing enzymes able to produce CS oligosaccharides are 
CS lyases [138, 139, 140] and CS hydrolases [141]. While poly-
saccharide hydrolases are found in almost every organism, poly-
saccharide lyases do not occur in vertebrates. According to their 
substrate specificity, the polysaccharide lyases acting on CS can be 
classified into chondroitinases ABC, AC, B, and C. They perform the 
depolymerization of CS/DS polymers via endolytic or exolytic β-elimi-
nation resulting mainly in unsaturated oligosaccharides [138, 140]. 
Proteus vulgaris, Flavobacterium heparinum (Pedobacter heparinus), 
Sphingomonas paucimobilis, Bacteroides stercoris, Pseudopedobacter saltans 
(Pedobacter saltans), and Bacteroides thetaiotaomicron are some examples 

Table 2 
Main applications of chondroitin sulfate and dermatan sulfate under clinical 
trials, either as the single glycosaminoglycan (GAG) of the formulation or in 
combination with other GAGs.  

Glycosaminoglycan Condition / Potential 
application 

Clinical trials ID 

Chondroitin sulfate Osteoarthritis (knee, hand) NCT00291499  
[93] 
NCT00604539  
[95] 
NCT01354145 
[96, 97] 
NCT00955552  
[121] 
NCT01425853  
[122] 
NCT01893905  
[123] 
NCT02830919  
[124] 
NCT01271218  
[125] 
NCT00513422 
[126, 127] 

Inflammation reduction and 
prevention 

NCT01682694  
[101] 

Interstitial cystitis NCT04268810  
[84] 

Dry eye NCT01657253  
[79] 

Hemostasis in surgeries NCT03725098  
[128] 

Corneal storage medium NCT01657500  
[102] 

Chondroitin sulfate and 
hyaluronic acid 

Knee osteoarthritis NCT04352322  
[129] 

Recurrent urinary tract 
infections 

NCT02016118  
[85] 

Adjuvant during 
phacoemulsification 

NCT01387620  
[82]  
NCT02304861  
[83] 

Post-surgical rehabilitation NCT03355651  
[130] 

Dermatan sulfate and 
heparan sulfate 
(mesoglycan) 

Post-operative thrombosis NCT04481698  
[131] 

Dermatan sulfate and 
heparin (sulodexide) 

Anticoagulant NCT04257487  
[132] 

Diabetic retinopathy NCT01295775  
[133] 

Diabetic kidney disease 
(albuminuria, nephropathy) 

NCT00130312  
[134] 
NCT00130208  
[135]  
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of different CS lyase producers [138, 140, 142, 143]. Differently from CS 
lyases, CS hydrolases usually depolymerize CS with no unsaturated 
bonds formed, which make them more attractive for the enzymatic 
production of CS [1]. Some animal HA hydrolases, hyaluronidases, show 
depolymerizing activity against CS and some isoforms can only accept 
CS as substrate [144, 145]. Therefore, these hyaluronidases have been 
used to depolymerize CS polysaccharides to obtain CS oligosaccharides 
(Fig. 2a) up to tetrasaccharides. The substrate specificity of CS lyases 
and CS hydrolases can retrieve functional characterization of GAGs. 

4.2. Enzymatic synthesis of CS oligosaccharides and polysaccharides 

For synthesis of CS oligosaccharides and polysaccharides, degrading 
enzymes that in the reverse direction synthesize polymers (such as hy-
aluronidases, Fig. 2b), or synthases (such as glycosyltransferases, 
Fig. 2c) can be used. Further post-polymerization modifications of the 
chondroitin backbone are required to achieve the CS oligosaccharides or 
polysaccharides. Specialized CS sulfotransferases, including 4-O-sulfo-
transferase (C4OST), 6-O-sulfotransferase (C6OST), 2-O-sulfotransferase 
(2OST) and N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (Gal-
NAc4S-6OST), sulfate the chondroitin composing units in the presence 
of the co-factor 3′-phosphoadenosine-5′-phosphosulfate (PAPS) to 
generate CS with different sulfation patterns and consequently different 
biological activities. 

Chemoenzymatic methods using HA or CS degrading enzymes in the 
anabolic direction for the production of CS and its derivatives have been 
established, by either ring-opening polyaddition [146, 147] or by 
transglycosylation reaction [148]. The works of Kobayashi et al. [146] 
and Fujikawa et al. [147] used testicular hyaluronidases from ovine or 

bovine to catalyze the synthesis of structurally defined CS (natural and 
unnatural) from chemically synthesized disaccharide oxazoline pre-
cursors which acted as transition state analogues. Kakizaki et al. [148] 
used immobilized bovine testicular hyaluronidase to produce hybrid 
polysaccharides composed by both HA and CS units. First, the hyal-
uronidase was used to prepare oligosaccharides by digestion of com-
mercial CS and HA polysaccharides. The oligosaccharides were 
fluorolabeled (to facilitate analytical identification) generating pyr-
idylaminated acceptors which underwent transglycosylation catalyzed 
by immobilized hyaluronidase using HA and CS donor polysaccharides. 
These methods enabled to control the molecular weight of the resulting 
CS and the construction of unnatural CS derivatives. However, the use of 
expensive sugar precursors and dedicated reactors, as well as the low 
product yields are drawbacks that limited large-scale application [149]. 

