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Abstract
Background: At fertilisation, mammalian oocytes are activated by oscillations of intracellular Ca2+

([Ca2+]i). Phospholipase Cζ, which is introduced by fertilising spermatozoon, triggers [Ca2+]i
oscillations through the generation of inositol 1,4,5-triphosphate (IP3), which causes Ca2+ release
by binding to IP3 receptors located on the endoplasmic reticulum (ER) of the oocyte. Ability to
respond to this activating stimulus develops during meiotic maturation of the oocyte. Here we
examine how the development of this ability is perturbed when a single spermatozoon is
introduced into the oocyte prematurely, i.e. during oocyte maturation.

Results: Mouse oocytes during maturation in vitro were fertilised by ICSI (intracytoplasmic sperm
injection) 1 – 4 h after germinal vesicle break-down (GVBD) and were subsequently cultured until
they reached metaphase II (MII) stage. At MII stage they were fertilised in vitro for the second time
(refertilisation). We observed that refertilised oocytes underwent activation with similar frequency
as control oocytes, which also went through maturation in vitro, but were fertilised only once at
MII stage (87% and 93%, respectively). Refertilised MII oocytes were able to develop [Ca2+]i
oscillations in response to penetration by spermatozoa. We found however, that they generated a
lower number of transients than control oocytes. We also showed that the oocytes, which were
fertilised during maturation had a similar level of MPF activity as control oocytes, which were not
subjected to ICSI during maturation, but had reduced level of IP3 receptors.

Conclusion: Mouse oocytes, which were experimentally fertilised during maturation retain the
ability to generate repetitive [Ca2+]i transients, and to be activated after completion of maturation.

Background
In all animal species studied to date the activation of the
oocyte is triggered by transient elevation of the cytoplas-
mic concentration of free Ca2+ ions ([Ca2+]i). In mam-

mals, the increase in [Ca2+]i during fertilisation occurs in
the form of [Ca2+]i oscillations, which start when the
oocyte is penetrated by spermatozoon [1-5] and last for
several hours until the formation of pronuclei [6]. It has
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been proposed that oocyte activation is caused by a solu-
ble factor introduced into the oocyte by spermatozoon
during fusion of the gametes [7-10]. More recently, a
novel, spermatozoon-specific isoform of phospholipase
C, named phospholipase Cζ (PLCζ), has been identified
in mouse, man and cynomologus monkey, and it has
been shown to be a spermatozoon-derived oocyte-activat-
ing factor [11-13].

The ability of an oocyte to be activated by fertilising sper-
matozoon develops during the meiotic maturation. It is
known that spermatozoon-induced [Ca2+]i transients are
mediated by the release of Ca2+ ions from the endoplas-
mic reticulum through the pathway which involves inosi-
tol 1,4,5-triphosphate (IP3) receptors [14-17]. Oocytes
develop sensitivity to IP3 during oocyte maturation [18-
20]. The change in the organization of the endoplasmic
reticulum (ER) during oocyte maturation may contribute
to this enhanced sensitivity. It was demonstrated that in
maturing mouse oocyte, ER undergoes reorganisation and
in fully mature oocyte it aggregates within the cortical
region [21]. These changes coincide with the redistribu-
tion and increase in the number of IP3 receptors [22].

Experimental fertilisation of immature oocytes can be
used to study the development of the ability of the oocyte
to be activated. Clarke and Masui [23] showed that matur-
ing murine oocytes, which had been penetrated by sper-
matozoa, were able to complete meiotic maturation, but
did not undergo subsequent activation. This demonstrates
that spermatozoon-derived oocyte-activating factor is
unable to induce activation when introduced into matur-
ing oocyte, probably because of its inactivation by the
cytoplasm of maturing oocyte [24]. Immature oocyte are
able to create [Ca2+]i transients soon after being pene-
trated by spermatozoon [25], but they generate fewer
[Ca2+]i oscillations and cease oscillating earlier than
mature oocytes [25]. Tang et al. [26] demonstrated that in
vitro matured oocytes lost the ability to generate [Ca2+]i
transients induced by sperm-factor when they had been
stimulated by sperm extracts during oocyte maturation.
These authors suggested that in mouse oocytes, the pro-
longed [Ca2+]i oscillations depend on the "maternal
machinery" mechanism that can be switched on only
once and becomes inactivated by premature introduction
of the spermatozoon-derived oocyte-activating factor
[26]. However, another possibility is that the changes in
Ca2+ signaling pathway which take place after its prema-
ture stimulation, are quantitative in nature, and depend
on the amount of the sperm factor introduced into the
oocyte. Thus, the aim of our experiments was to examine
if the premature introduction of a single spermatozoon
into maturing oocyte, affects its ability to be activated and
to generate Ca2+ response after completion of maturation,
in metaphase II (MII) stage. Since mouse oocytes fertilised

