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Abstract: Vi-polysaccharide conjugate vaccines are efficacious against typhoid fever in children
living in endemic settings, their recent deployment is a promising step in the control of typhoid fever.
However, there is currently no accepted correlate of protection. IgG and IgA antibodies generated
in response to Vi conjugate or Vi plain polysaccharide vaccination are important but there are no
definitive protective titre thresholds. We adapted a luminescence-based serum bactericidal activity
(SBA) for use with S. Typhi and assessed whether bactericidal antibodies induced by either Vi tetanus
toxoid conjugate (Vi-TT) or Vi plain polysaccharide (Vi-PS) were associated with protection in a
controlled human infection model of typhoid fever. Both Vi-PS and Vi-TT induced significant increase
in SBA titre after 28 days (Vi-PS; p < 0.0001, Vi-TT; p = 0.003), however higher SBA titre at the point of
challenge did not correlate with protection from infection or reduced symptom severity. We cannot
eliminate the role of SBA as part of a multifactorial immune response which protects against infection,
however, our results do not support a strong role for SBA as a mechanism of Vi vaccine mediated
protection in the CHIM setting.

Keywords: Vi vaccination; SBA; luminescence; enteric fever; conjugate vaccine; correlates of protection

1. Introduction

Typhoid fever is a febrile illness caused by infection with the Gram-negative bacteria
Salmonella enterica serovar Typhi. It is estimated to cause 14.3 million cases per year, leading
to approximately 136,000 deaths [1–3]. Typhoid fever primarily affects low and lower-
middle income countries and the major burden of disease lies in Asia and sub-Saharan
Africa, where school age children are disproportionately affected [4]. Long term strategies
to control enteric fever involve improvements in sanitation, infrastructure, and education,
which can be costly and slow [5]. Effective vaccination programmes are important in
helping to limit disease in the medium term until improvements in water quality are
implemented, and are even more important given the emergence of antimicrobial resistant
strains and outbreaks [6].

Until 2018 there were two vaccines licensed in many countries available for typhoid
fever; the Vi capsular polysaccharide parenteral subunit vaccine, Vi-PS; and Ty21a, a live
attenuated oral vaccine (Vivotif, Crucell Vaccines, Leiden, The Netherlands) [7]. These
vaccines are not suitable for use in children under 2 or 6 years respectively, they offer
only moderate efficacy and do not confer long term protection [8,9]. Protection following
inoculation with purified Vi polysaccharide, a T cell-independent antigen, illustrates the
key importance of Vi-specific humoral immunity for the control of typhoid fever. Recently
a new conjugate typhoid vaccine has been developed which links Vi polysaccharide to a
carrier protein to stimulate T cell help, driving immunological memory. The Vi tetanus
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toxoid conjugate vaccine (Vi-TT, Typbar-TCV, Bharat Biotech, Hyderabad, India) has been
shown to be safe and efficacious in both adults and children [10–12]. The efficacy of the
Vi-TT vaccine was demonstrated to be similar to the Vi-PS vaccine in healthy adults in a
controlled human infection model (CHIM) [10]. Early results from a Phase III trial in Nepal
demonstrate a protective efficacy of 81.6% after one year in children between 9 months and
16 years [11]. Therefore, Vi-TT vaccine and other Vi conjugates are promising candidates
for the future control of typhoid fever, even in young children.

Currently, there is no accepted correlate of protection associated with either natural
exposure, or vaccine induced protection for typhoid fever. Defining a correlate of protection
could allow licensure of next generation vaccines without costly large scale efficacy trials,
and would provide insight into the mechanism of action of these vaccines [13]. Knowledge
of the mechanisms driving protection from S. Typhi infection may also contribute to the
understanding of immunity to other typhoidal Salmonella serovars such as Salmonella
Paratyphi A, the second leading cause of enteric fever, for which there is currently no
licensed vaccine [3].