The discovery of microbial counterparts of glycosyltransferases in 
pathogenic bacteria further boosted the development of enzymatic 
strategies to produce chondroitin and CS. Bacterial glycosyltransferases 
used for chondroitin synthesis, also named chondroitin synthases or 
chondroitin polymerases, include PmCS from Pasteurella multocida and 
KfoC from E. coli K4 strains. These enzymes act by transferring alternate 
residues of GlcA and GalNAc, using uridine diphosphate (UDP)-GlcA and 
UDP-GalNAc as donors, to the nonreducing end of a chondroitin chain 
acceptor to form chondroitin oligosaccharide backbones (Fig. 2c). 
DeAngelis et al. [150] identified for the first time a microbial gene 
encoding the chondroitin synthase PmCS and cloned it in E. coli. The 
same authors further used this recombinant glycosyltransferase for in 
vitro production of chondroitin from the substrates UDP-GlcA and 
UDP-GalNAc [151]. Other microbial glycosyltransferase KfoC was used 
by Sugiura et al. [152] to produce chondroitin oligosaccharides (CS-O) 

Fig. 2. Enzymatic synthesis of chondroitin sulfate (CS). a) 
Depolymerizing enzymes, such as animal hyaluronidases, 
can be used to obtain CS oligosaccharides from CS poly-
saccharides; b) the same type of enzymes is able to, under 
different conditions, polymerize the CS oligosaccharides 
through chemoenzymatic approaches. c) Bacterial glyco-
syltransferases (such as chondroitin synthase from Escher-
ichia coli K4, KfoC, or from Pasteurella multocida type F, 
PmCS) act by transferring alternate residues of glucuronic 
acid (GlcA) and acetylgalactosamine (GalNAc), using uri-
dine diphosphate (UDP)-GlcA and UDP-GalNAc as donors, 
to the nonreducing end of a chondroitin chain acceptor to 
elongate the chondroitin oligosaccharide/ polysaccharide 
backbones. Sulfotransferases such as 4-O-sulfotransferase 
(C4OST), 6-O-sulfotransferase (C6OST), N-acetylgalactos-
amine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6OST), 
and 2-O-sulfotransferase (2OST) that require the presence 
of 3′-phosphoadenosine-5′-phosphosulfate (PAPS) as sul-
fate donor, convert the unsulfated backbone (CS-O) in CS 
with different sulfation patterns such as CS-A, CS-C, CS-E 
and CS-T. Only CSs with a homogenous defined sulfation 
pattern are shown although a CS chain may have different 
CS units if a combination of sulfotransferases is used. 
Dashed arrows represent polymerization steps.   
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with controlled size from 7-mer to 16-mer. The authors first digested a 
commercial unsulfated chondroitin polymer with hyaluronidase to 
achieve even-numbered oligosaccharides. Further digestion with 
β-glucuronidase allowed to obtain odd-numbered oligosaccharides. The 
oligosaccharides were subjected to pyridylamination to facilitate their 
analysis. Then, two mutated recombinant KfoC enzymes were expressed 
each being selective for one of the substrates (UDP-GlcA or 
UDP-GalNAc) and the engineered enzymes, immobilized in beads, were 
used to elongate the chondroitin chain. The same group employed 
chemoenzymatic strategies for the preparation of CS oligosaccharides 
and polysaccharides with different sulfation patterns using the CS po-
lymerase KfoC and recombinant sulfotransferases C4OST, C6OST, 
GalNAc4S-6OST and 2OST [153, 154, 155]. The chondroitin backbone 
was obtained by desulfating commercial CS from different sources and 
HEK293T cells were used to express the human sulfotransferases. 
However, the resulting products were heterogeneous, low amounts were 
achieved, and the process required laborious techniques for the sepa-
ration of oligosaccharides with different sizes. Afterwards, the enzy-
matic production of 15 structurally diversified and homogeneous CS-A 
and CS-C oligosaccharides was achieved using KfoC expressed in E. coli 
BL21 [156]. Amounts of 4 –30 mg of CS oligosaccharides were obtained. 
The authors also synthesized the expensive substrate UDP-GalNAc using 
Bifidobacterium longum N-acetylhexosamine kinase and human GalNAc 
pyrophosphorylase both expressed in E. coli BL21, which significantly 
reduced the process cost. Human C4OST and mouse C6OST were af-
terwards used for sulfation of chondroitin backbones. Sf9 insect cells 
were used to express C4OST and C6OST. The authors were unsuccessful 
expressing C6OST in E. coli which they rationalized to be due to the 
glycosylation being required for the sulfotransferase activity as shown in 
Yusa et al. [157]. Accordingly, attempts to express soluble mouse C4OST 
in E. coli were also unsuccessful, and C4OST and C6OST were effectively 
expressed and secreted by the Pichia pastoris [158]. However, active 
human C4OST has been expressed in E. coli BL21 and P. pastoris [159]. 
Those authors showed that the glycosylated and non-glycosylated forms 
of the enzyme had similar activities. More recently, the soluble expres-
sion of human C4OST enzyme was also achieved in E. coli K4 and in 
E. coli K-12 MG1655 [160]. 

In addition to the most common CS types, CS-A and CS-C, efforts to 
enzymatically produce alternative CS structures have resulted in the 
synthesis of CS-E. Despite the enzymatic synthesis of structurally het-
erogeneous CS-E polysaccharides has been primarily reported [161], the 
enzymatic production of homogenous CS-E oligosaccharides was more 
recently achieved [106]. The process included a serial elongation of 
p-nitrophenyl glucuronide (GlcA-pNP) with UDP-GalNAc using KfoC 
followed by the sulfotransferase modifications on the unsulfated back-
bone by C4OST and GalNAc4S-6OST. Mouse GalNAc4S-6OST was 
expressed in Sf9 cells, the glycotransferase KfoC and C4OST were 
expressed as in Li et al. [156] and the structural units UDP-GlcA, 
UDP-GalNAc, and the co-factor PAPS were synthesized by enzymatic 
approaches. 

Another recently reported chemoenzymatic strategy for the synthesis 
of homogenous chondroitin polymers combined stepwise oligosaccha-
rides synthesis from GalNAc and GlcA units with further enzymatic 
polymerization by PmCS [162]. The authors showed that PmCS needs a 
suitable oligosaccharide (at least a chondroitin trisaccharide) as the 
acceptor to trigger the in vitro chondroitin chain polymerization. The 
polymers were further chemically sulfated to form CS. 

