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Do changes in pulse pressure variation sl

and inferior vena cava distensibility

during passive leg raising and tidal volume
challenge detect preload responsiveness in case
of low tidal volume ventilation?

Temistocle Taccheri ®, Francesco Gavelli, Jean-Louis Teboul, Rui Shi and Xavier Monnet

Abstract

Background: In patients ventilated with tidal volume (V%) <8 mL/kg, pulse pressure variation (PPV) and, likely, the
variation of distensibility of the inferior vena cava diameter (IVCDV) are unable to detect preload responsiveness.

In this condition, passive leg raising (PLR) could be used, but it requires a measurement of cardiac output. The tidal
volume (Vt) challenge (PPV changes induced by a 1-min increase in Vit from 6 to 8 mL/kg) is another alternative, but
it requires an arterial line. We tested whether, in case of Vt =6 mlL/kg, the effects of PLR could be assessed through
changes in PPV (APPV, ) or in IVCDV (AIVCDV,, ) rather than changes in cardiac output, and whether the effects of
the Vt challenge could be assessed by changes in IVCDV (AIVCDV,,,) rather than changes in PPV (APPV,,).

Methods: In 30 critically ill patients without spontaneous breathing and cardiac arrhythmias, ventilated with
Vt=6 mL/kg, we measured cardiac index (Cl) (PiCCO2), IVCDV and PPV before/during a PLR test and before/during a
Vit challenge. A PLR-induced increase in Cl > 10% defined preload responsiveness.

Results: At baseline, IVCDV was not different between preload responders (n = 15) and non-responders. Compared
to non-responders, PPV and IVCDV decreased more during PLR (by — 384 16% and — 26 & 28%, respectively) and
increased more during the Vt challenge (by 64 £42% and 91 & 72%, respectively) in responders. APPVp, ¢, expressed
either as absolute or as percent relative changes, detected preload responsiveness (area under the receiver operat-
ing curve, AUROC: 0.98 £ 0.02 for both). AIVCDV,, ; detected preload responsiveness only when expressed in absolute
changes (AUROC: 0.76 +0.10), not in relative changes. APPV,,,, expressed as absolute or percent relative changes,
detected preload responsiveness (AUROC: 0.98 +0.02 and 0.94 4-0.04, respectively). This was also the case for
AIVCDV,,, but the diagnostic threshold (1 point or 4%) was below the least significant change of IVCDV (9[3-18]%).

Conclusions: During mechanical ventilation with Vt =6 mL/kg, the effects of PLR can be assessed by changes in PPV.
If IVCDV is used, it should be expressed in percent and not absolute changes. The effects of the Vt challenge can be
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assessed on PPV, but not on IVCDV, since the diagnostic threshold is too small compared to the reproducibility of this

variable.

Trial registration: Agence Nationale de Sécurité du Médicament et des Produits de santé: ID-RCB: 2016-A00893-48.
Keywords: Fluid responsiveness, Stroke volume variation, Acute respiratory distress syndrome, Fluid challenge

Introduction

The oldest and most investigated way to predict fluid
responsiveness during acute circulatory failure con-
sists in measuring the respiratory variation in arterial
pulse pressure (pulse pressure variation, PPV) and in
stroke volume (stroke volume variations, SVV) dur-
ing mechanical ventilation [1-4]. Nevertheless, PPV
and SVV are limited because many clinical conditions
affect their reliability. In particular, if tidal volume (Vt)
is<8 mkL/kg, many false negatives to these indices
appear because the changes in cardiac loading condi-
tions during ventilation are too small [3-5]. The respir-
atory variation of the diameter of the inferior vena cava
(IVCDV) is also often used. Nevertheless, for the same
reason as PPV and SVV, it should suffer from some
false negatives in case of low Vt, even though this has
been suggested by one study only [6] (see Additional
file 1: Supplementary Table 1).

To work around this PPV limitation, some authors
have suggested indexing it to changes in oesophageal
pressure [7], which is not frequently measured, how-
ever. Two simpler methods have been proposed. The
first is the passive leg raising (PLR) test. However, this
test requires a direct measurement of cardiac output
[8], which is not available in a significant number of
patients. However, one can intuitively hypothesize that
a decrease in PPV or IVCDV itself during a PLR test
could indicate the presence of a preload dependence.