We have previously shown in a CHIM study where participants were allocated
to receive Vi-TT, Vi-PS or a control vaccine (MenACWY) prior to oral challenge with
1–5 × 104 colony forming units (CFU) Salmonella Typhi (Quailes strain), individuals with
higher anti-Vi IgG titres at the time of exposure were less likely to develop acute typhoid
fever, yet IgG antibody titre alone was a relatively poor indicator of protection [10]. Vi
IgA quantity and fold change after vaccination were strongly associated with outcome of
challenge [14]. The capacity of Vi-specific antibodies to induce certain effector functions
may more strongly associate with protection. We have previously observed that distinct
protective signatures are induced by Vi-PS and Vi-TT vaccines [15]. These protective signa-
tures comprise both quantitative antibody (IgG and IgA) as well as functional responses
mediated by innate cells, however, these analyses did not include evaluation of serum
bactericidal activity (SBA).

SBA assays measure in vitro serum antibody-mediated classical complement pathway
activation and bacterial killing. antibodies have become a widely accepted correlate of
protection for N. meningitidis, and have been used to assess and license new meningococcal
vaccines [16]. An inverse trend has been reported for S. Typhi cases in Kathmandu, Nepal,
where SBA titres increase with age, as typhoid fever incidence decreases [17]. Participants
diagnosed with acute typhoid fever in a previous CHIM study were observed to produce
high SBA titres, suggesting that disease and not merely exposure to S. Typhi induces
serum bactericidal antibodies [18]. While acute disease generates a significant increase in
SBA titre, a single exposure to S. Typhi in the CHIM did not significantly alter Vi-specific
antibody levels, thereby potentially excluding Vi-specific antibodies as a major driver of
this bactericidal activity [19]. Other CHIM studies have evaluated SBA following oral
typhoid vaccination with Ty21a, and vaccine candidate M01ZH09. After one dose of
M01ZH09 SBA titres were significantly increased. Higher SBA titres after vaccination with
Ty21a or M01ZH09 correlated with reduced disease severity, however SBA titres were not
significantly associated with protection against infection. SBA activity in this study was
shown to be dependent on anti-LPS antibodies [18].

In summary the contribution of complement-dependent antibody bactericidal activity
in controlling typhoid infection is not well understood, and the SBA response to Vi vac-
cines in humans has not been evaluated within a CHIM. Here we describe the use of a
luminescence based SBA assay (L-SBA) for evaluation of responses after Vi-TT or Vi-PS
vaccination and the association with outcome following S. Typhi challenge.

2. Materials and Methods
2.1. Sample Collection

Serum was collected from healthy adult volunteers with no history of typhoid infection
or residency in a typhoid endemic area who were recruited to the phase 2b study detailed
in Jin et al. [10], Clinicaltrials.gov NCT02324751. Individuals were randomised 1:1:1 to
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receive either a Vi-conjugate (Vi-TT; Typbar-TCV, Bharat Biotech, Hyderabad, India), Vi-
polysaccharide (Vi-PS; TYPHIM Vi, Sanofi Pasteur, Lyon, France), or meningococcal ACWY-
CRM conjugate vaccine (control; MENVEO, GlaxoSmithKline, Sovicille, Italy). Twenty-
eight days after vaccination, participants underwent oral challenge with 1–5 × 104 CFU
of S. Typhi, Quailes strain. Participants attended follow up visits for 14 consecutive days,
during which time they could be diagnosed with typhoid fever by having a positive blood
culture (daily samples taken for culture using the Bactec System, BD) or a fever greater
than 38 ◦C for 12 h, before commencing antibiotics. Serum samples for SBA analysis
were collected immediately prior to vaccination (pre-vac, PV) and 28 days later at time of
S. Typhi challenge (D28).

For the Vi antibody depletion analysis, samples were taken from healthy adult vol-
unteers who received either Vi-TT (n = 3) or Vi-PS (n = 4) but were not challenged with
S. Typhi. Samples were collected immediately prior to vaccination (pre-vac, PV) and
4–6 weeks later (post-vac).

