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establishment of a Murine pro-
acinar cell Line to characterize 
Roles for FGF2 and α3β1 
integrins in Regulating pro-acinar 
characteristics
Renée f. thiemann1, Deirdre A. nelson2, c. Michael Dipersio3, Melinda Larsen2 & 
Susan e. Laflamme1

Radiation therapy for head and neck cancers results in permanent damage to the saliva producing acinar 
compartment of the salivary gland. To date, a pure pro-acinar cell line to study underlying mechanisms 
of acinar cell differentiation in culture has not been described. Here, we report the establishment of 
a pro-acinar (mSG-PAC1) and ductal (mSG-DUC1) cell line, from the murine submandibular salivary 
gland (SMG), which recapitulate developmental milestones in differentiation. mSG-DUC1 cells express 
the ductal markers, keratin-7 and keratin-19, and form lumenized spheroids. mSG-PAC1 cells express 
the pro-acinar markers SOX10 and aquaporin-5. Using the mSG-PAC1 cell line, we demonstrate that 
FGF2 regulates specific steps during acinar cell maturation. FGF2 up-regulates aquaporin-5 and the 
expression of the α3 and α6 subunits of the α3β1 and α6β1 integrins that are known to promote SMG 
morphogenesis and differentiation. mSG-DUC1 and mSG-PAC1 cells were derived from genetically 
modified mice, homozygous for floxed alleles of the integrin α3 subunit. Similar to SMGs from α3-null 
mice, deletion of α3 alleles in mSG-PAC1 cells results in the up-regulation of E-cadherin and the down-
regulation of CDC42. Our data indicate that mSG-DUC1 and mSG-PAC1 cells will serve as important 
tools to gain mechanistic insight into salivary gland morphogenesis and differentiation.

Permanent salivary gland damage is a consequence of radiation therapy used for head and neck cancer treatment, 
which can negatively impact a patient’s quality of life1. Such damage impedes saliva production and output by 
destroying the acinar cells of the gland1. This leads to a clinical disorder known as Xerostomia, characterized by 
impaired digestion and speech, as well as an increased occurrence of dental caries1. While a significant clinical 
problem, there is no known cure. Currently, a major emphasis is on the development of regeneration therapies 
with a particular emphasis on restoring saliva-producing acinar cells. Although promising advances have been 
made in this regard, hurdles still remain.

The murine submandibular salivary gland (SMG) is a powerful experimental tool, as it permits the use of mouse 
genetic models, ex vivo SMG cultures, and organoids to identify mechanisms that regulate salivary gland morpho-
genesis and differentiation2–6. This model has been vital in demonstrating that growth factors, released from the 
mesenchyme, act on the epithelium in a paracrine fashion during morphogenesis and differentiation. In particular, 
members of the fibroblast growth factor (FGF) family, including FGF2, FGF7, and FGF10 are reported to be inte-
gral factors that promote morphogenesis7. To tease apart the individual contributions of these factors, epithelial 
rudiments were separated from the mesenchyme of embryonic SMGs to observe the effects of individual FGF 
family members7,8. The addition of FGF10 enhanced ductal elongation in the epithelial compartment, while stim-
ulation with either FGF2 or FGF7 promoted epithelial budding9,10. Notably, the SMG model has also revealed how 
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interactions between integrins and the basement membrane contribute to proper morphogenesis and differentia-
tion of the SMG11–14. Integrins are α/β heterodimeric transmembrane receptors that function in both cell adhesion 
and signal transduction15. A subset of integrins binds to laminins, which are α/β/ϒ heterotrimeric proteins that are 
critical components of the basement membrane16. Branching morphogenesis is severely inhibited in glands lacking 
both α3 and α6 subunits of the α3β1 and α6β1 laminin-binding integrins11, whereas differentiation of the gland, 
particularly the acinar compartment, is defective at E18 in embryos lacking the α3β1 integrin12. The α3 and α6 
integrins bind to sites present on the α chains of laminin heterotrimers16. The addition of function-blocking anti-
bodies to the laminin α1 chain inhibits branching morphogenesis in ex vivo culture, whereas the global deletion of 
the laminin α5 chain inhibits both the morphogenesis and differentiation of the gland11,13.

Murine SMGs have also been used to identify progenitor populations in the gland and to test the ability of 
these cells to repair damaged tissue17–24. This model has also been used to develop culture conditions that allow 
the expansion of populations of cells with stem cell characteristics25,26. However, more studies are needed to 
identify signaling pathways and culture conditions that can promote the differentiation of specific cell types of 
the salivary glands. The availability of a pro-acinar cell line would provide a novel reagent to identify signaling 
pathways that promote acinar cell maturation. Although several immortalized cell lines have been established 
from the salivary gland27–30, a pro-acinar cell line has not yet been described.