Another method for testing preload dependence in the
event of low Vt is to perform a “Vt challenge” [9]. It con-
sists in temporarily increasing the Vt from 6 to 8 mL/kg
of predicted weight and observing the induced changes
in PPV. A significant increase in PPV during a Vt chal-
lenge indicates the presence of a preload dependence [10]
(Additional file 1: Supplementary Figure 1).

However, measuring PPV requires an arterial cath-
eter or a non-invasive but expensive device [11]. An
alternative to measure the effects of Vt challenge could
be to measure its effects not on PPV, but on IVCYV, the
measurement of which only requires a transthoracic
echocardiography.

Thus, the main aim of this study was to test whether
the effects of a PLR test on PPV (APPVy ;) and IVCV
(AIVCDVpp) reliably detect preload responsiveness
when Vt is low. The secondary goals were to test whether
the effects of a Vt challenge on IVCDV (AIVCDV,,)

can detect preload responsiveness and to confirm that
IVCDYV cannot do so in the case of Vt at 6 mL/kg.

Patients and methods

Patients

This prospective, interventional, one-centre study was
carried out in the 25-bed medical intensive care unit of
a university hospital. It has been approved by our institu-
tional review board (Comité pour la protection des per-
sonnes Ile-de-France VII). All patients or their relatives
gave informed consent.

The screening criteria were age> 18 years, a transpul-
monary thermodilution device in place (PiCCO2, Pulsion
Medical Systems, Feldkirchen, Germany), mechanical
ventilation in the volume assist control mode with a Vt of
6 mL/kg of predicted body weight, adaption to the ven-
tilator, and the decision taken by the clinicians in charge
to perform volume expansion. This decision was made
on the basis of clinical signs of inadequate tissue perfu-
sion such as (1) systolic blood pressure <90 mmHg (or a
decrease >50 mmHg in previously hypertensive patients),
(2) urine output<0.5 mL/kg/hour for at least 2 h, (3)
tachycardia or (4) presence of skin mottling or increased
capillary refill time. It also took into account the absence
of excessive risk of fluid overload, as typically indicated
by the level of central venous pressure, extravascular lung
water and the cumulative fluid balance.

Patients were excluded if the PLR manoeuvre was
contra-indicated (intracranial hypertension) or pos-
sibly unreliable (venous compression stocking, intra-
abdominal hypertension [12]). Other exclusion criteria
were spontaneously triggered cycles on the airway pres-
sure waveform, cardiac arrhythmias, impossibility to
obtain haemodynamic stability (defined by no change in
the norepinephrine dose and no change in systolic arte-
rial pressure<10% within 5 min before the inclusion),
poor echogenicity impeding the measurement of the IVC
diameter and of the velocity time integral (VTI) in the
left ventricular outflow tract.

Echocardiographic measurements

IVC sonography was performed by a 4-year experienced
intensivist (T'T), who holds a university degree in echo-
cardiography. With the 3.5-MHz cardiovascular ultra-
sound probe of a Philips CX50 device (Philips ultrasound
system, Philips Healthcare, DA Best, The Netherlands),
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the IVC was examined in the subcostal window in longi-
tudinal section in M-mode, 2 cm upstream of the origin
of the hepatic veins.

The distensibility index of the IVC, which reflects the
increase in its diameter on insufflation, was calculated
as IVCDV = (maximum diameter on inspiration — mini-
mum diameter on expiration)/(mean of maximum and
minimum diameters).

The VTI was measured at end expiration in the left
ventricular outflow tract on the apical five-chamber win-
dow. On the apical 4-chamber view, the left ventricular
ejection fraction was calculated by the biplane method
of disks summation (modified Simpson’s rule). The aver-
age of three consecutive cardiac cycles was used for all
ultrasound measurements in case of sinus rhythm, and a
representative cardiac cycle was chosen in case of atrial
fibrillation [13]. Endocardial contours and VTI envelope
were hand drawn.