during maturation in vitro lose their ability to fuse with
additional spermatozoa when they reach MII stage [27],
we used intracytoplasmic sperm injection (ICSI) to intro-
duce spermatozoa into maturing oocytes. Next, when the
oocytes reached MII we refertilised them in vitro. We
observed that oocytes injected with the spermatozoa dur-
ing in vitro maturation, retained, after completion of mat-
uration, the ability to be activated and to develop [Ca2+]i
oscillations in response to penetration by spermatozoa.

Results
Efficiency of ICSI into maturing oocytes
Injection of spermatozoon does not affect the ability of
the oocytes to complete maturation; 83% of injected and
83% of control (uninjected) oocytes extruded PB1 and
reached MII stage. In order to assess the efficiency of ICSI
into maturing oocytes, the oocytes were fixed between 0.5
and 5 h after injection of spermatozoa and after comple-
tion of meiotic maturation (12 – 18 h after ICSI) and
observed as a whole-mount preparations. The chromatin
of spermatozoa was present in the cytoplasm of 88% (37/
42) of oocytes, which were fixed 0.5 – 5 h after ICSI.
Nuclei of spermatozoa, which were injected into oocytes,
first underwent decondensation and then recondensed.
These changes were similar to spermatozoon transforma-
tions observed during fertilisation of mature MII oocytes
[28]. However, when spermatozoa-injected oocytes were
examined after completion of maturation, only 65% (21/
32) of oocytes contained in their cytoplasm the
recondensed spermatozoon-derived chromatin. The pro-
portion of oocytes, which had spermatozoa in their cyto-
plasm at the end of maturation (12 – 18 h after ICSI), was
significantly lower (p < 0.05) than the proportion of
oocytes in which the presence of the spermatozoon-
derived chromatin was observed 0.5 – 5 h after ICSI. This
suggested that some maturing oocytes discarded the
microinjected spermatozoa. This was confirmed by our
finding that half (6/11) of the oocytes subjected to ICSI
and lacking the spermatozoon-derived chromatin in their
cytoplasm had, in addition to first polar body (PB1), the
"pseudo-polar bodies" containing recondensed chroma-
tin of the spermatozoon, and another half of the oocytes
(5/11) had noticeably larger first polar body that, besides
the meiotic chromosomes, also contained the spermato-
zoon-derived chromatin.

Can oocytes fertilised during maturation be activated after 
refertilization in MII?
Experimental oocytes (variant "ICSI + IVF") were fertilised
twice: first by ICSI 1 – 4 h after GVBD and next by conven-
tional IVF in MII stage. There were three control groups of
maturing in vitro oocytes: 1) fertilised once by ICSI during
maturation, 1 – 4 h after GVBD (variant "ICSI"), 2) ferti-
lized once by conventional IVF at MII stage (variant
"IVF"), and 3) unfertlised oocytes which matured in vitro
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up to MII stage ("no ICSI and no IVF" variant). Oocytes
from all three variants were cultured for 7 – 8 h and were
examined for the signs of activation (i.e. extrusion of the
second polar body (PB2) and formation of pronuclei).
Subsequently, the oocytes were fixed and mounted on
slides. The diagram of the experiment is shown in Figure
1.

The number of activated oocytes in various variants of the
experiment is presented in Table 1 and in Figure 2. In a
double fertilisation variant ("ICSI + IVF") the extrusion of
the PB2 was observed in 78% of oocytes and 87% of
oocytes had 1–4 pronuclei. The presence of one or two
pronuclei indicated that either the first (introduced by
ICSI) spermatozoon-derived nucleus or the second,
(introduced by IVF) or both (introduced by ICSI and IVF)
spermatozoa-derived nuclei have been eliminated from
the oocyte (see above). Another possibility was that the
chromatin of microinjected spermatozoon had merged
with chromosomes of the oocyte during maturation and,
thus, after activation, formed a single hybrid pronucleus
[29]. The possibility that the formation of a single pronu-
cleus resulted from spontaneous activation of the oocyte
was tested in control experiments described below. The
presence of more than three pronuclei in activated oocytes
indicated polispermic penetration during IVF.

