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We represent behaviorally relevant 
information in different spatial 

reference frames in order to interact 
effectively with our environment. For 
example, we need an egocentric (e.g., 
body-centered) reference frame to specify 
limb movements and an allocentric 
(e.g., world-centered) reference frame to 
navigate from one location to another. 
Posterior parietal cortex (PPC) is vital 
for performing transformations between 
these different coordinate systems. Here, 
we review evidence for multiple pathways 
in the human brain, from PPC to motor, 
premotor, and supplementary motor 
areas, as well as to structures in the 
medial temporal lobe. These connections 
are important for transformations 
between egocentric reference frames to 
facilitate sensory-guided action, or from 
egocentric to allocentric reference frames 
to facilitate spatial navigation.

Behavioral Priorities and 
Selective Attention

Visual scenes usually contain many 
different objects, which cannot all be 
processed simultaneously in detail due to 
the limited capacity of the visual system. 
Attentional mechanisms are therefore 
needed to select the most behaviorally 
relevant information for further 
processing. Converging evidence from 
electrophysiology and functional magnetic 
resonance imaging (fMRI) studies 
suggests that areas in frontal and posterior 
parietal cortex (PPC), often referred 
to collectively as the fronto-parietal 
attentional control network, are vital for 

controlling attentional selection in both 
the monkey and human brain.1,2 These 
areas include the frontal eye field (FEF) 
and supplementary eye field (SEF) in 
frontal cortex and the intraparietal sulcus 
(IPS), superior parietal lobule (SPL) and 
inferior parietal lobule (IPL) in PPC. The 
macaque IPS has been further sub-divided 
into areas based upon their functional 
characteristics, including the lateral 
(LIP), medial (MIP), anterior (AIP), and 
ventral (VIP) intraparietal areas.2 In the 
human brain, visuospatial topographic 
mapping has been used to identify several 
areas within and surrounding the IPS, 
including intraparietal areas 0–5 (IPS0-
IPS5) as well as an area in the SPL, superior 
parietal lobule area 1 (SPL1).3-6 While 
the functional characteristics of each of 
the macaque IPS areas are relatively well 
understood, studies have only just begun 
to identify how each human IPS area 
differs functionally and in anatomical 
connectivity.5,7-11

Spatial Reference Frames

Because behaviorally relevant 
information selected by the fronto-
parietal attention network will be used in 
parallel by different effector systems, the 
information needs to be represented in 
multiple spatial reference frames that are 
appropriate for the relevant effectors, e.g., 
eye-centered for saccades, body-centered 
for limb movements, object-centered for 
certain cognitive manipulations, and 
world-centered for navigation. Monkey 
studies have shown that the PPC performs 
transformations between different 
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coordinate systems, allowing sensory and 
motor areas to effectively communicate 
in order to facilitate sensory-guided 
action.12-18 Furthermore, computational 
studies have shown that it is possible to 
combine outputs from PPC neurons using 
egocentric, allocentric, or intermediate 
reference frames, to perform different 
spatial transformations.19 This suggests 
that distinct pathways originating in 
parietal cortex and projecting to frontal 
or medial temporal cortex could give 
rise to spatial representations in different 
reference frames. However, how these 
transformations occur between reference 
frames and what areas mediate each 
transformation is poorly understood in 
the human brain.

All of the human IPS and SPL areas 
that have been topographically-defined 
to date contain a viewer-centered 
representation, since each area can 
be mapped using passive fixation6 or 
memory-guided saccades.3 Based upon 
evidence from recent neuroimaging 
studies as well as what is currently known 
about the functional characteristics of 
individual macaque PPC areas, here we 
will discuss the contribution of human 
fronto-parietal and parieto-hippocampal 
pathways to not only eye-centered spatial 
representations, but also to representations 
in body-centered, object-centered, or 
world-centered reference frames.

IPS2-FEF Pathway

In a recent study,20 we used fMRI and 
diffusion MRI (dMRI) to investigate the 
functional and structural connectivity, 
respectively, between frontal and parietal 
attention network areas in human subjects. 
We identified a dorsal pathway connecting 
FEF and IPS2, which represents space 
in viewer-centered coordinates. Several 
neuroimaging studies have provided 
evidence that human IPS1/2 shares similar 
response characteristics to macaque area 
LIP.5,7-10,21-23 Neurophysiological studies 
have provided evidence that macaque FEF 
and LIP, which are directly connected,24 
contain salience maps in eye-centered 
coordinates to help guide exploration of 
the visual environment.25,26 These data are 
consistent with the idea that the human 
FEF-IPS2 pathway supports spatial 

representations of attentional priorities 
and saccadic goals in an eye-centered 
reference frame.