Haemodynamic measurements
All patients had a central venous catheter in the supe-
rior vena cava territory and a thermistor-tipped catheter
inserted through the femoral artery. Transpulmonary
thermodilution measurements were performed by inject-
ing 15 mL cold normal saline (<8 °C) through the cen-
tral venous catheter. The average from three consecutive
15-mL injections was recorded at each time point [14]
and was used to obtain CI, the global end-diastolic vol-
ume (marker of cardiac preload), the extravascular lung
water and the cardiac function index (estimate of the
left ventricular ejection fraction). Pulse contour analysis
allowed the continuous and real-time calculation of CI
after an initial calibration by thermodilution [15].

The intra-abdominal pressure was estimated from the
bladder pressure. The transducer was zeroed and placed
at the pubic symphysis [12].

Study design
At baseline, all patients were in the 45° semi-recumbent
position (Additional file 1: Supplementary Figure 2). A
first set of thermodilution and echocardiographic meas-
urements was performed, including CI (measured by
thermodilution), PPV, SVV and IVCDV. Then, we per-
formed a PLR test as previously described [8]. Pulse con-
tour analysis-derived CI, PPV, stroke volume variation
(SVV) and IVCDV were recorded at the maximal effect
of PLR on CI, which occurs within 1 min [8]. A third set
of measurements (CI (pulse contour analysis), PPV, SVV
and IVCDV) was performed once patients were returned
to the semi-recumbent position and a steady state was
obtained again.

A “Vt challenge” was then performed by increasing Vt
from 6 to 8 mL/kg of predicted body weight for 1 min
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[10]. A fourth set of measurements (CI (pulse contour
analysis), PPV, SVV and IVCDV) was recorded once CI
remained stable. Vt was then decreased back to 6 mL/
kg of predicted body weight, and another set of meas-
urements was performed after a new stable state was
reached, including CI (thermodilution), PPV, SVV and
IVCDV. Finally, in preload responsive patients, 500 mL of
normal saline was infused over 10 min. In these patients,
a last set of measurements was recorded after the end
of fluid infusion (CI (thermodilution), PPV, SVV and
IVCDV).

Except Vt, ventilatory settings and treatments were
unchanged during the study period. The intrabdominal
pressure and the central venous pressure were measured
at each study step. The CI measured by transpulmonary
thermodilution and pulse contour analysis was continu-
ously recorded by the PiCCO Win 4.0 software (Pulsion
Medical Systems). The intravascular, intra-abdominal
and airway pressure signals were continuously recorded
by using a data acquisition software (HEM 4.2, Notocord,
Croissy-sur-Seine, France).

Statistical analysis
Patients in whom PLR, performed at Vt=6 mL/kg,
induced an increase in CI (measured by pulse contour
analysis) > 10%, were defined as preload responders. Nor-
mality of data distribution was assessed visually. Variables
were summarized as mean & SD (if normally distributed),
median and interquartile range (if non-normally distrib-
uted) or counts and percentages. Variables before and
after fluid administration were compared by a paired
Student ¢ test (if normally distributed) or a Wilcoxon test
(if non-normally distributed). Variables between preload
responders and non-responders were compared using
a two-sample Student t test (if normally distributed), a
Mann—-Whitney U test (if non-normally distributed), a
Chi-square test or a Fisher exact test, as indicated.
Receiver operating characteristic (ROC) curves (with
95% confidence interval) were generated for quantify-
ing the ability of the following variables to detect preload
responsiveness: (1) [IVCDV, PPV and SVV at baseline (Vt
of 6 mL/Kg); (2) changes in IVCDV (AIVCDVy,), in PPV
(APPVy,) and in SVV (ASVV,,) induced by the Vt chal-
lenge, expressed either as the change in absolute value
(value during Vt challenge — value at baseline) or as the
percent relative change from the baseline value ((value
during Vt challenge —value at baseline)/value at base-
line x 100); (3) changes in IVCDV (AIVCDVy, ), in PPV
(APPVp; ) and in SVV (ASVVy, ) induced by the PLR
test, expressed either as the change in absolute value
(value during PLR —value at baseline) or as the percent
relative change from the baseline value ((value during
PLR —value at baseline)/value at baseline x 100); the
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areas under ROC curves (AUROC) were compared by
the Hanley—McNeil test. The best diagnostic threshold
was determined as the one providing the best Youden
index (sensitivity +specificity—1). The echocardio-
graphic measurements were performed offline without
knowing the results of the PLR test, but the values of
PPV were collected at the same time as CI, knowing its
changes during the PLR test.