Our goal in this study was to establish a pro-acinar cell line from the murine SMG to study mechanisms that 
regulate acinar cell differentiation. We report the establishment and characterization of both a pro-acinar, and 
a ductal cell line. Our data indicate that the mSG-DUC1 ductal cell line expresses the late stage ductal markers 
keratin-7 (K7) and keratin-19 (K19) and forms three-dimensional (3-D) structures in a matrix containing base-
ment membrane components. Our mSG-PAC1 cell line expresses the pro-acinar/acinar markers aquaporin-5 
(Aqp-5) and SOX10. Treatment of mSG-PAC1 cells with FGF2 leads to morphological changes in 3-D culture 
and increased expression of E-cadherin, the integrin α3 and α6 subunits, as well as Aqp-5. Since our cell lines 
were established from transgenic mice carrying floxed alleles of the integrin α3 subunit31, we tested the effect of 
α3 deletion in our pro-acinar cell line. Our data indicate that the lack of α3β1 integrins in mSG-PAC1 cells reca-
pitulates a subset of phenotypes observed in SMGs from α3-null mice12.

Results
Establishment of ductal and pro-acinar cell lines. Although mouse developmental and ex vivo studies 
have provided important insights into the regulation of salivary gland morphogenesis and the identification of 
progenitor cells, much remains to be learned about the regulation of acinar cell differentiation. The availability of 
salivary gland epithelial cell lines, particularly a pro-acinar cell line, would provide an important tool for studies 
aimed at the further understanding of this process. For this purpose, we generated a pro-acinar cell line, and in 
the process a ductal cell line, from the murine salivary gland. We crossed mice heterozygous for a p53-null allele 
(Trp53)32, and homozygous for the floxed integrin α3 subunit allele (Itga3)31,33, using a strategy that was described 
previously to cross null alleles of the closely linked Trp53 and Itga3 genes31,33 (Fig. 1a). SMGs were collected from 
eight pups at postnatal day 2, and primary cells were isolated from the 16 glands and pooled. Serial passaging led 
to outgrowth of a p53-null cell population, which was a mixture of cells expressing the ductal marker, K734 and 
pro-acinar/acinar marker, Aqp535 as assayed by immunofluorescence microscopy (Fig. 1b). Aqp5 is expressed in 
developing pro-acinar cells and is detectable at the protein level by ICC at embryonic day 15 (E15) when the SMG 

Figure 1. Generation of cell lines. (a) A schematic representation of the experimental method used to enrich 
epithelial cells from dissociated SMGs. (b) The original population of epithelial cells was a mixed population of 
Aqp5 positive and K7 positive cells. Shown is a maximum projection of ten confocal z-slices acquired in 0.4 μm 
steps with a 40X objective. Size bar, 50 μm.
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buds begin to differentiate into pro-acini that do not yet express secretory proteins36. Individual clones were iso-
lated and expanded as immortalized cell lines. A pure ductal and a pure pro-acinar cell line were then established 
by sequential cloning steps. As expected, these clonal lines lacked the wild-type p53 allele (Fig. S1b).

Characterization of the ductal and pro-acinar cell lines. To identify pure ductal and pure acinar 
cell lines, clones were analyzed for the expression of the ductal markers, K7 and K1934 and the acinar marker 
Aqp-535 by immunofluorescence microscopy. We identified one cell line, mSG-DUC1, which co-expresses the 
ductal keratins (Fig. 2a), but not Aqp-5 (Fig. 2b). Since previous studies demonstrated that ductal epithelial 
cells form three-dimensional spheroids with hollow lumens in a three-dimensional (3-D) matrix (For example 
see37), we cultured mSG-DUC1 cells in a 3D matrix containing a mixture of Matrigel and collagen I, which was 
shown previously to promote epithelial morphogenesis38,39. First, we examined the expression of the α1 and 
α5 laminin chains, as the α5 laminin chain is known promote lumen formation11. Analysis by qPCR indicated 
that mSG-DUC1 cells express the α5 chain, whereas the α1 chain is not expressed (Fig. 2c and data not shown). 
Additionally, mSG-DUC1 cells form spheroids with well-defined lumens when cultured for seven days in the 3-D 
matrix described above (Fig. 2d). The basal surface of these spheroids stained positively with a monoclonal anti-
body to the α5 laminin chain, as well as with a polyclonal antibody to the laminin α1, β1 and γ1 chains (Fig. 2d) 
consistent with the expression of laminin 511. However, it is important to note that because the Matrigel contains 
laminin 111 and composed a portion of the 3-D matrix used in these studies, the concentration at the basal cell 
surface may be in part due to the reorganization of the exogenously provided laminin. Thus, mSG-DUC1 cells 
exhibit many of the properties of ductal epithelial cells.