SPL1-SEF Pathway

Functional and anatomical 
connectivity data suggest a pathway 
between SEF and SPL1,20 medial to 
the FEF-IPS2 pathway. The evidence is 
consistent with the SEF-SPL1 pathway 
flexibly supporting spatial representations 
in object- or viewer-centered coordinates, 
depending on behavioral demands. 
Previous studies have shown overlapping 
activations for egocentric and allocentric 
processing in superior and medial parietal 
cortex,27,28 at least partly including SPL1. 
In macaques, SEF and PPC represent 
attentional priorities in multiple reference 
frames, including eye- and object-centered 
representations.29,30 Furthermore, there are 
anatomical connections between medial 
PPC and SEF in macaques.31 Taken 
together, the SPL1-SEF pathway enables 
flexible spatial representations, suitable for 
condition-action associations, a feature of 
SEF and the supplementary motor cortex 
more broadly,32 as well as task-switching, 
in which the SEF and SPL play important 
roles.33,34

Parietal Grasp Area and Ventral 
Premotor Cortical Connections

Anterior portions of the human IPS 
are activated while subjects make grasping 
movements.10,35,36 These grasp-related 
activations partially overlap with IPS5 
and extend beyond the IPS to the junction 
of the postcentral sulcus. However, most 
of the grasp-related activity is located 
outside of the topographically mapped 
areas of human IPS.10 In macaques, area 
AIP contains neurons that are sensitive 
to the shape and orientation of objects37 
and inactivation of AIP interferes with a 
monkey’s ability to shape its hand in order 
to grasp an object.38 AIP is anatomically 
connected to ventral premotor area F5.39 
A proportion of F5 neurons have similar 
functional properties to neurons in AIP40 
and inactivation of F5 produces grasping 
impairments that are similar to those 
observed following AIP inactivation.41 
This suggests that the pathway between 

AIP and F5 is important for the generation 
of object-oriented hand actions. In 
humans, dMRI evidence suggests 
anatomical connections between anterior 
IPS and ventral premotor cortex.42 Because 
the anterior portions of human IPS share 
functional similarities with macaque area 
AIP, a human fronto-parietal pathway 
from anterior IPS to ventral premotor 
cortex may also be important for spatial 
transformations into hand-centered 
representations for grasping.

IPS5 and Premotor Cortical 
Connections

Previous studies have suggested 
that human IPS5 shares functional 
similarities with macaque area VIP. For 
example, both IPS5 and VIP contain a 
co-registered, bimodal representation 
of tactile and visual space43,44 and both 
respond preferentially to smooth-pursuit 
(vs. saccadic) eye movements and motion-
induced optic flow patterns.7 It has 
been suggested that VIP is important 
for the construction of multisensory 
representations of peripersonal space, for 
heading perception for instance,45 with 
VIP neurons representing space not only 
in head-centered coordinates,46,47 but 
also in eye-47 and body- (and possibly 
world-) centered12 coordinates as well as 
intermediate13 reference frames. VIP shares 
connections with area F4 of premotor 
cortex in the macaque,39 which contains 
neurons that represent face, neck, and 
proximal arm movements and most likely 
codes peripersonal space in body- or head-
centered reference frames.48,49 In humans, 
resting-state functional connectivity and 
dMRI studies suggest a pathway between 
anterior IPS, likely including IPS5, and 
premotor cortex.50 Because of the number 
of shared response characteristics between 
human IPS5 and macaque VIP, a human 
IPS5-premotor cortical pathway may also 
support multisensory integration and a 
peripersonal spatial representation.

Parietal Reaching Areas and 
Dorsal Premotor Cortical 

Connections

Responses to visually-guided reaching 
in the human brain have been reported 
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in posterior-medial PPC, including the 
SPL,51,52 parietal-occipital cortex,51-53 
and medial IPS54,55 extending into the 
precuneus.56 A recent study has suggested 
that some of this reaching-related activity 
overlaps with SPL1,10 although a majority 
of studies have found activations outside 
of topographically-mapped cortex 
and outside of the human IPS. In the 
macaque brain, neurons that respond to 
the planning and execution of reaching 
movements are found in the medial 
bank of the IPS and the anterior wall of 
the parieto-occipital sulcus, constituting 
the functionally-defined parietal reach 
region (PRR).14,57 These parietal areas 
use eye-15,16 and body-centered51 as well 
as intermediate17,18 reference frames. The 
macaque PRR is connected to dorsal 
premotor cortex,58,59 and dorsal premotor 
cortex represents space in a variety of 
reference frames, including eye-,60 limb-
,61 and intermediate reference frames.62,63 
In humans, dMRI evidence suggests 
anatomical connectivity between medial 
parietal cortex (likely including SPL1) and 
dorsal premotor cortex.64 A recent fMRI 
study also found that both medial PPC and 
dorsal premotor cortex respond strongly 
during reaching in human subjects.51 This 
suggests that there is a human fronto-
parietal pathway between medial parietal 
and dorsal premotor cortex for visually-
guided reaching. Because SPL1 also 
contributes to object-based processing,20 
it may be a suitable site for combining 
eye- and body-centered information with 
object information, during reaches for 
objects. This is supported by evidence 
that SPL lesions give rise to optic ataxia, 
characterized by difficulty with reaching 
and prehension.65,66 These deficits do 
not appear to affect the retinotopic 
representation of the visual field itself, but 
rather the location of relevant objects.66