2.2. Luminescent-Serum Bactericidal Activity Assay (L-SBA)

The L-SBA assay methods are based on the publication by Necchi et al. [20]. Briefly,
participant serum samples were heat-inactivated by incubating in a water bath at 56 ◦C for
30 min before making a dilution series starting at 1:1.5 in PBS. S. Typhi bacteria (Quailes
strain, a wild-type, Vi+ strain isolated from a chronic carrier) were grown to log phase and
diluted 1:60 in LB broth (Sigma, St. Louis, MO, USA) before adding to diluted test sera in
the presence of 10% rabbit complement (CedarLane, Burlington, Canada) (10 µL diluted
bacterial suspension, 10 µL test serum, 10µL rabbit complement, 70 µL LB) in a 96 well
plate (VWR Ltd., Radnor, PA, USA). Plates were incubated for 3 h at 37 ◦C, with shaking at
220 rpm before centrifugation at 3220× g for 10 min. The supernatant was discarded and the
pelleted bacteria re-suspended in PBS. The resultant bacterial suspension was transferred
to a white flat-bottomed 96 well plate (VWR International Ltd., Radnor, PA, USA) and
mixed in a 1:1 ratio with Promega BacTiter-Glo for quantification of luminescence (relative
light units, RLU) using the LUMIstar OMEGA (BMG Labtech, Ortenberg, Germany), RLU
output is directly proportional to the number of whole bacteria in the final suspension. SBA
titres were calculated by normalising the luminescence measured for each sample dilution
by that of the active complement only control (no serum), before fitting a 4-parameter
sigmoidal curve to each dilution series and determining the serum dilution at which 50%
killing of S. Typhi occurred. Data were included only if the R2 of the sample dilution curve
was greater than 0.7, and the sample had been sufficiently diluted so the final RLU was
comparable to the RLU of the complement only control. Samples were re-run if the titre of
the positive control sample (international Vi standard 16/138, NIBSC UK) run on the same
plate fell out of range (average ± 1 standard deviation). The limit of detection was defined
as an SBA titre of 39.

2.3. Antibody Depletions

For depletion of Vi antibody, 96 well plates (Nunc maxisorp) were pre-coated for two
hours with 10 ug/mL of poly-L-Lysine (Sigma, St Louis, MO, USA) before coating with
20 ug/mL Citrobacter freundii Vi polysaccharide (NIBSC, 12/244) [21]. Plates were washed
with buffer containing 0.85% NaCl (Sigma, St. Louis, MO, USA) and 0.1% Brij 35 (Sigma,
St. Louis, MO, USA), serum samples were added to wells in the first column of the plate,
and the plates were sealed to avoid drying out. After 30 min at 37 ◦C, serum was carefully
transferred into wells in the second column, avoiding contact with the bottom of the well.
This was repeated for 9 further cycles. Antibody titres were then measured using the
Binding Site VaccZyme Salmonella Vi ELISA kit, as per the manufacturer’s instructions [10].

2.4. Collection of Correlation Variables

Multiple clinical observations were measured and described by Jin et al. [10]. Quan-
tification of anti-Vi antibodies and effector functions have also been measured previously,
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as detailed Jin et al. [15]. Here we use the previously collected data to investigate the
relationship between SBA and various antibody properties, or clinical presentation of acute
typhoid fever.

2.5. Statistical Analysis

Statistical analyses were performed using GraphPad Prism Version 8.3.0. Between
timepoint comparisons were tested for significance using Wilcoxon matched pairs signed-
rank tests and between group comparisons using Mann Whitney tests. Correlations were
assessed using Spearman r test. p values ≤ 0.05 are considered statistically significant, no
corrections were made for multiple testing. Sample size estimates were based on calculating
vaccine efficacy.