Even when the CS backbone is not obtained through enzymatic 
polymerization, enzymatic in vitro reactions can be used to participate in 
the post-polymerization modification of the chondroitin backbone. Rat 
aryl sulfotransferase IV (ASST IV) expressed in E. coli and mouse C4OST 
and C6OST sulfotransferases expressed in P. pastoris were used to modify 
a chondroitin backbone produced in vivo [158]. Instead of using sulfo-
transferases to add sulfate groups to the chondroitin, an alternative way 
to produce structurally defined CS was performed by employing a che-
moenzymatic strategy for regioselective desulfation using a 

recombinant 4-O-endo-sulfatase from B. thetaiotaomicron [163]. 
Regarding the sulfate donor for sulfotransferases, PAPS, a chemo-

enzymatic synthesis [164], enzymatic [165] or in vivo production using 
engineered E. coli [166] are recent attractable strategies to supply this 
co-factor for the synthesis of CS. These strategies have been applied for 
CS-A synthesis in vitro [166] and in vivo [160]. 

Drawbacks of the enzymatic CS synthesis include difficulty in con-
trolling glycosyltransferase and sulfotransferase activities for a homog-
enous compound with a defined sulfation pattern [136]. The 
chemoenzymatic CS synthesis can provide the flexibility of chemical 
synthesis along with the efficiency and selectivity offered by enzymes to 
produce more defined CS oligosaccharides [167]. Nevertheless, the poor 
availability of substrates and co-factors, the poor enzymes activity and 
consequent low CS yields are still major limitations for the imple-
mentation of enzymatic and chemoenzymatic methods at industrial 
scale [168]. 

5. Microbial production of GAGs 

Biotechnological processes using microorganisms have been devel-
oped for the production of GAGs and its oligosaccharides, based on the 
ability of certain pathogenic microbes to produce them. This strategy 
offers several advantages over animal extraction or chemical synthesis, 
such as avoiding using expensive substrates and environment-hazard 
chemicals, avoiding interspecies infection or contaminations, 
improving homogeneity, and precisely controlling the degree of sulfa-
tion and molecular weight [1]. The main benefit of producing GAGs in 
vivo over the enzymatic methods is taking advantage of biological ma-
chinery to avoid the use of expensive substrates and co-factors (and 
instead use cheap simple carbon sources as substrates). However, the 
industrial biotechnological production of GAGs, and specially of sulfated 
GAGs such as CS, is limited due to safety concerns for culturing patho-
genic microorganisms and low yields [169]. Therefore, research efforts 
have been focused on the improvement of the production process, as 
well as on the design of better microbial cell factories for production of 
GAGs. An overview on the metabolic pathways from native microbial 
GAG producers will be provided, which can give insights on the design 
of biosynthetic pathways for chondroitin and CS production. Then it is 
discussed the current state of the biotechnological production of chon-
droitin and CS. In Table 3, advantages and disadvantages of the avail-
able chondroitin production methods are summarized. 

5.1. Biosynthetic pathways for microbial GAGs production 

As already mentioned, native microbial GAG and GAG-like producers 
are pathogens that use these compounds as constituents of their capsule 
to camouflage their infection and improve pathogenicity [6]. In these 
microorganisms, the genes involved in the capsular polysaccharide 
production from UDP-sugars and its transport are usually expressed in 
the form of an operon. The pathways for the biosynthesis of microbial 
GAGs are represented in Fig. 3. Representative native GAG-producers 
are E. coli K4 for chondroitin, E. coli K5 for heparosan, and 
P. multocida type A for HA. Capsular polysaccharide synthesis gene 
cluster includes three functional regions. Region 1 and region 3 are 
mainly responsible for the modification, transport, and localization of 
newly synthesized polysaccharide chain. Region 2 is mostly responsible 
for encoding enzymes related to the synthesis of polysaccharides and 
their precursors, so it is the most variable region across strains, ac-
cording to the capsular GAG produced. The polymerization of these 
capsular polysaccharides occurs entirely on the cytoplasm through the 
action of glycosyltransferases followed by transportation, known to be 
adenosine triphosphate (ATP)-binding cassette (ABC) transporter- 
dependent [4, 170, 171, 172]. 
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5.2. Current state of biotechnological GAGs production using microbes 

Organisms producing other GAGs may comprise an important source 
of genes with relevance for the chondroitin heterologous pathway given 
that the majority of the steps involved in such production are the same. 

HA is naturally produced by Streptococcus group A or C and by 

P. multocida type A [6, 172, 173, 174, 175, 176]. The genes required for 
HA biosynthesis are encoded by the HA synthesis (HAS) operon (hasA-E) 
in Streptococci. Since HA does not require modifications after poly-
merization, the product from the fermentation can be directly isolated 
and purified. Commercial HA has been obtained mainly by microbial 
fermentation of Streptococcus equi and S. zooepidermidis [176, 177]. 

Table 3 
Advantages and disadvantages of different chondroitin and chondroitin derivatives production methods.   

