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Abstract

Making predictions from ecological models— and comparing them to data— offers 

a coherent approach to evaluate model quality, regardless of model complexity 

or modelling paradigm. To date, our ability to use predictions for developing, 

validating, updating, integrating and applying models across scientific disciplines 

while influencing management decisions, policies, and the public has been 

hampered by disparate perspectives on prediction and inadequately integrated 

approaches. We present an updated foundation for Predictive Ecology based 

on seven principles applied to ecological modelling: make frequent Predictions, 

Evaluate models, make models Reusable, Freely accessible and Interoperable, built 

within Continuous workflows that are routinely Tested (PERFICT). We outline 

some benefits of working with these principles: accelerating science; linking with 

data science; and improving science- policy integration.
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INTRODUCTION

The current biodiversity crisis and increasing pressures 
on socio- ecological systems (e.g., climate, land use, and 
pollutants) present time- sensitive challenges to ecosystem 
and landscape management, and sustainable develop-
ment (McPhearson et al., 2021). As a result, the number 
of applied ecological models has exploded in recent dec-
ades (e.g., repositories for NetLogo Wilensky, 1999; EwE 
Christensen & Walters, 2004) and calls for iterative fore-
casting have been widely embraced (Lewis, Woelmer, 
et al., 2021). A wider application of these models would 
likely help to solve these challenges, as this would facili-
tate comparing models, building model ensembles, and 
testing hypotheses (Belete et al., 2017; Wenger & Olden, 
2012). Yet the process of transferring models to new con-
texts (Yates et al., 2018) or across disciplines involves 
transferring workflows (Fer et al., 2021)— not just a model's 
mathematical components. These workflows potentially 
comprise many algorithmically rich steps including data 
assimilation, model parameterisation, fitting, prediction 
and assessment, and one or many output treatments. 
Transferring these workflows remains onerous because 
they tend to be either incomplete, inflexible or obscure.

Predictive Ecology, a branch of ecology based on 
quantitative deductions from models (Houlahan et al., 
2015; McGill et al., 2007; Mouquet et al., 2015; Peters, 
1977, 1991; Travers et al., 2019), provides a framing that 
helps with these challenges. However, it falls short in its 
current form; it is focused on models per se, not the work-
flow involved in generating predictions (Fer et al., 2021; 
Lewis, Woelmer, et al., 2021). Prediction is important in 
model evaluation (e.g., cross- validation) and is import-
ant in forecasting (i.e., predictions of future conditions). 
Predictions from multiple models allow us to quantify 
impacts of different model assumptions and algorithms 
(e.g., Fajardo et al., 2020). Importantly, evaluating model 
fit by comparing model predictions to out- of- sample data 
allows comparisons of models from any paradigm— 
simulation, Bayesian, Machine Learning, likelihood, 
mathematical, etc.— because such comparisons are 
based on a chosen dataset to compare with, not the para-
digm or data used for the original model. Yet, comparing 
models across studies for applied decision- making oc-
curs infrequently (though see Lewis, Rose, et al., 2021). 
We need the best models of appropriate complexity (Aho 
et al., 2014; Anderson et al., 2000; Horne & Garton, 2006; 
Wood et al., 2020) for each application (Dietze, 2017), 
even for cases where we do not have the resources of uni-
fied global efforts (e.g., IPCC: Masson- Delmotte et al., 
2021). Furthermore, the generality of models can be 
determined by how well they predict in many contexts. 
The science- policy interface, on the other hand, needs 
ecologists and their models to be nimble enough to adapt 
for real- time engagement needs of stakeholders (Ferraz 
et al., 2021). Ecology needs a framework that enables 
the transferability of each component of the modelling 

workflow and makes cross- study evaluations rapid and 
commonplace. We need to reduce the marginal effort of 
running models outside of their original study.

Transferring models requires new datasets that match 
the structure of the originals, an understanding of the 
model, its implementation, the type of relationships in 
question, and attention to avoid inappropriate extrapo-
lation beyond the original data (Yates et al., 2018). This 
becomes easier when each step of the original model work-
flow is modular, reusable, freely available, transparent 
and interoperable— i.e., the next application can reuse one 
or more components. For example, with multiple models 
of wildfire forecasts, each one may have a published study- 
specific assessment of model fit. Yet, prediction quality for 
a new challenge is unknown: one might be more accurate 
at forecasting near human habitations, while another at 
forecasting peatland fires that accelerate permafrost melt.