3. Results

SBA titres were measured in samples at pre-vaccination and 28 days later at the
point of S. Typhi challenge, a total of 72 vaccinated volunteers who completed the 14 day
challenge follow up were included in the analysis, of whom 35 received Vi-PS and 37
received Vi-TT. Serum from a subset of six individuals who were vaccinated but not
challenged were depleted of Vi antibody and tested for bactericidal activity pre-vaccination
and post-vaccination (Vi-PS, n = 4. Vi-TT, n = 2).

3.1. Serum Bactericidal Activity Increases after Vi Vaccination

Serum bactericidal activity was evaluated prior to vaccination and 28 days post-
vaccination in healthy volunteers who received either a Vi-PS or Vi-TT vaccine, before
undergoing oral challenge with 1–5 × 104 CFU wild-type S. Typhi. Both vaccines were
associated with significant increases in SBA titre after 28 days (Vi-PS D28 titre median:
1848; CI 95% 1166-2464, p < 0.0001, Vi-TT D28 median 2001; CI 95% 1281-2923, p = 0.003)
(Figure 1A and Supplementary Table S1). Though the difference in SBA between samples
obtained prior to vaccination and at day 28 was greater in the Vi-PS recipients, there was no
significant difference in SBA titres between the different vaccine groups at day 28 (p = 0.62).
No significant differences were found when comparing fold change between PV and D28
between challenge outcome groups.
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Figure 1. Serum bactericidal activity was evaluated prior to vaccination and 28 days post-vaccination
in healthy volunteers who received either a Vi-PS or Vi-TT vaccine, before undergoing oral challenge
with 1–5 × 104 CFU wild-type S. Typhi (A) Comparisons between time points, split by vaccine Vi-PS
n = 35, Vi-TT n = 37. (B) Comparisons of day 28 titres, split by vaccine and challenge outcome (TD;
typhoid diagnosed, closed circles. nTD; not typhoid diagnosed, open circles). Limit of detection is
an SBA titre of 39. Between time point comparisons analysed using Wilcoxon matched-pairs signed
rank test, between group comparisons analysed by Mann-Whitney.

To assess whether bactericidal antibodies might be associated with protection against
development of typhoid fever we compared SBA titres on the day of challenge between
individuals who went on to develop acute typhoid fever with those who were not di-
agnosed throughout the 14 day challenge period. There was no significant difference in
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SBA titre between those who were diagnosed and those who were not diagnosed Vi-PS:
p = 0.88, Vi-TT: p = 0.29 (Figure 1B), nor between those who remained healthy and those
who developed disease when both vaccine arms were combined (Supplementary Table S1,
TD vs nTD: p = 0.48). There was no significant difference in fold change from pre-vac to
day 28 between any groups, although there was a trend towards significance comparing
fold change in Vi-PS nTD group (n = 22) with Vi-PS TD group (n = 13), p = 0.09).

3.2. Post Vaccination Serum Bactericidal Activity Correlates Weakly with Anti-Vi IgG, IgG2 and
IgM Titres

SBA titres at day 28 post-vaccination were compared with other parameters to deter-
mine if vaccine-induced bactericidal antibodies were correlated with Vi-specific antibody
levels (Figure 2) or with measures of diagnosis outcome (Table 1). SBA titre 28 days after
Vi-PS vaccination weakly correlated with anti-Vi IgG, IgG2, and IgM at this time point, and
this was driven by individuals who did not develop typhoid fever (nTD) (Figure 2A–C).
In contrast, SBA titres 28 days after Vi-TT vaccination did not significantly correlate with
Vi-IgG, Vi-IgG2 or Vi-IgM.
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SBA titre at the point of challenge with anti-Vi IgG (A), anti-Vi-IgG2 (B), and anti-Vi-IgM (C). TD; typhoid diagnosed, closed
circles. nTD; not typhoid diagnosed/remained well, open circles.

SBA titre at the point of challenge did not significantly correlate with Vi-specific
antibody-mediated complement deposition, nor with any clinical parameters relating to
disease severity (Table 1).