Animal extraction Chemical 
synthesis 

Enzymatic 
production 

Microbial production 

Substrate cost Cheap Expensive Expensive Cheap 
Shortage of materials Yes No No No 
Presence of contaminants (prions, viruses, growth 

factors) 
Yes No No No 

Vegan/ vegetarian No Yes Yes Yes 
Requires feeding co-factors No No Yes No 
Chemical steps to obtain substrates or sulfation No Yes Most times Sometimes 
Stereoselective and regioselective reactions not applicable No Yes Yes 
Time-consuming process Yes Yes Yes, for protein 

purification 
No 

Harsh conditions (pH, temperature, pressure) Yes Yes No No 
Scale-up Limited and expensive Difficult Difficult Easy 
Control of degree of sulfation and size No Yes Yes Yes 
Yields Highest Low Lowest Low 
Environmental-friendly process No No Yes Yes 
Possibility to obtain unnatural compounds No Yes Yes Yes 
Final product purification complexity Very heterogeneous, polydisperse and 

usually contaminated with other 
glycosaminoglycans 

Easy Easy May require cell lysis and 
purification. For pathogenic hosts, 
endotoxins need to be removed  

Fig. 3. Production of glycosaminoglycans in microbes and its possible use in the biosynthesis of microbial chondroitin, hyaluronic acid or heparosan. Depending on 
the microbial host, the heterologous expression of the enzymes shown in orange boxes might be required for glycosaminoglycans production. Enzyme abbreviations: 
ABC, adenosine triphosphate (ATP)-binding cassette transporters; Aldo, fructose-6-phosphate aldolase; Fbp, fructose-1, 6-bisphosphatase; GalU, uridine triphosphate: 
glucose-1-phosphate uridylyltransferase; Glk, glucokinase; GlmM, phosphoglucosamine mutase; GlmS, glucosamine-6-phosphate synthase; GlmU, glucosamine-1- 
phosphate N-acetyltransferase/N-acetylglucosamine-1-phosphate uridyltransferase; GlpF, Glycerol uptake facilitator protein; GlpK, glycerol kinase; Gpd, 
glyceraldehyde-3-phosphate dehydrogenase; HasA, hyaluronan synthase; KfiA, β− 1, 3-glucuronyltransferase; KfiC, α− 1, 4-N-acetylglucosaminyltransferase; KfoC, 
chondroitin synthase; Pfk, 6-phosphofructokinase; Pgi, glucose-6-phosphate isomerase; Pgm, phosphoglucomutase; PTS, phosphotransferase system; Uae, UDP-N- 
acetylglucosamine 4-epimerase; UGD, uridine diphosphate (UDP)-glucose 6-dehydrogenase. 
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Industrial production of sulfated GAGs is more challenging because it 
requires post-polymerization modifications of the microbially-produced 
polysaccharide backbone. 

Biosynthesis of HP from microbial sources requires the microbial 
production of the precursor heparosan [178, 179, 180] with further 
chemical and/or enzymatic modifications [19, 181, 182, 183, 184]. 
E. coli K5, P. multocida type D and Avibacterium paragallinarum genotype 
II can synthesize heparosan [35, 36, 185, 186]. High titers of heparosan 
have been achieved using E. coli K5 (up to 15 g/L in bioreactor) [178, 
179] which has the heparosan biosynthetic genes encoding glycosyl-
transferases and dehydrogenases organized in an operon (kfiA-D, Fig. 3). 
Regarding DS and KS, there have been no reports on their production 
using microorganisms. 

Unsulfated chondroitin, a starting material for CS, is produced by 
P. multocida type F and A. paragallinarium genotype I [35, 36]. The 
pathogenic strain E. coli K4 natively synthesizes a capsular poly-
saccharide that shares a similar structure with the unsulfated chon-
droitin, but contains a residue of fructose [187]. Table 4 presents recent 
reported studies on in vivo production of chondroitin and CS, including 
in native producers and in heterologous hosts. 

E. coli K4 became the first and most studied microorganism to be 
used for the biotechnological production of chondroitin [37]. In fact, 
food grade CS has been industrially produced by microbial fermenta-
tion. The native producer E. coli K4 is used to produce microbial K4 
polysaccharide followed by its chemical defructosylation and regiose-
lective sulfation into CS sodium. The product is sold under the name of 
Mythocondro™ (marketed since 2017 by Gnosis S.p.A., which was ac-
quired by Lesaffre in 2018). 

The genes required for fructosylated chondroitin production and 
transportation in E. coli K4 are organized in an operon containing kfoA-G 
genes. From the seven constituent genes, the most relevant genes in the 
biosynthesis of fructosylated chondroitin are: kfoA encoding UDP- 
GlcNAc 4-epimerase that provides UDP-GalNAc; kfoC encoding chon-
droitin synthase (homolog to PmCS); and kfoF encoding UDP-glucose 
dehydrogenase that provides UDP-GlcA. Fructosylated chondroitin can 
undergo a subsequent step of hydrolysis of fructose monomer and 
chemical sulfation [188, 189, 190]. The identification of the enzyme 
responsible for inserting the fructose residue (KfoE, fructosyltransferase) 
and its consequent deletion led to the production of unsulfated chon-
droitin [191]. Genetic engineering has been applied to E. coli K4 to 
further improve the polysaccharide yields [61, 63, 187, 190, 192, 193, 
194, 195]. In fact, the highest reported yields so far for biotechnological 
production of chondroitin have been achieved with genetically engi-
neered E. coli K4 through fed-batch fermentations, reaching 8.43 – 9.2 
g/L of fructosylated chondroitin [187, 192]. Feeding alternative syn-
thetic precursors to the fermentation medium is a possible strategy to 
synthesize rare or unnatural chondroitin derivatives in vivo. In the work 
of Awofiranye et al. [196], N‑glycolyl chondroitin has been produced 
from chemically synthesized precursors (N-glycolylglucosamine 
replacing GlcNAc in the pathway) in E. coli K4 lacking kfoE gene. 

The first study aiming to produce chondroitin in a heterologous host 
used the pathogenic bacteria E. coli K5 expressing kfoC and kfoA from 
E. coli K4 and 52.6 mg/L of chondroitin was produced without the need 
for defructosylation [197]. Other pathogen, HA producer 
S. zooepidemicus, was also attempted as an heterologous host for chon-
droitin using the same genes [176] but it also resulted in low yields (300 
mg/L). 