We propose a new foundation for Predictive Ecology 
that focuses on improving transferability through mod-
ularising the steps of ecological modelling workflows 
(Figure 1; Supporting Information B). This will en-
able better decision- making based on science (Table 1; 
Supporting Information C). Here, we focus on present-
ing the concepts, yet toolkits (Chubaty & McIntire, 
2021) exist that enable implementing these ideas (e.g., 
Micheletti et al., 2021; Supporting Information D).

TH E PER FICT APPROACH

The PERFICT approach for Predictive Ecology provides 
a foundation of seven principles applied to the ecological 
modelling workflow: make frequent Predictions, Evaluate 
models, make components Reusable, Freely accessible and 
Interoperable, built within Continuous workflows, that 

Problem Statement

Applied ecology faces time- sensitive problems 
such as species declines, changes in primary pro-
ductivity, and biological invasions. Processes ad-
vancing ecological understanding and weaving 
current science into management decisions and 
policies addressing these problems, often pro-
ceed too slowly and are more subjective than they 
could be. This is, in part, due to models that are 
weakly linked to data, challenging to reconfig-
ure and improve, not readily connected to other 
models and disciplines, not designed for itera-
tive forecasting, limited use of data science ad-
vances, and infrequently evaluated. We present a 
framework for Predictive Ecology that facilitates 
speeding up of inferential advances and model 
usefulness because of more rapid transferability.
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are routinely Tested. In doing this, we unify disparate com-
ponents from computer science and forecasting and add 
elements that are unique to ecological modelling.

Predict frequently

For ecologists to improve the quality of predictions, making 
models that have good assessments of statistical fit is insuffi-
cient; we must make and learn from many predictions by com-
paring to out- of- sample data (Lewis, Woelmer, et al., 2021; 
Tetlock & Gardner, 2016). Forecasting challenges are forcing 
some ecologists to do this (e.g., the Ecological Forecasting 
Challenge with NEON; https://ecofo recast.org/efi- rcn- forec 
ast- chall enges/). Ecologists will also benefit from workflows 
that can be transferred to other contexts because they may 
gain access to new data (Barros et al. in review). The dimin-
ishing returns that may come from iterative improvements 
for any specific model should, however, be compared against 
costs of, e.g., particularly large models (Bender et al., 2021).

Evaluate

The quality of a model's predictions (Milner- Gulland & 
Shea, 2017) is not absolute. More accurately, a model can 

be sufficient for a current need (Rykiel, 1996). Indeed, 
estimating model fit with different data is one of several 
explanations for results not being reproducible (Baker, 
2016). Thus, evaluating model predictions, especially 
with out- of- sample data, can be more effective at un-
derstanding quality, overfitting, and biases (especially 
egregious ones, Bender et al., 2021), and may improve eco-
logical understanding (Power, 1993). When model work-
flows are interoperable, generic validation modules can 
be developed to compare multiple models more quickly 
(e.g., Barros et al. in review), and transferring models to 
new contexts can help with situations with insufficient 
data for validation. Validation approaches developed 
by numerous forecasting efforts (Lewis, Woelmer, et al., 
2021) could be more broadly applied using reusable and 
modular workflow steps.

Reusable

Reusability is the ability to, without the assistance of 
original developers, use modular components that com-
prise the modelling workflow, from the first steps of data 
importing through to output treatments. Component 
reusability means that if a study develops new meth-
ods (e.g., for model validation of a commonly used 

F I G U R E  1  Functions and modules as key tools of a PERFICT approach. Functions are modular and can be bundled into packages that 
can utilise tools that enable easy dissemination, quality control, continuous integration, documentation, and writing. Functions may have 
default values for arguments, but they are not intended to do something without the user understanding the function and providing input 
arguments. Like functions, modules have inputs and convert those inputs into some output. However, modules are higher- order collections 
of one or more functions that have computer and human readable metadata describing their inputs and outputs. Unlike functions, module 
metadata contain the information that describes how modules fit (or not) together. Modules, as we suggest here, are the basic unit of code 
that enables and facilitates all the elements of the PERFICT approach. In analogy, functions are Lego® pieces, often supplied in a package 
(collections of functions) with instructions (function documentation), and modules are Lego® structures made with those pieces (i.e., the 
original developer wrote the documentation and built the structure), such as trucks, houses, roads, space shuttles. A given structure has 
inherent value, e.g., a truck can be the end goal of a project and can be stand alone. The metadata (implicit in Lego®) describe the ways these 
structures interact, e.g., a road can take things with wheels (input); a bus has wheels (output), so can go on a road, but a house does not so 
cannot. Using a structure by itself or combining multiple structures together makes simple to complex “models”, such as neighbourhoods, 
villages, cities, or space stations. Many modules fit together (a truck and a road); others do not (a truck and a space station). The structures can 
be used in many new ways, bricks added to structures, and collected into complex meta- structures. If we want to build a Lego® city, we could 
either start with individual bricks to build a new configuration or reuse some or all pre- existing structures. Furthermore, other toy “brands”— 
or computer languages, e.g., R, Python, C++— can be added to the city. Using the PERFICT approach, ecologists build robust, reusable 
modules, enabling rapid creation, use, testing and reformulating of models