Among oocytes, which matured in vitro and were fertilised
only once at the MII stage ("IVF" variant), almost all
extruded PB2 and formed pronuclei (95% and 93%
respectively). Oocytes from both groups ("ICSI + IVF" and
"IVF") extruded PB2s approximately 1 – 2 h after the end
of incubation with spermatozoa. Fertilised oocytes from
"IVF" group contained two to seven pronuclei. Presence of
two pronuclei indicated monospermic penetration, while
the presence of more than two pronuclei in the oocyte
cytoplasm suggested polyspermic fertilization.

None of the oocytes from "ICSI" and "no ICSI and no IVF"
groups extruded the PB2 during culture. 95% of oocytes
from "no ICSI and no IVF" group were blocked in MII and
only 2 oocytes from this group underwent spontaneous
activation and formed a single pronucleus without extrud-
ing PB2s. 89% of oocytes from "ICSI" group did not
undergo activation, despite the presence of the spermato-
zoon-derived chromatin in their cytoplasm.

Are the oocytes fertilised during maturation able to 
respond with [Ca2+]i transients to spermatozoa 
penetration in MII?
First we examined whether maturing oocytes were able to
respond with [Ca2+]i oscillations to the injection of sper-
matozoon. We found that 80% of injected oocytes gener-
ated repetitive [Ca2+]i transients (in one oocyte only one
[Ca2+]i peak was recorded; however, because of technical
reasons we were unable to capture the first [Ca2+]i spike in
any of examined oocytes, we assume that this oocyte pro-
duced at least 2 [Ca2+]i spikes) (Figure 3A). Next we tested
whether oocytes fertilised during maturation can respond
with [Ca2+]i rise after insemination at MII. We found that
majority of the oocytes from "ICSI + IVF" experimental
variant generated Ca2+ response after refertilisation (7/10)
and half of them (5/10) generated 2–3 [Ca2+]i spikes dur-
ing first hour after sperm penetration (the first [Ca2+]i
spike was considered as occurring at the time of sperm
entry) (Figure 3B, Table 2). The mean number of [Ca2+]i
transients was 1.4 +/- 1.3 (Figure 4). In "IVF" and
"sham+IVF" control groups most of the oocytes produced
at least 3 [Ca2+]i transients (Table 2 and Figure 3C,D). The
mean number of [Ca2+]i spikes in both control groups
("IVF": 3.2 +/- 0.9 and "sham + IVF": 4.2 +/- 2.5) was sig-
nificantly higher than in "ICSI+IVF" group (p < 0.05) (Fig-
ure 4).

Is the IP3 receptor downregulated in oocytes fertilised 
during maturation?
Lower number of [Ca2+]i transients observed in oocytes,
which were fertilised during maturation and refertilised at
MII could result from the IP3 receptor downregulation
caused by introduction of spermatozoon into maturing
oocyte. To test this possibility we compared the level of
IP3 receptor between MII oocytes, which were or were not
fertilised during maturation in vitro, by Western blot tech-
nique. Due to relatively low efficiency of ICSI into matur-
ing oocytes, in this experiment we used conventional IVF
to introduce spermatozoa into oocytes.

We observed that in MII oocytes penetrated by a single
spermatozoon during maturation in vitro, the level of IP3
receptor was lower than in uninseminated control oocytes
(Figure 5).Design of the experiment (see description in text)Figure 1

Design of the experiment (see description in text).
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Do the oocytes fertilised during maturation have a lower 
level of MPF activity?
We found that oocytes fertilised during maturation and
refertilised at MII underwent activation in spite of lower
number of [Ca2+]i transients accompanying refertilisation.
There was a possibility that introduction of spermatozoon
into maturing oocyte resulted in partial decline of the
MPF activity that allowed oocyte to respond to a weaker
activating stimulus. Since MPF activity can be quantified
using a histone H1 kinase assay [30,31], we compared the
level of histone H1 kinase activity between MII oocytes
which were or were not fertilised during maturation in
vitro. In this experiment we also used in vitro fertilisation
instead of ICSI to introduce spermatozoa into maturing
oocyte

We found that the activity of histone H1 kinase in MII
oocytes penetrated by a single spermatozoon during mat-

uration in vitro and in uninseminated control oocytes was
approximately the same (respectively 28.0 ± 10.8 and
25.5 ± 9.5 arbitrary units, expressed as a relative average
intensity of histone H1 phosphorylation, Figure 6).