To avoid the contamination of the final product with virulence fac-
tors and toxins and to eliminate the defructosylation step, alternative 
microorganisms have been engineered with K4 polysaccharide produc-
tion pathway. The chondroitin production in non-pathogenic heterolo-
gous hosts has been achieved in E. coli BL21 (DE3) [198], B. subtilis [158, 
180, 199], Corynebacterium glutamicum [200] and E. coli K-12 [160, 
201]. Using safer heterologous hosts, the highest chondroitin yield re-
ported (2.4 g/L) was achieved by expressing kfoC, kfoA, kfoF in E. coli 
BL21 using the high copy number vector pETM6, with a pseudo-operon 

gene configuration [198]. 
The chondroitin backbone can be further modified through the ac-

tion of various sulfotransferases to produce CS, or it can undergo epi-
merization of GlcA into IdoA and subsequent sulfation to generate DS. 
Several studies combined the microbial in vivo production of chondroitin 
with enzymatic or chemical strategies to produce CS [158, 166, 202]. By 
combining the in vivo production of chondroitin backbone and in vitro 
enzymatic sulfation, CS-A and CS-C production has been achieved [158]. 
Bacillus subtilis harboring the kfoA and kfoC genes from E. coli K4 was 
engineered. E. coli was used to express rat aryl sulfotransferase IV (ASST 
IV) and P. pastoris was the expression host for mouse C4OST and C6OST 
sulfotransferases. 

In the work of Erenler [202], a non-pathogenic E. coli strain was 
engineered to express a previously described biosynthetic pathway for 
chondroitin production [198] along with a Vitreoscilla hemoglobin gene 
(vgb) whose expression has previously been reported to provide benefits 
to bacteria growth and recombinant protein expression and improved 
accumulation of different biopolymers [203]. The authors produced and 
purified the microbial chondroitin and performed chemical sulfation. 
Recently, the construction of the complete pathway for in vivo produc-
tion of sulfated chondroitin in E. coli has been reported [160]. The au-
thors evaluated both E. coli K4 and K-12 (containing K4 kfoCAF 
chondroitin genes) with expression of C4OST and PAPS reductase (cysH) 
deletion (to improve the pool of sulfate donor PAPS) for CS production. 
Only E. coli K4 was able to produce extracellular CS (10.76 µg/L in 
shaken flasks), and the intracellular yield was also higher than the one 
found for the engineered E. coli K-12. However, the percentage of sul-
fation of intracellular CS was 36% higher in the K-12 strain. After 
improving the activity of C4OST through mutation, optimizing growth 
and C4OST induction conditions, and inhibiting transport system 
through clustered regularly interspaced short palindromic repeats 
interference (CRISPRi), the levels of sulfation (~55%) reached the same 
ones achieved in K-12. The authors also optimized the fermentation 
process in bioreactor using K-12 which resulted in 27 μg/g dry cell 
weight of intracellular CS-A with a sulfation degree of 96%, a level of 
4-O-sulfation similar to the ones found in animals. More recently, 
P. pastoris has been successfully engineered towards the production of 
CS-A using methanol as substrate [204]. The expression of kfoC and kfoA 
from E. coli K4, tuaD from B. subtilis, engineered mouse C4OST and 
overexpression of endogenous genes coding adenosine-5′-triphosphate 
sulfurylase (ATPS) and adenosine-5′-phosphosulfate kinase (APSK) to 
improve PAPS supply and sulfation, resulted in a production of 2.1 g/L 
CS-A with 4.0% sulfation using a fed-batch fermentation. The integrated 
approach from these two recent studies [160, 204] provides significant 
cost reduction to the process. However, the CS yields in E. coli are still 
low while the CS produced by engineered P. pastoris has a low sulfation 
degree. Therefore, more efforts are required to genetically improve the 
host and to optimize the process towards interesting yields and sulfation 
degrees for biotechnological applications. 

5.3. Metabolic engineering to optimize CS production 

Despite the recent advances on biotechnological production of CS, 
the yields are still not sufficient to meet the increasing demand of this 
widely used nutraceutical. Metabolic engineering of the host microor-
ganisms for improving CS precursors (UDP-GlcA, UDP-GlcNAc and UDP- 
GalNAc) production pathways should be performed to improve inter-
mediate pools and their subsequent availability. 

In order to redirect the metabolic flux towards chondroitin or CS 
production in microbes, the most obvious modification is the over-
expression of chondroitin polymerase/synthase which in E. coli K4 is 
encoded by kfoC. When kfoC was overexpressed in E. coli K4 using 
plasmids, the fructosylated chondroitin yield improved 2-fold compared 
to the wild-type [61]. When the kfoC overexpression was IS2 
transposon-mediated, the K4 production was 2.5 times higher than the 
wild-type [205]. Strategies to improve KfoC enzymatic activity have also 
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Table 4 
Last decade studies on microbial production of chondroitin and chondroitin sulfate by natural producer microbial strains and engineered hosts.  

GAG Host Substrate(s) Genetic modification(s) Process (working 
volume) 

Maximal yield (mg/L) Reference 

Fructosylated chondroitin E. coli O5:K4:H4 Glycerol/ glucose Insertion of multiple copies 
of the autologous rfaH gene 

Shake flask 280/ 300 [192] 
Batch (2.5 L) 475/ 525 
Fed-batch (2.5 L) 4000/ 5100 
Three-phase 
fermentation (2.5 
L): batch-fed batch- 
in microfiltration 
regimen 

8400/ 9200 

Three-phase 
fermentation (1000 
L) 

9000/(not tested with 
glucose) 

E. coli O5:K4:H4 Glycerol/ glucose Overexpression of rfaH Shake-flask (200 
mL) 

212/ 283 [63] 