3.3. Depletion of Vi Antibodies Reduces Serum Bactericidal Activity

To demonstrate that Vi-TT/Vi-PS vaccine-induced SBA is mediated by Vi-specific
antibodies, Vi-specific antibodies were depleted in samples from a subset of individuals
(n = 6, individuals for this subset were chosen due to availability of large serum volumes).
Anti-Vi IgG was significantly reduced following depletion in pre-vac and day 28 sam-
ples (Figure 3A). Geometric Mean Titre (GMT) pre-vaccination prior to depletion was
45.8 EU/mL which reduced to 17.5 EU/mL following depletion, while for day 28 the GMT
prior to depletion was 669.1 EU/mL and 106.4 EU/mL following depletion. Analysis of
SBA in these samples shows a corresponding significant reduction in activity after Vi anti-
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body depletion at day 28 only with titres comparable to pre-vaccination levels (Figure 3B;
p = 0.56). SBA GMT pre-vaccination versus day 28; 1190 to 2002 originally, 809.2 to 1232 in
depleted samples).

Table 1. Table of correlation outcomes of log10 SBA titre 28 days after vaccination compared with various parameters.
Anti-Vi antibody levels and antibody dependent complement deposition data all 28 days post vaccination, at the point
of challenge.

Spearman Rho (p Value)

Vi−PS
(all, n = 35)

Vi−PS
(nTD, n = 22)

Vi−PS
(TD, n = 13)

Vi−TT
(all, n = 37)

Vi−TT
(nTD, n = 24)

Vi−TT
(TD, n = 13)

Anti−Vi IgG1 0.226 (0.192) 0.261 (0.241) 0.102 (0.740) −0.152 (0.371) −0.040 (0.845) −0.382 (0.197)
Anti−Vi IgG3 0.230 (0.183) 0.245 (0.272) 0.280 (0.354) −0.070 (0.682) 0.044 (0.837) −0.429 (0.144)
Anti−Vi IgA 0.079 (0.657) 0.286 (0.205) −0.223 (0.461) −0.092 (0.593) −0.232 (0.287) −0.052 (0.867)

Antibody Dependant
Complement
Deposition

0.178 (0.307) 0.350 (0.110) −0.107 (0.763) 0.051 (0.763) −0.005 (0.982) 0.070 (0.818)

Time to Typhoid
Fever Diagnosis

(Days)
0.064 (0.716) NA 0.252 (0.404) −0.218 (0.196) NA −0.209 (0.490)

Duration of Fever
(Days) 0.089 (0.617) 0.333 (0.140) −0.772 (0.365) −0.038 (0.825) −0.243 (0.253) 0.333 (0.262)

Duration of
Bacteraemia (Days) −0.062 (0.731) NA −0.182 (0.589) −0.178 (0.298) NA 0.470 (0.125)

Symptom Severity 0.133 (0.4454) 0.132 (0.558) 0.011 (0.978) −0.266 (0.112) −0.312 (0.138) −0.124 (0.684)
Bacterial Burden

(CFU/mL) 0.127 (0.733) NA 0.127 (0.733) 0.112 (0.760) NA 0.112 (0.759)
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post depleted serum. Dotted line marks the limit of detection, 39. (n = 6).

4. Discussion

Here we describe and compare induction of bactericidal antibodies after vaccination
with two Vi-containing vaccines and explore the relationship between SBA and protection
against acute typhoid fever in a controlled human infection model (CHIM). We show that
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Vi vaccination induces a significant increase in bactericidal antibodies after 28 days but
find no evidence these are a correlate of protection within a CHIM setting.

Consistent with literature describing other S. Typhi vaccines in human and animals,
such as live attenuated oral vaccine candidates M01ZH09 and CVD910, or intramuscular
Vi-purified capsular polysaccharide, we show that vaccination with either Vi-PS or Vi-TT
leads to significant increases in SBA titre [22–24]. We did not detect a difference in SBA
titre between individuals who developed acute typhoid fever and those who did not after
deliberate human challenge one month after vaccination, nor a significant association with
disease severity (Figure 1, Table 1) which has been previously described after oral typhoid
vaccine. This also contrasts with other enteric disease such as cholera, where SBA is a
correlate of vaccine-induced protection, and shigellosis where vaccine mediated SBA is
associated with reduced disease severity in a controlled human infection model [25,26].