An additional cell line that was characterized, mSG-PAC1, expresses the pro-acinar marker Aqp-5 (Fig. 3a). 
Importantly, mSG-PAC1 cells do not express the ductal markers K7 and K19 (Fig. 3a). mSG-PAC1 cells also 
express the pro-acinar transcription factor SOX104,17 in the nucleus (Fig. 3b). Notably, mSG-PAC1 cells do not 
express markers for more mature acinar cells36,40, such as Mucin 10 (MUC10) and Mucin 19 (MUC19) (data not 
shown), consistent with their pro-acinar phenotype. Because acinar cells play a critical role in salivary gland 
function, we focused our additional studies on mSG-PAC1 cells.

Figure 2. mSG-DUC1 cells express ductal markers & recapitulate ductal morphogenesis in a Matrigel/collagen I 
matrix. (a,b) Representative images of mSG-DUC1 cells stained for K7, K19, and Aqp5 acquired at 40X. Images 
are represented as maximum projection images of ten z-slices taken in 0.4 μm steps. Size bar, 50 μm. (c) Laminin 
(Lm) α5 mRNA expression in mSG-DUC1 cells cultured for five days on tissue culture plastic or in a Matrigel/
collagen I matrix for seven days. Data are plotted as the mean ± s.e.m from three independent experiments; ns, 
not significant. (d) Representative images of mSG-DUC1 cells cultured in Matrigel/collagen I 3D culture for 
seven days and stained with a polyclonal antibody to laminin-111 or a monoclonal antibody to the laminin α5 
chain. Images were acquired at 40X and are maximum projections of five z-slices taken in 0.4 μm steps.
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Fibroblast growth factor 2 (FGF2) promotes the expression of cell-cell and cell-matrix recep-
tors, as well as Aqp5, in mSG-PAC1 cells. Previous studies have identified critical roles for E-cadherin, 
laminins and laminin-binding integrins in SMG morphogenesis employing a variety of experimental approaches, 
including transgenic mouse models, RNA interference, and function-blocking antibodies11–13,41. The global 
knockout of both α6 and α3 integrins, or the α5 chain of laminin was shown to result in defective branching mor-
phogenesis11. Consistent with these studies, application of function-blocking antibodies targeting laminin-111, as 
well as α6 or β1 integrins was also shown to result in aberrant morphogenesis. Similarly, use of function-blocking 
antibodies or siRNA targeting E-cadherin was shown to inhibit SMG branching41,42. Since these adhesion pro-
teins play important roles during salivary gland development, we examined their expression in mSG-PAC1 cells. 
Interestingly, when cultured in MCF10A medium, which contains EGF, these cells exhibited low expression of 
E-cadherin, and α3 and α6 integrins (Fig. 4a). Since previous studies have identified members of the FGF family, 
including FGF2, as regulators of morphogenesis in the salivary gland7,10, and others have cultured primary sali-
vary gland epithelial cells in medium containing FGF225, we tested whether adding FGF2 to our culture medium 
in place of EGF affected the expression of these adhesion proteins by mSG-PAC1 cells. We analyzed their expres-
sion in spheroids by immunofluorence microscopy (Fig. 4a) and quantified the change in fluorescence intensity 
per nuclei (Fig. 4b). Cells cultured in FGF2 for five days exhibited enhanced expression of E-cadherin, and the α3 
and α6 integrin subunits, with E-cadherin increasing by a factor of three, and α3 and α6 increasing by factors of 
five and two respectively (Fig. 4b). Additionally, the spheroids formed in a 3-D matrix in the presence of FGF2 
showed an increase in Aqp5 expression (Fig. 4c) and exhibited a more organized layer of basal columnar cells 
than in the presence of FGF2 suggestive of a stronger or more organized cell-cell and/or cell matrix adhesions, 
which is easily visualized in Fig. 4c. Similar to the effects on protein expression, FGF2 also increased the expres-
sion of α3 and α6 mRNA transcripts (Fig. 5a,d) Taken together, these results indicate that FGF2 leads to mor-
phological changes in 3-D culture and promotes an increase in the levels of a subset of cell-cell and cell-matrix 
receptors in mSG-PAC1 cells.

integrin α3β1 in pro-acinar cells. The contribution of α3β1 integrins to SMG morphogenesis and dif-
ferentiation was previously examined using transgenic mice with a global deletion of the integrin α3 subunit12. 
Phenotypes described at E18 included defects in apical-basal polarity, basement membrane assembly, and acinar 
cell differentiation, as well as changes in the expression of E-cadherin, CDC42, and RHOA. Since our cell lines 
have floxed integrin α3 subunit alleles (Fig. S1c), we tested whether the deletion of α3 integrins in mSG-PAC1 
affects the basal (EGF) or the increase in gene expression in response to FGF2. To delete the integrin α3 subunit 
alleles, we infected mSG-PAC1 cells with a Cre-recombinase-expressing adenovirus, and cloned infected cells 
by limiting dilution. We confirmed ablation of α3 expression in the resulting mSG-PAC1n cell line by qPCR 
(Fig. 5b) and western blotting (Fig. 5c). We then tested whether the lack of α3β1 integrins affects the basal (EGF) 