Batch (2 L) 466 
Fed- batch (2 L) 5300 

E. coli O5:K4:H4 Glycerol Overexpression of the 
transcriptional regulator 
slyA 

Shake-flask (70 mL) 1000 [194] 
Batch (4 L) 2600 

E. coli O5:K4:H4 Glycerol IS2 transposon-mediated 
kfoC overexpression 

Shake flasks 302 (plasmid) [205] 
Batch (2 L) 425 (integrative) 
Fed-batch (2.5–22 
L) 

3470 (integrative) 

E. coli O5:K4:H4 Glycerol Overexpression of rfaH, pgm 
and galU 

Shake-flask (200 
mL) 

391 (with glutamine 
supplementation) 

[65] 

Batch (4 mL) 592 
E. coli O5:K4:H4 Glycerol pfkA deletion, 

overexpression of pgm, 
galU, glmS, glmM and 
mutated kfoC, and RBS 
optimization 

Fed-batch (30 L) 8430 [187] 

E. coli O5:K4:H4 Glucose Overexpression of kfoA and 
kfoF 

Shake-flask (0.2 L) ~1739 (61 mg/OD) [193] 

Fructosylated chondroitin E. coli O5:K4:H4 Glycerol glmM, glmS Fed-batch (2.5 L) 3990 [206] 
E. coli O5:K4:H4 Glucose Overexpression of kfoF 

Overexpression of pgm, galU 
and kfoF 

Fed-batch (2 L) 2000 
2090 

[190] 

Overexpression of pgm, galU 
and kfoF 

Fed-batch (22 L) 2140 

E. coli O5:K4:H4 Glucose/ glycerol Wild-type Batch in 
microfermenter (4 
mL) and in 
bioreactor (1.8 L) 

315 (microfermenter); 
300 (bioreactor) 

[195] 

Fed-batch 
microfermenter (3 
mL) and in 
bioreactor (1.6 L) 

1410 (microfermenter); 
1570 (bioreactor) 

Chondroitin E. coli O10:K5:H4 Glucose kfoC and kfoA expression Shake flask (20 mL) 52.6 [197] 
Streptococcus equi 
subsp. 
zooepidemicus 

Sucrose kfoA and kfoC expression Shake-flask (0.6 L) 90 [176] 
Batch (1.6 L) 300 

E. coli BL21 Star 
(DE3) 

Glucose kfoC, kfoA and kfoF 
expression in pseudo- 
operon gene configuration 

Shake flask (25 mL) 213 [198] 
Fed-batch (1 L) 2400 

Bacillus subtilis 168 Sucrose kfoC, kfoA expression and 
tuaD up-regulation 

Shake flask (50 mL) 2540 [180] 
Fed-batch (1.35 L) 5220 

Corynebacterium 
glutamicum 

Glucose kfoC, kfoA expression 
(codon-optimized), ldh 
deletion, and ugd 
overexpression 

Fed-batch (2 L) 1910 [200] 

Furyl-terminated chondroitin E. coli DH1 (K-12 
derivative, lacking 
kps genes) 

Glucose-glycerol- 
lactosides 

Expression of kfoC, kfoG, 
wbpP, kfiD and mouse glcAT 

Fed-batch (0.2 L) ~2500 [201] 

Chondroitin sulfate A E. coli C2987 Catabolizable amino 
acids from LB 

Expression of kfoA, kfoC, 
kfoF (plasmid from [198]) 
and vgb 

Shake flask (25 mL); 
Chemical sulfation 

Not reported [202] 

Chondroitin sulfate A and C B. subtilis 
(chondroitin 
production) 
E. coli BL21 and 
Pichia pastoris (STs 
expression) 

Sucrose Expression of tuaD, glmU, 
gtaB, glmM, glmS, and kfoA 
from B. subtilis E168C  
[180]; expression of ASST 
IV, C4OST and C6OST for 
sulfation 

Fed-batch (1.35 L); 
Enzymatic sulfation 

7150 [158] 

Chondroitin sulfate A E. coli O5:K4:H4 
(chondroitin 

kfoE deletion in E. coli K4 
for chondroitin backbone 

Not reported for in vivo 
production 

[166] 

(continued on next page) 
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been addressed. By using random mutagenesis it was possible to 
improve KfoC activity (R313Q) that led to 82% improvement on fruc-
tosylated chondroitin over the wild-type [207]. 

Regulatory elements of expression of the bacterial GAG-like poly-
saccharides have also been targets for genetic engineering. The over-
expression of the transcriptional activators rfaH [63] and slyA [194] 
have enhanced the expression of capsular genes and consequently 
improved E. coli K4 polysaccharide production by 58% and by a 1.5-fold, 
respectively, over the wild-type. RfaH acts on capsular gene cluster by 
preventing the transcript termination of genes related to the modifica-
tion, transport, and localization of newly synthesized polysaccharide 
chain (region 3 genes), and consequently improve the expression of 
genes related to the synthesis of polysaccharides and their precursors 
(region 2 genes) [208]. SlyA activates the transcription of the whole 
capsular gene operon [194]. 

Regarding the precursor availability, balancing UDP-sugars is an 
established strategy for metabolic engineering of HA [209] and fructo-
sylated chondroitin [187]. The genes pgm, galU and ugd/kfoF (encoding 
phosphoglucomutase, uridine triphosphate-glucose-1-phosphate uridy-
lyltransferase and UDP-glucose dehydrogenase, respectively) for 
UDP-GlcA synthesis and glmS, glmM and glmU (encoding glucosamine-6- 
phosphate synthase, phosphoglucosamine mutase and glucosamine-1- 
phosphate N-acetyltransferase/N-acetylglucosamine-1-phosphate uri-
dyltransferase, respectively) for UDP-GalNAc production might be 
interesting targets for overexpression (Fig. 3). Overexpression of these 
genes have resulted in improved production of K4 and other poly-
saccharides. Levander and coworkers [210] found that the over-
expression of the endogenous galU gene in S. thermophilus LY03 led to a 
10-fold increase in galU activity, however exopolysaccharide yield was 
not affected. Nevertheless, when galU was overexpressed in combination 
with pgmA (pgm homolog), the exopolysaccharide yield increased. 