https://ecoforecast.org/efi-rcn-forecast-challenges/
https://ecoforecast.org/efi-rcn-forecast-challenges/
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simulation model or for converting large global data-
sets to inputs for a model), other applications can reuse 
them, reducing effort required (Wenger & Olden, 2012). 
Reusability comprises five characteristics: each step 
must 1) be scripted; 2) produce the same answer with 
the same inputs (including random number generator 
seed, if stochastic); 3) produce a different, but equiva-
lent, answer with different inputs; 4) work on all com-
mon computer platforms; and 5) have meta- information 
(metadata) describing how it can interact with other 
components. Reproducibility (Borregaard & Hart, 
2016)— a special case of reusability— can be achieved 

with characteristics 1 and 2 (Baker, 2016; Begley & 
Ellis, 2012; Klein et al., 2014; Munafò et al., 2017). The 
first four can be efficiently developed by creating func-
tions, wrapped in packages and hosted in open reposi-
tories (e.g., https://cran.r- proje ct.org/; https://pypi.org/). 
However, a collection of functions is insufficient to 
solve a particular task because the required sequence 
of steps does not emerge from the functions (Figure 1). 
Additional metadata is required, defining how func-
tions interact with the environment that calls them. In 
practice, ecologists can bundle sequences of functions 
into meaningful modules (e.g., “data preparation”, 

TA B L E  1  Benefits and examples of the PERFICT approach and how these benefits can be realised

Benefit Example PERFICT approach enables the benefit by:

Accelerating science Occam's razor Evaluation of how much complexity is right for a given project, as 
models of arbitrary complexity can be readily compared

Informative priors Easing the process of moving from a previous study's Bayesian 
posteriors to a new study's priors, lessening the problems with 
specifying uninformative priors (Northrup & Gerber, 2018)

Forecast horizon Repeatedly iterating a forecasting model with regularly updated data 
and model (Petchey et al., 2015)

Community of contributors Allowing manageable projects with hundreds of contributors to 
quickly update our understanding of a system (Fer et al., 2021)

Predictive validation Using future out- of- sample data to test models becomes easier with 
reusable, interoperable modules (Power, 1993)

Rewriting models Encouraging reimplementation in a widely known language (e.g., 
R) allowing many experts to see and understand code (Thiele & 
Grimm, 2015)

Many eyes Modelling standards that are understandable by many scientists 
with sufficient capacity to more readily fix bugs and identify 
improvements

Bridging to Data 
Science

Building on data science tools Facilitating the use of cloud computing and repositories, user access 
control and data caching, for researchers who do not have the 
capacity or time to learn and develop them

Data quality and quantity Building data- model- validation pipelines from reusable components 
allowing for assessment of different data sources (White et al., 
2019)

Linking models to data Maintaining linkages between canonical data sources and models live 
at all times allows for rapid reparameterisation and updating with 
continuous testing (Micheletti et al., 2021)

Improving science- 
policy integration

Cross disciplinarity Lessening the technological, data and cultural barriers that make 
cross- disciplinary work challenging (Chassé et al., 2020)

Regular reporting Reducing the effort required to produce regular updates for policy 
reporting

IPCC- like process Allowing lower budget projects to achieve IPCC- like integration with 
its benefits such as regular updating, ensemble modelling, and 
contributions to policy (Masson- Delmotte et al., 2021)

Different users Creating a complete framework that allows for all types of expertise— 
from land managers, rights holders and the public, to scientists 
and computer programmers— to interact (Ferraz et al., 2021)

Web and decision support applications Allowing for the development of generic web and decision support 
tools— “dashboards”— that can be reused widely

Coping with contradictions Opening the science informed decision- making and policy- making 
process to shed light on cases where models contradict one another 
and offering an objective way to resolve those contradictions

See Supporting Information C for further discussion. In each example, there may be certain elements of the PERFICT approach that may be more relevant; for 
clarity, we do not specify individually. In all cases, the more elements of the PERFICT approach that are followed by a model, the more beneficial the outcome.

https://cran.r-project.org/
https://pypi.org/
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“parameter estimation”, “climate sensitive fire simula-
tion”; Figure 1 and Supporting Information Fig B1; see 
Micheletti et al., 2021) which will range from specific to 
generic, and combine them with those of other creators. 
The sequencing of these modules can emerge from this 
metadata (Supporting Information Fig D1), similar to 
how software package managers determine the installa-
tion order of packages and their dependencies.