Figure 3. mSG-PAC1 cells express pro-acinar markers. (a) Representative images of mSG-PAC1 cells stained 
for Aqp5, K7, and K19. Images were acquired at 40X and are maximum projections of ten z-slices taken in 
0.4 μm z-steps. Size bar, 50 μm. (b) Representative image of mSG-PAC1 cells stained for SOX10 is maximum 
projection of five z-slices acquired at 100X in 0.15 μm steps. Size bar, 20 μm.
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or the FGF-induced increase in α6, E-cadherin, or Aqp-5 expression in 3-D culture. The loss of α3β1 inhibited 
the overall expression of α6 mRNA; however, FGF2 still increased α6 mRNA, although to a much lower overall 
level (Fig. 5d). The expression of E-cadherin and Aqp-5 mRNA was not affected by the lack of α3 (Fig. 5e,f). 
Interestingly, the expression of E-cadherin increased significantly in response to FGF in mSG-PAC1n cells 
(Fig. 6a,b), suggesting that α3β1 negatively regulates E-cadherin protein expression in this context.

Protein levels of the RHO-family GTPases, CDC42 and RHOA were reduced in α3-null SMGs12, where the 
loss of their expression in either the mesenchymal or epithelial compartments could affect morphogenesis. To 
determine whether α3β1 regulates expression of these two GTPases in our pro-acinar cell line, we performed 
immunoblots on lysates of the mSG-PAC1 and mSG-PAC1n cell lines. Our results indicate that CDC42 protein 
levels are consistently reduced in mSG-PAC1n cells (Fig. 6c), although the effect was not as dramatic as observed 
in α3-null SMGs. RHOA expression was inhibited in response to FGF2, but this change in expression was inde-
pendent of α3 integrins (Fig. 6d). Thus, the lack α3 integrins in mSG-PAC1 cells recapitulates a subset of pheno-
types observed in SMGs from α3-null mice12

Discussion
In this study, we report the isolation and characterization of novel salivary gland epithelial cell lines. Based on 
the differentiation markers expressed during morphogenesis, mSG-PAC1 cells are similar to pro-acinar cells at 
the canalicular stage late in embryogenesis36. Thus, our mSG-PAC1 cells represent the first reported pro-acinar 
immortalized cell line. The ductal cell line (mSG-DUC1) expresses late stage ductal differentiation markers, K7 
and K1934, and has the ability to form three-dimensional structures containing lumens.

Paracrine signaling between the mesenchyme and the epithelium is important for proper development of 
the salivary gland7,10. Several members of the FGF family, including FGF2, are secreted by the mesenchyme to 
promote epithelial morphogenesis and differentiation7,8. Interestingly, the exogenous addition of FGF2 to our 

Figure 4. FGF2 promotes the expression of E-cadherin, laminin-binding integrins, & Aqp5. Representative 
confocal images of mSG-PAC1 spheroids cultured in EGF or FGF2-containing medium for five days in a 
Matrigel/collagen I matrix and stained for (a) E-cadherin, integrin α3 subunit, or integrin α6 subunit and 
DNA, or (c) Aqp5. Images are maximum projection images of five z-slices acquired at 40X taken in 0.4 μm 
steps. (b & d) Fluorescence intensity was normalized to the number of nuclei per field from 13 spheres from 
three independent experiments and plotted relative to the expression in EGF ± s.e.m. Size bar, 50 μm. Data was 
analyzed by Student’s T-test. P < 0.05–0.0001, as indicated.
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pro-acinar cell line increased the expression of the α3 and α6 laminin-binding integrins, as well as E-cadherin 
and Aqp-5. Notably, FGF2 increased both the mRNA and protein levels of the α3 and α6 integrin subunits; in 
contrast, E-cadherin and Aqp-5 protein expression increased without a change in mRNA expression, suggesting 
that FGF2 promotes gene expression in the epithelium of developing gland. It is well recognized that E-cadherin 
protein levels are regulated by internalization and degradation43; however, it is unclear whether FGF2 regulates 
E-cadherin levels in our cells by these or alternative mechanisms. Interestingly, a previous study showed that 
Aqp-5 could be regulated post-transcriptionally, with an increase in Aqp-5 translation occurring when cells are 
cultured in Matrigel independent of FGF244. Recent work has reported that there is significant crosstalk between 
basement membrane components and the mesenchyme to promote the differentiation of pro-acinar cells of the 
SMG6. Consistent with our work, they report that combination of a laminin-rich matrix supplemented with FGF2 
is sufficient to promote the expression of Aqp-5 in E16 epithelial clusters cultured ex vivo6. However, it is not 
known whether this regulation of Aqp-5 occurs transcriptionally or post-transcriptionally. The mechanisms that 
regulate Aqp-5 expression are important topics for future studies.