The least significant change of IVCDV was obtained
from six successive measurements of IVCDV performed
during haemodynamic stability at Vt=6 mL/kg, by the
same operator, removing the probe from the patient’s
skin for each measurement, as previously described [13].

In order to demonstrate a significant difference
between groups of AIVCDV,,, assuming a precision of
the IVC measurement of 12% [16, 17] with an « risk of
5% and a P risk of 20%, we planned to include 15 preload
responders and 15 preload non-responders. Statistical
analysis was performed with MedCalc 11.6.0 software
(MedCalc, Mariakerke, Belgium).

Results

Patients

Forty-two patients were screened (Additional file 1: Sup-
plementary Figure 3). Five were not included because of
haemodynamic instability, and seven due to a poor ultra-
sound window. No patient was excluded for other rea-
sons. Thirty patients were finally included and analysed.

Table 1 Patient characteristics at baseline
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All patients with a positive PLR test received volume
expansion. Their characteristics are detailed in Table 1.
At the time of the study, propofol was administered in
28 (93%) patients and remifentanil in 25 (83%) patients.
Neuromuscular blocking agents were used in six (20%)
patients. The intra-observer variability of the measure-
ment of IVCDV at baseline was 9 [3—18]%.

Changes in Cl over study steps, characteristics of preload
responders and non-responders

The PLR test (performed at Vt=6 mL/kg) increased
CI>10% in 15 preload responders. Patient characteris-
tics are detailed in Table 1. Increasing Vt from 6 to 8 mL/
kg decreased CI and VTI in preload responders, but not
in preload non-responders (Table 2). In preload respond-
ers, fluid infusion increased CI>15% in all the patients.

Changes in IVCDV over study steps, detection of preload
responsiveness through IVC indices

At baseline at Vt=6 mL/kg, the end-expiratory IVC
diameter as well as IVCDV were similar between preload
responders and preload non-responders (Table 2).
AIVCDV,,; was larger in preload responders than in
preload non-responders (Table 3, Additional file 1: Sup-
plementary Figure 4). AIVCDV,, ; expressed in percent
change from the baseline value reliably detected preload
responsiveness, with a diagnostic threshold of —24%

Preload responders (n=15) Preload non-responders (n=15) p value
Age (years) 63+18 704+10 0.37
Male gender (n, %) 12 (80.0) 11(73.3) 032
SAPS2 52415 56+ 14 0.29
Mortality (n, %) 7 (46.7) 6 (40.0) 1.00
Septic shock (n, %) 11(73.3) 12 (80.0) 0.14
Cardiogenic shock (n, %) 2(13.3) 2(13.3) 0.55
Hypovolemic shock (n, %) 1(7.2) 1(7.2) 1.00
Vasoplegic shock (non-septic) (n, %) 1(7.2) 0(0.0) 0.12
CRRT (n, %) 3(20.0) 4(26.7) 0.18
ARDS (n, %) 6 (40.0) 5(333) 047
Lactate (mmol/L) 18406 1.3+06 0.88
PaO,/FiO, 228+ 105 276105 0.55
PEEP (cmH,0) 10.74+3.6 104430 0.63
Cs (mL/cmH,0) 31412 32413 0.66
Acute cor pulmonale (n, %) 0(0.0) 0(0.0) 1.00
LVEF (%) 45+£9 49+ 11 0.67
Patients receiving norepinephrine (n, %) 15 (100.0) 15 (100.0) 1.00
Dose of norepinephrine (ug/kg/min) 1.2+06 06+04 0.02