Overexpression of pgm and galU in E. coli AD202 also resulted in 
increased UDP-galactose derived disaccharides from 2.5 mM to 20 mM 
by improvement of carbon flux through UDP-glucose synthesis pathway 
[211]. Engineering E. coli K4 with one copy of endogenous genes pgm 
and galU also improved capsular polysaccharide production [65]. The 
authors further increased capsular polysaccharide yields in 45% using 
glutamine supplementation to boost UDP-GalNAc precursor production 
[63, 65]. Engineering Saccharomyces cerevisiae with the endogenous 
genes pgm2 and ugp1 (equivalent to galU) resulted in a 17% improve-
ment of scutellarein 7-O-glucoside production rate by improving 
UDP-glucose pool [212]. Overexpressing glmM and glmU genes resulted 
in higher capsular polysaccharide production in E. coli K4 [206]. Despite 
the step catalyzed by ugd-codified enzyme was considered in previous 
works as the limiting factor of GAG biosynthesis in homologous and 
heterologous organisms [61, 180, 213, 214], few examples evaluating 
alternative genes for this step have been reported, possibly missing 
interesting catalysts. 

On the other hand, the repression of genes from competing pathways 
can also be beneficial for redirecting the metabolic flux towards the 
production of GAG precursors. Down-regulating the expression of three 
genes (glucose-6-phosphate 1-dehydrogenase zwf, adenosine 
triphosphate-dependent 6-phosphofructokinase pfkA, and glmM) that 
control the major competing reactions (cell wall recycling pathways) of 
GlcNAc synthesis by CRISPRi improved GlcNAc titers in B. subtilis [215]. 
Silencing zwf and pfkA also resulted in improved HA production in 
B. subtilis [216]. By favoring the production of fructose 6-phosphate, 
pfkA knock-out resulted in increased chondroitin production in E. coli 
K4 [187]. 

Combination of both repression and activation can provide opti-
mized microbial cell flux towards GAGs production. Knock-out of pfkA 
and zwf genes coupled with overexpression of the genes galU-ugd and 

Table 4 (continued ) 

GAG Host Substrate(s) Genetic modification(s) Process (working 
volume) 

Maximal yield (mg/L) Reference 

production) 
E. coli K-12 MG1655 
(cell lysate with 
PAPS) E. coli BL21 
Star (DE3) (ST 
expression) 

Glucose 
(supplementation of 
sodium sulfate) 

production; deletion of 
cysH, overexpression of 
cysDNCQ in E. coli MG1655 
– provided cell lysate with 
PAPS for in vitro sulfation 
reaction; expression of 
C4OST in E. coli BL21 for 
sulfation 

Shake flask (1 L) 
Enzymatic sulfation 
(50 µL) 

In vitro: 8.3 ng 
chondroitin sulfate A 
with 0.035% sulfation 

E. coli O5:K4:H4 Glucose kfoE deletion, C4OST 
expression and engineering, 
cysH deletion 

Shake-flask (25 mL) 0.01076 (extracellular) 
(126.64 µg/g dry cell 
weight intracellular) 

[160] 

E. coli K-12 MG1655 Glucose kfoC, kfoA, kfoF, engineered 
C4OST expression, cysH 
deletion 

Shake-flask (25 mL) 
Fed-batch (1 L) 

0 (extracellular; 
chondroitin sulfate was 
only produced 
intracellularly- 13.14 µg/ 
g dry cell weight 
intracellular) 

Pichia pastoris Methanol kfoC, kfoA, tuaD, C4OST 
expression, overexpression 
of endogenous genes coding 
ATPS and APSK 

Fed-batch (0.9 L) 2100 with 4.0% sulfation [204] 

N-glycolyl chondroitin E. coli O5:K4:H4 Glucose and N- 
glycolylglucosamine 

kfoE deletion Shake-flask (100 
mL) 

~300 [196] 

Genes: APSK, adenosine-5′-phosphosulfate kinase; ASST IV, aryl sulfotransferase IV; ATPS, adenosine-5′-triphosphate sulfurylase; C4OST, chondroitin 4-sulfotransfer-
ase; C6OST, chondroitin 6-sulfotransferase; cysC, adenylyl-sulfate kinase; cysDN, adenosine triphosphate sulfurylase; cysH, 3′-phosphoadenosine-5′-phosphosulfate 
(PAPS) reductase; cysQ, adenosine-3′, 5′-bisphosphate nucleotidase; galU, uridine triphosphate-glucose-1-phosphate uridylyltransferase; glcAT, β− 1, 3-glucuronyl 
transferase; glmM, phosphoglucosamine mutase; glmS, glucosamine-6-phosphate synthase; glmU, glucosamine-1-phosphate N-acetyltransferase/N-acetylglucos-
amine-1-phosphate uridyltransferase; kfiD, uridine diphosphate-glucose 6-dehydrogenase from E. coli K5; kfoA, uridine diphosphate-acetylglucosamine 4-epimerase 
from E. coli K4; kfoC, chondroitin synthase from E. coli K4; kfoE, fructosyltransferase; kfoF, uridine diphosphate-glucose 6-dehydrogenase from E. coli K4; kfoG, 
chondroitin synthase protein helper from E. coli K4; kps, surface polysaccharide synthesis genes; ldh, lactate dehydrogenase; pfkA, adenosine triphosphate-dependent 6- 
phosphofructokinase; pgm, phosphoglucomutase; rfaH, transcription antitermination protein; slyA, transcriptional regulator; tuaD, uridine diphosphate-glucose 6-de-
hydrogenase from Bacillus subtilis; ugd, uridine diphosphate-glucose 6-dehydrogenase; vgb, Vitreoscilla hemoglobin; wbpP, uridine diphosphate-acetylglucosamine 4- 
epimerase from Pseudomonas aeruginosa. Other abbreviations: PAPS, 3′-phosphoadenosine-5′-phosphosulfate; RBS, ribosome binding site; ST, sulfotransferase. 
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glmS-glmM-glmU improved HA production [217] in E. coli K-12 W3110 
harboring HA synthase gene (hasA) from S. zooepidemicus, and with 
transcriptional repressors genes galR and galS deleted. 