FGF2 also regulates the morphology of spheroids formed when mSG-PAC1 cells are cultured in a Matrigel/
collagen I matrix. In these conditions, spheroids adopt an outer layer of columnar cells, a phenotype that is first 
observed at E13 during development41,45, suggesting that FGF2 may be important to the crosstalk between the mes-
enchyme and epithelial compartments in some contexts. Since stimulation of mSG-PAC1 cells with FGF2 promotes 
the expression and surface localization of epithelial adhesion molecules, these phenotypes are likely interconnected. 
Previous studies have demonstrated crosstalk between other FGFs and integrins during SMG morphogenesis11. 
Our data implicate FGF2 as an additional growth factor involved in this process. However, the mechanism of FGF2 
effects may be context dependent, as our previous studies indicated that FGF2 has an autocrine effect on the mes-
enchyme, and thus has a more indirect effect on promoting Aqp-5 expression in E16 epithelium6.

Our cell lines were isolated from transgenic mice homozygous for the floxed integrin α3 subunit allele31. To 
date, the role of α3β1 integrins in SMG development has only been studied in the context of global α3- null mice 
or mice null for both α3 and α6 alleles11,12, which precluded the determination whether α3β1 integrins play 
specific roles in individual cell types present in the SMG. The identification of cell-type specific contributions is 

Figure 5. Knockout of α3 integrins in mSG-PAC1 cells inhibits mRNA expression of α6 integrins, but not the 
expression of E-Cadherin or Aqp5 mRNA in response to FGF2. Cells were incubated in medium containing 
EGF (black bars) or FGF2 (gray bars) (a) Expression of α3 mRNA in mSG-PAC1 cells cultured on tissue 
culture plastic in the presence of EGF or FGF2 for five days. Expression was normalized to β-actin and then 
plotted ± s.e.m. as the fold change in FGF2 normalized to expression in EGF. Data are from three independent 
experiments analyzed by Student’s T-Test. ***p < 0.001. (b) Expression of α3 mRNA in mSG-PAC1 and 
mSG-PAC1n (α3-deleted) cells cultured in a Matrigel/collagen I matrix in the presence of EGF for five days. 
Expression of α3 was normalized to β-actin and then plotted ± s.e.m. as the fold decrease in mSG-PAC1n 
compared to mSG-PAC1 cells. Data are from three independent experiments analyzed by Student’s T-test. 
***p < 0.001. (c) Representative western blot probed for the α3 subunit in mSG-PAC1 and mSG-PAC1n cells 
cultured on tissue culture plastic for four days. The image of the full-length blot is provided in Supplementary 
Fig. S6. (d) Expression of α6 mRNA in mSG-PAC1 and mSG-PAC1n cells cultured as in panel B in the presence 
of EGF or FGF2 for five days. Data are from three independent experiments analyzed by two-way ANOVA. 
p < 0.05. Tukey’s post-hoc analysis was performed to correct for multiple comparisons. (e,f) Expression of E 
cadherin mRNA and Aqp5 mRNA in mSG-PAC1 and mSG-PAC1n cells cultured as described in panel D. Data 
are from three independent experiments analyzed by two-way ANOVA. Differences are not significant.
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important, as crosstalk between the mesenchyme and epithelial compartments is critical to SMG differentiation 
and genetic models with global α3 deletion cannot account for such crosstalk. Deletion of the floxed α3 alleles in 
our pro-acinar cells resulted in several phenotypes that were previously reported for α3- null glands, including 
an increase in E-cadherin expression and a decrease in CDC42 expression12, suggesting that these phenotypes are 
due, at least in part to cell autonomous effects of the loss of α3β1 integrins.

The loss of E-cadherin expression or function leads to the inhibition of branching morphogenesis and 
impaired ductal development; however, the consequences of increased cadherin expression to the morphogenesis 
or differentiation of the SMG is not easily appreciated. The effect of decreased expression of CDC42 is more easily 
appreciated. CDC42 regulates apical basal polarity and is required for the establishment of epithelial polarity 
during early development46,47. Additionally, the expression of CDC42 has been shown to regulate the stability 
of the epithelial basement membrane in the skin48, which is also regulated by the α3β1 integrin49,50. Thus, the 
down-regulation of CDC42 in α3-null glands helps explain defects in basement membrane assembly observed 
α3-null SMGs12; however, it is unclear whether the changes in CDC42 protein expression that we observed in 
mSG-PAC1n are sufficient to alter these processes.