Induction of high titres of bactericidal antibodies after a single dose of oral vaccine
candidate M01ZH09 has been shown to reduce the severity of disease within the context of
the S. Typhi CHIM [18,23]. Studies in typhoid endemic areas have also demonstrated that
anti-Vi titres and SBA titres correlate with the age distribution of disease burden, though the
exact relationship between antibodies and protection to natural infection is unknown [17].
However, there was no significant correlation between bactericidal antibodies and anti-Vi
titres, suggesting the relationship between SBA titre and disease burden is at least in part
due to other antibodies targeting other antigens.

One explanation for the differences observed in the relationship between SBA and
disease severity when comparing post vaccine responses from M0IZH09 and Vi vaccines
could be due to the due to the specificity of the antibodies that the vaccines elicit. Vaccine
candidate M0IZH09 induces strong LPS specific antibodies, whereas Vi vaccination anti-
body responses are limited to Vi. It has been hypothesised that expression of Vi capsular
polysaccharide by Salmonella bacteria is a virulence mechanism helping bacteria avoid
the immune system by reducing complement mediated killing [27]. However, in vitro
experiments show that anti-Vi antibodies can bring about killing of Vi-expressing bacte-
ria in the presence of complement [28]. To determine the specificity of the bactericidal
antibodies present in our volunteers at both baseline and after Vi vaccination, we carried
out the SBA assay using samples depleted of Vi antibodies. Depleted samples showed
significantly reduced bacterial killing compared with non-depleted samples, and depletion
reduced post-vaccine SBA titres to baseline levels, confirming that vaccine induced SBA
was Vi-mediated rather than being caused by antibodies generated against other, non-Vi
antigens. Interestingly, we observed a range of SBA titres at baseline, presumably partially
due to pre-existing Vi antibodies from possible unknown exposure to Salmonella species or
other bacteria such as Citrobacter freundii; a commensal commonly present in the gut which
expresses Vi antigen [21]. Some pre-existing bactericidal activity might also be attributable
to antibodies against other target antigens such as LPS which is abundant in the micro-
biome, or other antigen homologs. It is possible that antibodies against LPS have more
potent SBA in vivo, potentially explaining why we see a correlation with reduced severity
of disease with live attenuated vaccines which can induce LPS antibodies, and do not in
the case of Vi vaccines which contain minimal amounts of contaminant LPS. While some
data suggest that long chain LPS has a similar virulence mechanism as Vi polysaccharide,
functional antibodies made against these antigens may remain quite distinct [29].

Another important factor to consider when comparing observations from multiple
studies is the difference in methods. Each of the studies described uses different methods to
assess bactericidal activity which could account for the observed differences, the sensitivity
of the bacteria could be different depending on culture conditions, as seen in Boyd et al. [22]
who describe a resistance to killing of stationary phase S. Typhi compared with log phase
bacteria. Antigenic expression could also vary between culture methods and might be
responsible for the variation in relationship between bactericidal antibodies and protection
from infection or disease severity. It is thought that as little as 2% of the Vi capsule remains
attached to the surface of the bacteria in vitro [21]. Capsule fractions that have sloughed off
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the surface may still remain intact in the culture and bind antibody in the serum reducing
the pool available for the bactericidal activity, this may explain why we see relatively little
increase in SBA titre post-vaccination while the corresponding increase in Vi antibody titres
is much greater [10].