When the intended biosynthetic pathway has intermediates that are 
critical for biomass production, as it is the case for chondroitin, redi-
recting the carbon flux might result in lower yield and growth rate. To 
assess this question, there have been interesting advances on dynamical 
control to balance the metabolic flux according to the intermediate 
concentration. This strategy has been applied for overproduction of 
GlcNAc in B. subtilis which consisted in engineering the native 
glucosamine-6-phosphate responsive glmS ribozyme switch to act as a 
sensor and dynamically control the metabolic flux [218]. This strategy 
increased about 2-fold the native GlcNAc titer, being a potential strategy 
to improve chondroitin producing strains. 

Finally, computational methods can be useful to aid on the predic-
tion of potential targets for improving CS production in heterologous 
hosts. The use of stoichiometric or kinetic models of the heterologous 
host to perform in silico predictions has been shown to be useful to guide 
engineering strategies towards the improved production of valuable 
compounds. In fact, a computational approach was already performed to 
engineer an optimal HA production in C. glutamicum [219]. 

Sophisticated genetic engineering tools for genome editing, such as 
CRISPR [220], are shown to be rapid and cost-effective and, therefore, 
can be implemented on the intended system to generate engineered 
hosts with improved chondroitin production. 

5.4. Alternative hosts 

Alternative hosts can provide more suitable platforms for CS pro-
duction. Besides replacing the native pathogenic bacteria and, conse-
quently, avoiding the presence of virulence factors in the final product, 
the application of industrially used E. coli, B. subtilis, and Corynebacte-
rium for CS production has the advantages of being fast-growing or-
ganisms, with well-characterized genetic and physiological 
backgrounds, and many available tools for gene expression and genome 
editing [221]. 

However, biosynthetic enzymes expressed in bacterial systems usu-
ally present low solubility, stability, and activity, which may limit CS 
synthesis. On the other hand, enzymes expressed in eukaryotes typically 
show enhanced activity but are expressed at lower amounts [167]. 
Specially for the expression of eukaryotic genes, in particular sulfo-
transferases, eukaryotic microbial cells such as the broadly used 
S. cerevisiae and P. pastoris can provide beneficial conditions regarding 
codon preference, enzyme folding and glycosylation patterns more 
similar to the original enzymes. Also, since mammalian CHO cells have 
shown to be able to produce HP [222], animal cell fermentation can also 
be a possible, however expensive, alternative strategy for the production 
of CS. 

5.5. Additional optimization strategies 

Besides the metabolic engineering strategies to improve intermediate 
pools, or the use of alternative hosts, other approaches to make 
biotechnological CS production more cost-effective include screening 
for more efficient enzymes, modification of the enzymes through protein 
engineering and immobilization to improve activity and productivity. 
Also, salvage pathways can be added to improve precursors – for 
example, UDP-GlcA can also be produced in two different ways directly 
from GlcA using glucuronokinase, UDP-sugar pyrophosphorylase, and 

inorganic phosphatase instead of depending on UDP-glucose conversion 
through ugd step. Increasing energy through ATP supply, and imple-
menting ATP regeneration systems can also benefit the CS in vivo pro-
duction. The control of CS molecular weight in fermentation is also 
desirable to achieve a more monodisperse product [190, 223]. In addi-
tion, optimization of the fermentation process, media composition, 
temperature and pH conditions have been shown to be effective for 
improved GAG yields [178, 224]. Using low-cost media can provide a 
more competitive process, namely agro-industrial by-products such as 
sugarcane molasses and corn steep liquor which have already been used 
for HA production [225, 226, 227], therefore they present potential 
applicability for CS production. Additionally, engineering of CS trans-
portation can aid to improve CS titers, by even repressing transporters 
for increased CS intracellular in vivo sulfation [160], or by contrarily 
strengthening cell CS exportation, which would be more valuable from 
an industrial point of view but would require the extracellular expres-
sion of the sulfotransferases. Finally, optimizing environmental condi-
tions for maximal enzyme activity to perform the post-polymerization 
modifications of biotechnological CS polysaccharides in vivo or in vitro 
would aid to obtain a final commercial sulfated product at competitive 
yields. 

6. Conclusions and future perspectives 

Compared to animal-derived products, heterologous microbes can 
provide pathogen-free chondroitin without the use of hazardous chem-
icals. With the increasing applications of CS, the studies on its microbial 
production have been growing with much focus on the native GAG 
producers’ pathway to polymerize the backbone starting material, and 
on its post-polymerization modifications through enzymatic in vitro re-
actions. However, there are bottlenecks such as insufficient supply of 
precursors, low activity and/or stability of the enzymes and difficult and 
costly sulfotransferase enzymes purification. Strategies that can help 
solving these issues include genetic engineering for improving the pre-
cursors pool and transport; evaluation of alternative hosts for efficient 
expression of enzymes (since most genes required for sulfated GAGs 
production are from animals, expression in eukaryotic hosts could pro-
vide more soluble and active enzymes); improvement of enzyme activity 
and solubility through enzyme engineering and environment optimiza-
tion; and the use of integrated approaches of microbial production and 
post-polymerization. The knowledge improvement on GAGs enzymes 
for polymerization, transport and post-polymerization, together with 
the development of efficient technologies for gene editing, are expected 
to lead to the establishment of efficient microbial cell factories for the CS 
production. 
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