Figure 6. Loss of Integrin α3 in pro-acinar cells results in changes in E-cadherin and CDC42. mSG-PAC1 
and mSG-PAC1n cells were cultured in a Matrigel/collagen I matrix for five days in the presence of EGF or 
FGF2 and stained for E cadherin. (a) Representative confocal images of mSG-PAC1and mSG-PAC1n cells in a 
Matrigel/collagen I matrix cultured in the presence of FGF2 and stained for E cadherin. Images are maximum 
projections of five z-slices acquired at 40X, in 0.40 um steps. Images of spheres cultured in EGF are not shown as 
the expression of E-cadherin is extremely low. (b) Fluorescence intensity of E-cadherin expression was analyzed 
for all conditions and normalized to the number of nuclei per field from 15 spheres from three independent 
experiments. Data is plotted relative to the expression in mSG-PAC1 in EGF ± s.e.m. Data is analyzed by two-
way ANOVA. p < 0.05–0.0001, as indicated. Tukey’s post-hoc analysis was performed to correct for multiple 
comparisons. (c,d) Representative western blots of (c) CDC42 and (d) RHOA expression by mSG-PAC1 and 
mSG-PAC1n cells cultured for four days on tissue culture plastic in the presence of EGF or FGF2. Images of full-
length blots are provided in Supplementary Figs 6 and 7, respectively. Relative expression of (c) CDC42 and (d) 
RHOA was quantitated from three independent experiments using densitometry analysis and plotted as ± s.e.m 
as the fold change normalized to expression in mSG-PAC1 in EGF.
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Deletion of α3 integrins was also shown to down-regulate the expression of RHOA12. In the developing sali-
vary gland, as well as in the lung and kidney, signaling downstream of RHOA regulates branching morphogen-
esis51–53. Interestingly, FGF2 is sufficient to suppress RHOA expression in mSG-PAC1 cells and this regulation is 
independent of α3 integrins. This is surprising, as the inhibition of RHO kinase disrupts the polarized deposi-
tion of basement membrane, as well as the columnar morphology of the outer layer of epithelial cells54. Thus in 
mSG-PAC1 cells, FGF2 signaling may somehow bypass the requirement for RHOA signaling in the maintenance 
of this columnar morphology and regulation may be different in P2-derived cells or in the absence of p53.

Despite being isolated from P2 glands, mSG-PAC1 cells only express pro-acinar markers. This could be 
due to the loss of p53. Although the loss of p53 facilitates the establishment of immortalized cell lines, the 
down-regulation of its activity is also important during development. For example, the inactivation of p53 is 
imperative to proper branching morphogenesis in the developing kidney55, and the down-regulation of p53 is 
important for regenerative processes56 and for maintenance of stemness57. The loss of p53 expression in our cells 
might have resulted in a pro-acinar phenotype by either the de-differentiation of P2 acinar cells, or the immortal-
ization of an acinar progenitor cell population. In either case, the plasticity exhibited by these cells will allow them 
to be manipulated in culture to recapitulate some of the developmental and differentiation aspects of the SMG. A 
G-banded Karyotype has been performed on mSG-PAC1 cells, and has been included in Fig. S2.

In summary, we have described the isolation and characterization of the first pure pro-acinar cell line derived 
from the murine submandibular salivary gland. These cells will be a valuable tool in future studies to dissect the 
molecular mechanisms that regulate acinar differentiation and branching morphogenesis through the addition of 
specific factors alone or in combination with mesenchyme.

Material and Methods
Isolation of primary SMG and establishment of immortalized epithelial cell lines. Since the 
Trp53 and Itga3 are closely linked on mouse chromosome 11, we first generated mice that carry the p53-null 
allele32 and the floxed integrin α3 subunit allele31,33 on the same chromosome copy in a mixed background, using 
a breeding strategy that we described previously to similarly link the p53-null and α3-null mutations31,33. We 
next crossed mice heterozygous for the p53-null allele and homozygous for the floxed integrin α3 subunit allele, 
then harvested a total of 16 submandibular salivary glands (SMGs) from 8 pups at postnatal day 2, according to 
protocols approved by the Institutional Animal Care and Use Committees (IACUC) of Albany Medical College. 
SMGs were collected from eight pups at postnatal day 2. Although only 3 of the 8 neonates were homozygous for 
the p53-null mutation (Fig. S1a), we isolated epithelial cells from SMGs from all 8 pups and pooled them in cul-
ture to maintain high cell densities through early serial passaging. Glands were enzymatically dissected into lobes 
following a 20 min incubation at 37°C in DMEM containing 600 U/ml collagenase and 200 U/ml hyaluronidase 
(Stem Cell Technologies, #7912), and then further dissected into lobules following a 30 min incubation at 37°C in 
0.8 U/ml Dispase II (Life Technologies, #17105041). Dissected lobules were triturated to dissociate epithelial clus-
ters. Gravity sedimentation was repeated several times to enrich for the epithelial cells. The resulting cells were 
cultured in a tissue culture incubator maintained at 37°C with 5% CO2 in a modification of the culture medium 
previously described for the isolation the mammary epithelial cell line MCF10A37,58 and consists of DMEM/
F12 supplemented with 5% donor horse serum (Atlanta Biologicals, #S12150), 100 U/ml penicillin/streptomy-
cin (Hyclone, #SV30010), 20 ng/ml human recombinant EGF (Gibco, #PHG0311L), 100 ng/ml Cholera Toxin 
(Sigma, #C8052), 2.5 μg/ml hydrocortisone (Sigma, #H0396), and 20 μg/ml human insulin (Sigma, #I9278). Cells 
were cultured at a high density through 11 serial passages. To isolate pure populations of ductal and pro-acinar 
cells, epithelial cells were plated at low density and twenty-six single colonies were harvested using cloning rings. 
Pure ductal and pro-acinar populations were then isolated through cloning by limiting dilution.