P values in bold: < 0.05

ARDS acute respiratory distress syndrome, CRRT continuous renal replacement therapy, C,, compliance of the respiratory system, LVEF left ventricular ejection fraction,
PaO,/FiO, ratio of the arterial oxygen partial pressure over the oxygen inspired fraction, PEEP positive end-expiratory pressure, SAPS simplified acute physiologic score
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Table 3 Indices of preload responsiveness at different study times in preload responders and non-responders
Effects of PLR Effects of the Vt challenge Effects of VE
(Vt=6 mL/kg) (Vt=8 ml/kg) (Vt=6 mL/kg)
ACI (% change)
Preload responders 18+6 —9+38 25+9
Preload non-responders 444 2+6
P preload non-responders versus preload responders <0.01 <0.01
AVTI (% change)
Preload responders 1643 —1047 +16+8
Preload non-responders T+£1 1£7
P preload non-responders versus preload responders <0.01 <0.01
APPV (% change)
Preload responders —38+16 64442 —50£12
Preload non-responders —448 1+28
P preload non-responders versus preload responders <0.01 <0.01
APPV (absolute change)
Preload responders —3+1 542 —442
Preload non-responders 0£1 01
P preload non-responders versus preload responders <0.01 <0.01
ASWV (% change)
Preload responders —24420 44 £22 —40+17
Preload non-responders 1+£15 —1%£3
P preload non-responders versus preload responders <0.01 <0.01
ASVV (absolute change)
Preload responders —2+£2 3+2 —442
Preload non-responders 0+1 —14£3
P preload non-responders versus preload responders <0.01 <0.01
AIVCDV (% change)
Preload responders —26+28 9172 —25+15
Preload non-responders —3420 — 1052
P preload non-responders versus preload responders 0.02 <0.01
AIVCDV (absolute change)
Preload responders —243 6+4 —2+4
Preload non-responders —1+£2 — 144
P preload non-responders versus preload responders 0.51 <0.01

P values in bold: < 0.05

ACl percent changes in cardiac index, AIVCDV percent changes in the inferior vena cava diameter variation, APPV percent changes in pulse pressure variation, ASVV
percent changes in stroke volume variation, AVT/ percent changes in velocity time integral

(Table 4). AIVCDVy,  was significantly correlated with
the PLR-induced changes in CI. AIVCDVy expressed
in absolute change did not detect preload responsiveness
(AUROC not different from 0.5) and was not correlated
with the PLR-induced changes in CI (Table 4, Fig. 1).
AIVCDV,, was larger in preload responders than
in preload non-responders (Table 3, Additional file 1:
Supplementary Figure 4). AIVCDV,, expressed in per-
cent change from the baseline value reliably detected
preload responsiveness, with a diagnostic threshold of 4%
(Table 4). This was also the case for AIVCDV,, expressed
in absolute change (Table 4, Fig. 1). Both indices were
correlated with the PLR-induced changes in CI (Table 4).

Changes in PPV and SVV over study steps, detection

of preload responsiveness through PPV/SVV indices
APPVp r was larger in preload responders than in
preload non-responders (Table 3, Additional file 1: Sup-
plementary Figure 4). The PLR-induced changes in
PPV reliably detected preload responsiveness, either
expressed in percent change from baseline (Table 4) or in
absolute change (Table 4, Fig. 1). Both indices were corre-
lated with the PLR-induced changes in CI (Table 4). Simi-
lar results were observed for ASVVp,  (Table 4).

APPVy, was larger in preload responders than in
preload non-responders (Table 3, Additional file 1: Sup-
plementary Figure 4). The Vt challenge-induced changes
in PPV reliably detected preload responsiveness, either
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Fig. 1 Receiver operating characteristic curves describing the

ability to diagnose preload responsiveness of the changes in passive

leg raising-induced changes of pulse pressure variation in percent

(APPV(%)p, ), passive leg raising-induced changes and of inferior vena

cava variation in percent (AIVCDV(%)p,5), and of the tidal volume

challenge-induced changes of pulse pressure variation in absolute

value (APPV(valabs),,). AUROC: area under the receiver operating

characteristic curve (expressed as mean % SD)
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expressed in percent change from baseline (Table 4) or in
absolute change (Table 4, Fig. 1). Both indices were corre-
lated with the PLR-induced changes in CI (Table 4).