IPS3 and IPS4

The functional specializations of IPS3 
and IPS4 are currently unclear. IPS3 
and IPS4 are strongly activated during 
allocation of spatial attention,9 but are 
not selective for saccadic eye movements,7 
visual working memory,8 reaching and 
grasping,10 or episodic memory retrieval11 

and have not been reported to demonstrate 
object selectivity.21 It is possible that 
these areas emerged with the expansion 
of human PPC relative to the macaque 
brain,67 in which case IPS3/4 may serve 
functions more prominent in humans. 
Human (and macaque) IPS is activated 
during numerical processing,68 and these 
activations appear to at least partially 
overlap with IPS3 and IPS4.69,70 Evidence 
suggests there is a close link between 
numerical and spatial representations,71 
and it is possible that parietal cortex 
not only represents behavioral priorities 
in external space, but also in more 
abstract spaces, such as numerical space. 
Interestingly, numerical representations 
have also been reported in dorsolateral 
and inferior prefrontal cortex,72 raising 
the possibility of a fronto-parietal link. 
Alternatively, IPS3/4 could be involved 
in representing spatial coordinate systems 
that have not yet been directly tested in 
visuospatial topographically-organized 
human PPC, such as body-centered 
reference frames. Further research is 
needed to determine the underlying 
functions of IPS3/4 and their connection 
patterns with frontal cortex.

IPL-Medial Temporal Interactions

Numerous studies have demonstrated 
that medial temporal lobe (MTL) structures, 
including the hippocampal formation, 
parahippocampal gyrus, and subiculum, 
are important for spatial navigation.73 The 
rodent hippocampus contains place cells, 
which fire when the animal is at particular 
locations in its environment.74 This led to 
the idea that the hippocampus supports 
a cognitive map, where groups of cells 
represent space in an allocentric reference 
frame.75 Similar cells have been found in 
the human hippocampus and to a lesser 
degree in the parahippocampal region 
during virtual navigation.76 Damage 
to the parahippocampal cortex, for 
example, leads to anterograde topographic 
disorientation, where patients are unable 
to learn new routes through unfamiliar 
settings.77 This suggests that the human 
MTL (and not only rodent MTL) is 
important for allocentric processing. It has 
been proposed that the neural mechanisms 

supporting spatial navigation may also 
support episodic memory.73

In the macaque brain, multiple direct 
and indirect connections exist between 
the caudal IPL and MTL structures.78-80 
Caudal IPL, area 7a in particular, 
contains neurons with eye-centered,81 
object-centered,30 and world-centered82 
reference frames. This region is therefore 
well positioned to mediate spatial 
transformations between the egocentric 
(eye- or body-centered) reference frames 
that are commonly represented in PPC and 
the allocentric (object- or world-centered) 
reference frames that are commonly 
represented in the MTL. In humans, 
pathways from the IPL (angular gyrus) to 
the hippocampus and parahippocampal 
gyrus have been identified using 
dMRI.42,83 These pathways between 
PPC and MTL structures could be used 
for spatial transformations between 
egocentric and allocentric coordinate 
systems during navigation. For example, 
PPC may provide information to the MTL 
to integrate egocentric information with 
the existing allocentric representations 
in the hippocampal formation, and 
PPC may transform the output of the 
hippocampal formation (via entorhinal 
cortex) into egocentric coordinates to 
support appropriate movements through 
the environment.78,84

Conclusion

We suggest that multiple pathways exist 
in the human brain, each of which connects 
areas in PPC to either motor, premotor 
and supplementary motor areas in frontal 
cortex to facilitate sensory-guided action, 
or to MTL structures to facilitate spatial 
navigation. PPC, premotor cortex, and 
the MTL contain populations of neurons 
that represent space in multiple, and 
sometimes intermediate, reference frames. 
This flexibility allows the fronto-parietal 
and parieto-hippocampal pathways to 
support spatial transformations between 
multiple reference frames, depending on 
behavioral demands.
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