Epithelial cell cultures. Once established, cell lines were maintained using culture conditions described 
above. For cultures supplemented with FGF2, human recombinant EGF was replaced with 100 ng/ml bFGF/FGF2 
(Peprotech, #450-33). For three-dimensional (3D) cultures, matrices were prepared in 8-well chamber slides 
(Corning, #08-774-208). Matrices consisted of a mixture of 60% Matrigel (Corning, #354230, protein concentra-
tion ~10 mg/ml, endotoxin <1.5 mg/ml) and 40% collagen (Pure Col Collagen I (3 mg/ml); Advanced BioMatrix, 
#5005-B, Lot #6260). Approximately, 1000 cells were plated per well and cultured for 5 or 7 days in medium sup-
plemented with 2% Matrigel in the presence of EGF or FGF2, as indicated in the Figure Legends.

immunostaining. Cells cultured on glass coverslips were fixed with either 4% paraformaldehyde for 15 min 
to visualize Aqp-5, the α3 or α6 integrins, E-cadherin, and SOX10 or cold methanol for 5 min to visualize K7, 
and K19. Cells were permeabilized for 15 min in 0.5% Triton-X-100/PBS and washed in 1X PBS prior to blocking 
in 2% BSA/PBS for 1 hr. Spheroids in 3D culture were fixed for 20 min in 4% paraformaldehyde, washed in 0.5% 
PBST, permeabilized in 0.4% Triton-X-100/PBS for 20 min and then washed in 0.5% PBST before blocking in 20% 
donkey serum. Antibodies were prepared in 3% BSA/PBST. All antibodies and dilutions used for immunofluo-
rescence are listed in Table 1. DRAQ5 (Cell Signaling) was used at a dilution of 1:1000. Coverslips and slides were 
mounted using SlowFade®Gold antifade mounting medium (Life Technologies, #P36930).

Genotyping. To obtain DNA for genotyping, tissue or cells were incubated overnight at 55°C in 0.1 M 
Tris-HCl, pH 8.5, 5 mM EDTA, 0.2% SDS, 0.2 mM NaCl and 100 μg/ml proteinase K. Proteinase K was then 
denatured at 100°C for 5 min. Genotyping was performed using the REDTaq® PCR ReadyMix (Sigma, #R2523) 
and the Biorad iCycler Thermocycler. PCR conditions for the analysis of the p53 and α3fl/fl alleles are provided in 
Table 2 and PCR primers in Table 3. PCR products were verified on a 2% agarose gel compared to PCR Markers 
(Promega).
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Microscopy. Images were acquired using an inverted Nikon TE2000-E microscope with phase contrast and 
epifluorescence, a Prior ProScanII motorized stage, and Nikon C1 confocal system with EZC1 and NIS-Elements 
acquisition software. Confocal images were acquired at 40X or 100X, and are represented as maximum pro-
jection images of confocal slices, as indicated in the Figure Legends, taken at 0.4 μm or 0.15 μm, respectively. 
Fluorescence intensities were quantified using maximum projection images and normalized to total number of 
nuclei per field using ImageJ Fiji59.

RNA isolation and quantitative PCR (qPCR). RNA was extracted with TRIzol (Ambion, #15596026) and 
genomic DNA was removed with TURBO DNaseI (ThermoFisher Scientific, #AM1907) according to the manu-
facturers’ protocols. cDNA was synthesized from 1 μg of RNA using the iScript Reverse Transcription Supermix kit 