ASVV,, was larger in preload responders than in
preload non-responders (Table 3, Additional file 1: Sup-
plementary Figure 4). The Vt challenge-induced changes
in SVV reliably detected preload responsiveness, either
expressed in percent change from baseline (Table 4) or in
absolute change (Table 4, Fig. 1). However, both indices
were not correlated with the PLR-induced changes in CI
(Table 4).

Comparisons of ROC curves

The AUROC for AIVCDV; expressed in absolute
value was significantly lower than the AUROC of any
other index (AIVCDV,,, APPV,,, ASVV,,, APPVy,  and
ASVVy  expressed in percent change or in absolute
value and AIVCDVy  expressed in percent change).
There was no significant difference of AUROC between
all other indices.
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Discussion

In this study performed in critically ill patients, we show
that the PLR-induced decrease in IVCDV has a reliable
diagnostic value but only expressed in percent change
and that the increase in IVCDV during a Vt challenge
may detect preload responsiveness, but with a diagnos-
tic threshold far lower than the least significant change
of IVCDV. Along with a previous study [18], we also sug-
gest the PLR-induced decrease in PPV detects preload
responsiveness, we suggest that the variations in IVC
diameter with mechanical ventilation are poor markers
of preload responsiveness in case of Vt=6 mL/kg, and
we show that the increase in PPV during a Vt challenge
detects preload responsiveness.

Several tests are today available for detecting preload
responsiveness and predicting the response of cardiac
output to fluid infusion [3]. Nevertheless, they differ
regarding their conditions of use and the monitoring
devices that are required to assess their effects. PPV and
SVV are reliable, but their reliability is severely decreased
in case of spontaneous breathing, cardiac arrythmias, low
lung compliance and Vt<8 mL/kg [1]. The PLR test has a
similar reliability [19, 20], but its main drawback is that
its effects cannot be assessed simply on systolic or pulse
arterial pressure [8]. The present study describes how
PPV and SVV could be used to assess preload respon-
siveness in case of low Vt<8 mL/kg, and how the effects
of the PLR test can be assessed without measuring car-
diac output directly.

First, our findings suggest the IVCDV was not a reliable
indicator of preload responsiveness in case of Vt=6 mL/
kg, as it has been already shown by a previous study [6]
(Additional file 1: Supplementary Table 1). The changes
in IVC dimensions under mechanical ventilation are due
to the cyclic changes in its transmural pressure created
by the changes in central venous pressure and likely in
intra-abdominal pressure. Then it is not surprising that
a low Vt, inducing lower changes in intrathoracic and
transmural pressures, is responsible for a lower diagnos-
tic ability compared to Vt>8 mL/kg. Nevertheless, it is
important to emphasize that the reliability of IVCDV for
detecting preload responsiveness has been found to be
poor or moderate by many studies and meta-analyses,
even in studies including patients with Vt>8 mL/kg [21,
22]. Along with these studies, the present one shows that
IVCDV is likely the dynamic index of fluid responsive-
ness with the poorest diagnostic value.

Second, we found that the PLR-induced decrease in
PPV reliably detected preload responsiveness, what-
ever the way it was calculated. This was the case when
expressed either in absolute or in relative change, and
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APPVy,;  was the index with the highest correlation with
the degree of preload responsiveness, as assessed by the
PLR-induced changes in CI. ASVVy ; provided simi-
lar results, though the correlation with preload respon-
siveness intensity was a bit lower. This result might be
of clinical importance. Indeed, PLR, the main alterna-
tive to PPV and SVV in case of Vt<8 mL/kg, requires
a direct measurement of cardiac output [8] and many
studies attempted to find cardiac output surrogates that
may be used for this purpose. Provided that the patient
is equipped with an arterial catheter, PPV is readily avail-
able and assessing the effects of PLR on it might be very
easy. In this regard, this result should be compared to the
assessment of the PLR test through the perfusion index
of plethysmography [23] or its respiratory variation [24].

Third, the PLR-induced decrease in IVCDV detected
preload responsiveness but only when expressed in per-
cent change. Even in this way, the predictive ability was
not excellent: the AUROC was 0.76 +0.10, tending to
be lower than for the PLR-induced changes in PPV. The
correlation with the PLR-induced changes in CI was only
—0.50. When IVCDV changes were expressed in abso-
lute value, it changes during PLR were no more able to
detect preload responsiveness. This is not surprising, as
IVCDV is itself a poorer index of preload responsive-
ness than PPV. Then, its relative changes during preload
manipulations must be poorer than the changes in PPV.
Also, moving the patient to the PLR position undoubt-
edly introduces a difficulty in the measurement of
IVCDV, which can only contribute to hamper its diag-
nostic value.