It is possible that Vi-mediated SBA is not a strong correlate within our model due to
variable expression of the Vi capsule within an individual during the course of infection, as
we know a single exposure to S. Typhi in a CHIM is not enough to cause an increase in
Vi antibody levels [19]. Expression of the Vi capsule is highly regulated by genes located
on Salmonella pathogenicity island 7 (SPI-7), and is thought to be expressed under low
osmolarity conditions as the bacteria translocate the intestinal epithelial barrier where
bactericidal activity is not thought to occur due to lack of complement and complement
fixing antibodies [21]. Capsule expression during other stages of the infection process are
not well defined and while it’s thought expression is low during the intracellular phase
little is known about expression by extracellular bacteria. This, along with the facultative
intracellular nature of S. Typhi, mean that while the antibodies are present, their target
antigen is not readily seen and recognised, therefore antibodies are unable to effectively
kill the bacteria.

Correlations of SBA titres at the point of S. Typhi challenge with antibody measures
such as isotype and subclass titres, and propensity to mediate complement deposition
showed that among Vi-PS recipients, SBA titre significantly correlated with anti-Vi IgG,
IgG2 and IgM. This finding is expected as IgM is the key isotype for complement mediated
killing, due to its pentameric structure and capacity for multiple epitope binding, and
IgG2 being the main immunoglobulin produced in response to plain polysaccharide anti-
gens (Figure 2, Table 1) [30,31]. No significant correlations between SBA titres and other
antibody measures were found in individuals who received the Vi-TT vaccine (Figure 2,
Table 1). Interestingly no correlation was found between SBA titre and antibody dependent
complement deposition (ADCD). Differences in methods may partially account for this,
ADCD used Vi coated beads rather than the live bacteria used in the SBA assay. ADCD
only measures C3b deposition, rather than membrane attack complex (MAC) formation
and bacterial lysis quantified in the SBA assay. Our SBA used rabbit serum as complement
source whereas the deposition assay used guinea pig serum, variations in the potencies of
individual complement pathway components between these sources could explain some
of the differences observed. Thus, the lack of correlation between SBA and ADCD could
be due to inherent differences in complement, or effectors downstream of the C3b stage,
or variable Vi expression of the bacteria. Neither bactericidal activity or complement
deposition correlate highly with protection within our challenge model [15].

We also investigated the relationship between SBA and clinical and microbiological
measures of disease including bacterial load and duration of fever, none of which showed
any significant relationship for either vaccine arm (Table 1). Previously anti-LPS mediated
SBA has been shown to correlate with reduced disease severity, this highlights the different
mechanisms by which vaccines mediate protection as well as potential differences in
antigen specific antibody effector functions. We conclude that Vi specific bactericidal
antibodies have no obvious role in mitigating infection or disease severity within our
model. However, since all volunteers are treated by 14 days with antibiotics in our model
we cannot determine whether bactericidal antibodies may impact long term transmission
or development of the chronic carrier state in endemic settings.

The sample sizes in this study were calculated to investigate the protective efficacy of
2 Vi vaccines compared with control vaccine MenACWY, the study was not powered to
determine a correlate of protection. Subtle changes in SBA titre after vaccination (average
fold change 0.96) and evidence of a large range of pre-existing bactericidal titres may hinder
our ability of identifying a correlation between bactericidal activity and protection. Our
ability to reliably identify a relationship between SBA and protection or disease severity is
further hindered by such small numbers of diagnosed individuals (Vi-PS; TD n = 13, Vi-TT;
TD n = 13).
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Previous analysis of biophysical and functional antibody properties in our study
cohort show that anti-Vi IgA quantity and avidity are strongly associated with protection
after Vi vaccination [14,15]. However, IgA is not known to mediate complement dependent
killing via that classical pathway as it is a poor activator of C1q that lacks a binding site
in the FC region [32], nor does it correlate with SBA in our analyses. Although we cannot
rule out that SBA-inducing antibodies may be working alongside other functions to protect
against infection, our results do not support a strong role for SBA as a mechanism of Vi
vaccine mediated protection in the CHIM setting. Added to our existing knowledge, these
results demonstrate the varied mechanisms of action of different types of vaccines, and
highlight that protective correlates may differ between vaccines and may be multifactorial
rather than being mediated by a single function as explained by Plotkin et al. [33].
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