Antibody Company Catalog # Dilution Application

Primary Antibodies

AQP5 Alomone Labs AQP-005 1:200 ICC

Laminin Abcam Ab11575 1:400 ICC

Laminin α5 Gift from Lydia Sorokin 1:400 ICC

Cytokeratin 7 Abcam Ab9021 1:100 ICC

Cytokeratin 19, TROMA-III DSHB AB-2133570 1:100 ICC

E-cadherin BD Biosciences 610182 1:200 ICC

Integrin α6 BD Biosciences 555734 1:200 ICC

Integrin α3 C.M. DiPersio 1:200, 1:1000 ICC, WB

Sox10 Santa Cruz sc-17342 1:200 ICC

Cdc42 Santa Cruz sc-8401 1:500 WB

RhoA Santa Cruz sc-179 1:500 WB

GAPDH Invitrogen MA5-15738 1:3000 WB

Secondary Antibodies

AF568 Donkey anti-Rabbit Alexa-Fluor A10042 1:1000 (2D)
1:500 (3D) ICC

AF488 Donkey anti-Mouse Alexa-Fluor A21202 1:1000 (2D)
1:500 (3D) ICC

AF488 Goat anti-Rat Alexa-Fluor A11006 1:1000 (2D)
1:500 (3D) ICC

AF488 Donkey anti-Goat Alexa-Fluor A11055 1:1000 (2D)
1:500 (3D) ICC

AF568 Goat anti-Rat Alexa-Fluor A11077 1:1000 (2D)
1:500 (3D) ICC

AF568 Donkey anti-Goat Alex-Fluor A11057 1:1000 (2D)
1:500 (3D) ICC

DRAQ5 Cell Signaling Technology 4084 1:1000 (2D)
1:500 (3D) ICC

Table 1. Antibodies. Immunocytochemistry (ICC). Western Blotting (WB).

Temperature (°C) Time # Cycles

94 2 min 1

94 30 sec

3355 30 sec

72 45 sec

72 5 min 1

Table 2. p53/α3fl/fl PCR Protocol.

Allele Strand Sequence (5′-3′)

p53 WT allele
Forward ATGGGAGGCTGCCAGTCCTAACCC

Reverse GTGTTTCATTAGTTCCCCACCTTGAC

p53 Null allele
Forward TTTACGGAGCCCTGGCGCTCGATGT

Reverse GTGGGAGGGACAAAAGTTCGAGGCC

Integrin α3 fl/fl allele
Forward TGATGACTATACCAACCGGAC

Reverse ACTCCAAGCCACATATCCTC

Table 3. PCR Primers.
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(Biorad, #1708840). Equal concentrations of cDNA were used in qPCR reactions with iQ SYBR Green Supermix 
(Biorad, #170-8880). Reactions were run in triplicate using the BioRad CFX96 Real-time system C1000 Touch 
Thermal Cycler. Ct values were normalized to β-Actin. A list of primer sequences can be found in Table 4.

immunoblotting. Western blot analysis was used to assay the expression of integrin α3 s, RHOA, and 
CDC42 in mSG-PAC1 and mSG-PAC1n cells (described below) upon stimulation with FGF2. Cells were lysed 
in mRIPA buffer containing a protease/phosphatase inhibitor cocktail used at a 1:100 dilution. Equal volumes 
of protein were separated by 10% SDS-PAGE (integrin α3 subunit) or 12% SDS-PAGE (RHOA, CDC42), and 
transferred onto either 0.4 μm (integrin α3 subunit) or 0.2 μm (RHOA, CDC42) nitrocellulose membrane for 
analysis. Membranes were blocked in 2% BSA/PBST for 1 hour and then incubated with primary antibody appli-
cation overnight at 4 °C. Membranes were washed in PBST prior to secondary antibody application. Membranes 
were exposed to SuperSignal West Pico PLUS Chemiluminescent substrate (Thermo Scientific, #34580) and 
SuperSignal West Femto Maximum Sensitivity substrate (Thermo Scientific, #34095) prior to imaging on the 
Biorad ChemiDocTM MP Imaging System and analysis with Image Lab software. Protein signals were normalized 
to the expression of GAPDH. All antibodies and dilutions used for immunoblotting are listed in Table 1.

Deletion of the integrin α3 subunit from the mSG-PAC1 pro-acinar cell line. The α3 floxed 
alleles were deleted from our pro-acinar cells using an adenovirus for the expression of Cre recombinase. This 
adenovirus was a gift from Dr. Mingfu Wu (Albany Medical College), and was amplified and purified as pre-
viously described60. Transduction efficiency was monitored by immunofluorescence using an antibody to Cre 
Recombinase (Millipore, #MAB3120, Clone 2D8). To obtain maximal deletion of both integrin α3 alleles, 
multiple adenoviral infections were required. Infected cells were cloned using limiting dilution to generate the 
mSG-PAC1n α3 knockout cell line. Ablation of integrin α3 expression was confirmed at the mRNA transcript 
(qPCR) and protein levels (western blot).

G-Banded karyotype. The G-Banded Karyotype of mSC-PAC1 cells was performed by Cell Line Genetics, 
Madison, Wisconsin, USA.

Statistical analysis. Statistical analyses were performed using the GraphPad Prism software employ-
ing Student’s t-tests and two-way ANOVAs as indicated in the Figure Legends. Tukey’s post hoc analyses were 
performed on all ANOVAs to correct for multiple comparisons. P values of <0.05 were deemed statistically 
significant.
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