Fourth, we suggest that the Vt challenge is a reliable
means to test preload responsiveness in case of low Vt, as
it has been already shown [10, 25]. The diagnostic thresh-
old expressed in absolute value (1%) was lower than
already observed (3.5%) [10], and like the one reported by
Messina et al. [25]. This point is very important, because
a 1-point change is very low regarding the mean of PPV
value. This may induce diagnostic mistakes, especially
in patients in whom PPV is unstable. The effects of the
Vt challenge on SVV were worse, which is not surpris-
ing as SVV results from an estimation of stroke volume
from arterial pulse pressure [15]. The AUROC tended
to be smaller than that for APPVy,, and the correlation
between the PLR-induced changes in CI and ASVV,, was
not significant.

In theory, preload responsiveness observed at
Vt=8 mL/kg should not imply that it also exists at
Vt=6 mL/kg, as increasing Vt has changed the degree
of preload responsiveness. In theory, there might be
some false positives to the Vt challenge when assessing
preload responsiveness. Nevertheless, our results suggest
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that this is not a significant limitation, likely because the
change in cardiac preload is not of enough amplitude for
transforming a preload responsive patient at Vt=8 mL/
kg in a preload non-responsive patient at Vt=6 mL/kg.
We observed no false positives when using APPV,, to
assess preload responsiveness.

Of note, the Vt challenge induced very large increases
in PPV, SVV and IVCDYV, despite the respiratory driving
pressure only slightly increased. The Vt challenge induced
changes in PPV, SVV and IVCDV were much larger than
these induced by PLR, although PLR increases cardiac
preload to a larger extent. This might be explained by the
fact that PLR increases cardiac preload, moving the equi-
librium point rightward on the cardiac function curve,
where it is flatter. By contrast, because it decreases car-
diac preload, the Vt challenge moves the equilibrium
point leftward, where the curve is steeper. This makes
changes the respiratory changes in stroke volume (and
PPV) larger (see Additional file 1: Figure 1).

Fifth, the results regarding the changes in IVCDV dur-
ing a Vt challenge were disappointing. The AUROC was
significantly different from 0.5, for absolute as for relative
changes, but the diagnostic threshold was much lower
than the least significant change of IVCDV we calculated.
Also, the correlation between AIVCDVy, and the PLR-
induced changes in CI was weak. This is a disappointing
result, because it means that the Vt challenge can be per-
formed only if an arterial line is present.

The first limitation of the study is that we assessed
preload responsiveness through the effects of a PLR test
and not through a fluid challenge. This is explained by
ethical reasons, as it would be today unacceptable to plan
fluid infusion in preload unresponsive patients only for
research purposes. Nevertheless, one must admit that the
reliability of the PLR test has been well established by a
number of previous studies [19, 20]. Second, we did not
investigate the superior vena cava collapsibility, which
is an equivalent of IVCDV [26]. Third, the dose of nor-
epinephrine was higher in preload responders than in
preload non-responders. This may have impaired the
comparability between groups in terms of IVC variability,
because norepinephrine decreases the IVC compliance,
and in terms of PLR-induced increases in cardiac preload,
because norepinephrine may decrease the volume of
venous blood mobilized during the PLR test. Fourth, we
did not assess the “grey zone” of the tests we investigated,
which may avoid binary decisions when using such tests
[27]. Finally, we did not include in our analysis some
other interesting tests predicting fluid responsiveness,
such as for instance the recruitment manoeuvres.
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Conclusion

The present study suggests that IVCDV is not a reliable
indicator of preload responsiveness in patients with Vt at
6 mL/kg. It describes how the changes in IVCDV, like the
changes in PPV, induced by a PLR test and by a transient
increase in Vt from 6 to 8 mL/kg detect preload respon-
siveness assessed at 6 mL/kg.
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