Freely accessible

Open science and free, available, interoperable and re-
usable data accelerate innovation, as well as improve 
transparency and accountability (Reichman et al., 
2011; FAIR: Stall et al., 2019; ART: Bodner et al., 2020 
Supporting Information A). Developing open modelling 
workflows (including collaborative version control sys-
tems, such as https://github.com) also allows other scien-
tists to evaluate the implementation of the science. While 
performance tradeoffs exist, using programming lan-
guages that are widely used by ecologists (e.g., currently 
R, Python, Julia) can make models even more accessi-
ble, transparent, readily (re- )usable and testable by oth-
ers (Lai et al., 2019; see Accelerating Science Supporting 
Information C).

Interoperable

Interoperability embodies modularity and standards. 
Modularity arises when a description of a component 
has structured, human-  and machine- readable meta-
data (Figure 1). The two most important design criteria 
are that modules should 1) be able to run either indepen-
dently or as a subcomponent of a larger model, and 2) 
communicate with other modules via their inputs and 
outputs (Reynolds & Acock, 1997; Voinov et al., 2004). 
To ensure modular pieces are interoperable, they must 
follow standards that define how modules communicate. 
Modules with metadata for inputs and outputs, and de-
veloped in widely used programming languages increase 
interoperability of model components (Belete et al., 2017).

Continuous workflow

Recently, authors have advocated for continuous work-
flows for near- term forecasting (Dietze et al., 2018; 
White et al., 2019). These workflows are just as useful 
in other contexts, such as policy development and stra-
tegic land management planning (Paradis et al., 2013), 
or predicting in new situations. To implement a continu-
ous workflow, ecologists generally build scripts with 
e.g., data loading, compiling, estimation, validating and 
reporting. When the individual steps of the workflow 
are reusable, the workflow can become both modular 

and continuous, facilitating rapid iterations for a given 
study, and rapid sharing of components across studies 
(Fig B1). Since long computational steps are common 
in ecology and researchers want to run these only once, 
functions that are deemed too intensive to rerun fre-
quently require caching (e.g., McIntire & Chubaty, 2021; 
Micheletti et al., 2021) to maintain continuous work-
flows even for very complex models and ensure break-
ages are identified quickly.

Testing automatically

We distinguish two parts of testing: ecological valida-
tion (“Evaluation” described above) and code testing. 
The objectives of code testing include evaluating code 
efficiency, detecting errors in algorithm implementa-
tion, and translating mathematics to code. Robust ap-
proaches come from software development fields and 
include using code assertions (Rosenblum 1995) and 
writing unit, integration and system tests (Scheller et al., 
2010). Attaching ecological validation and/or code test-
ing to automated continuous integration (CI) systems 
is straightforward, e.g., GitHub Actions (https://docs.
github.com/en/actions) for small projects (e.g., Barros 
et al. in review) or individual components, and advanced 
research compute platforms for larger problems.

CONCLUSION

The future of modelling in applied ecology requires 
transferable solutions of all the components of workflows 
that cross disciplines and transcend scientific, statistical, 
computational, and cultural paradigms (e.g., Micheletti 
et al., 2021). Some solutions for applied problems have 
reflected elements of the PERFICT approach (Geller 
& Turner, 2007; Parrott, 2017), but these successes are 
too rare (Travers et al., 2019). The PERFICT formalisa-
tion modular workflows, facilitating cross- study model 
comparison, hypothesis testing, and ensemble model-
ling, while promoting utility, flexibility, adaptability 
and scientific longevity because they can be easily rerun 
by the ecological community (Reynolds & Acock, 1997; 
Table 1; Supporting Information C). This creates robust 
and nimble models for a range of ecological applications 
including iterative forecasting cycles (Dietze et al., 2018). 
Ecologists are embracing modern predictive approaches 
(Lewis, Woelmer, et al., 2021), benefitting decision-  and 
policy- making for ecosystems worldwide. The PERFICT 
formalisation can facilitate data- model integration, and 
tighten science- policy integration, because the nimble-
ness that can come from reusable and interoperable mod-
ules for a modelling workflow allows science to respond 
rapidly to changing policy demands (Table 1; Supporting 
Information C and D). Reducing the friction of trans-
ferring other model workflow components will make it 

https://github.com
https://docs.github.com/en/actions
https://docs.github.com/en/actions
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easier to evaluate and improve models, taking us more 
quickly to the best models for today's challenges.
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