Discussion
Oocytes fertilised during maturation can be activated after 
refertilisation in MII and can respond to spermatozoa with 
[Ca2+]i transients
The ability of the oocyte to be activated by spermatozoa
requires a calcium signalling system, which develops dur-
ing oocyte maturation. In ovulated mature oocytes sper-
matozoa trigger [Ca2+]i oscillations that result in oocyte
activation [1-5]. One of the methods used to study how
the ability of the oocyte to respond to activating sperma-
tozoa develops during maturation, is the examination of
the oocyte response to experimental, premature fertiliza-
tion. It was demonstrated previously that immature
oocytes are capable of producing [Ca2+]i transients after
penetration by spermatozoon, but they generate fewer
[Ca2+]i oscillations and cease oscillating earlier than
mature oocytes [25]. In our present study we investigated
whether oocytes that were fertilised by ICSI during matu-
ration, retain the ability to be activated when refertilised
after the completion of the maturation. We also examined
if they can respond to refertilisation with [Ca2+]i oscilla-
tions. We have shown that MII oocytes, which were sub-
jected to double fertilisation, are able to generate
spermatozoa-induced [Ca2+]i increase and to undergo
activation. The frequency of their activation (i.e. comple-
tion of meiotic division and formation of pronuclei) was
similar to the frequency of activation of oocytes that were
fertilised only once, at MII stage. Moreover, 50% of the
oocytes, which were refertilised, reacted to the penetration
by spermatozoa by generating 2 or 3 [Ca2+]i transients.
The fact that not all of refertilised oocytes which under-
went activation generated [Ca2+]i oscillations, should not
be regarded as contradictory, since it is known that a
monotonic rise in [Ca2+]i is sufficient to activate aged
oocytes [32-34]

Frequency of the activation of oocytes in different experi-mental variantsFigure 2
Frequency of the activation of oocytes in different experi-
mental variants. See text for the description of the variants of 
the experiment. Differences between "ICSI + IVF" and "ICSI" 
variants, as well as between "IVF" and "no ICSI and no IVF" 
variants are statistically significant (p < 0.05).
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Table 1: Frequency of activation of in vitro maturing oocytes which were fertilised, during maturation, by ISCI, 1 – 4 h after GVBD, 
refertilized at metaphase II (ICSI + IVF) and were fixed for cytological examination 7 – 8 h after refertilisation. Control, in vitro 
maturing oocytes were inseminated once: only by ICSI during maturation (ICSI), only in MII stage (IVF) or were not inseminated at all 
(no ICSI and no IVF).

Proportion (%) of oocytes with

2 PB pronuclei

ICSI + IVF 29/39 (78)a 27/31 (87)c

IVF 35/37 (95)a 25/27 (93)c

ICSI 0/27 (0)b 3/27 (11)d

No ICSI and no IVF 0/45 (0)b 2/37 (5)d

a, b and c, d Values with different superscripts are significantly different (p < 0.05).
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Similar type of experiment was performed previously by
Tang et al. [26]. However, these authors microinjected
mouse oocytes during maturation with bovine sperm
extracts, rather than with whole spermatozoa. They dem-
onstrated that such oocytes cannot generate [Ca2+]i oscil-
lations in response to second injection with the sperm
extract performed after completion of maturation. These
oocytes produced only a single [Ca2+]i transient. We
believe that the Ca2+ response of refertilised oocytes
observed in our experiments was closer to response of the
oocyte during natural fertilisation than that observed by
Tang et al. [26] in their experiments. This difference can be
partially explained by the fact, that Tang et al. [26]
injected oocytes with an amount of sperm extract which
was an equivalent of approximately 2 – 3 spermatozoa/
oocyte and we injected each oocyte with a single sperma-
tozoon, which introduced a smaller amount of sperm-
derived, oocyte-activating factor. Studies examining the
effect of polyspermy [35] and the effect of different quan-
tity of microinjected PLCζ mRNA [12] on oocyte Ca2+

response showed positive correlation between the quan-
tity of sperm activating factor introduced and the fre-
quency of [Ca2+]i oscillations. It is possible that the
introduction of larger than normal i.e., as it happens dur-
ing monospermic fertlisation, quantity of sperm activat-
ing factor causes stronger than normal inactivation of IP3
receptors [14,36] and in consequence lowers the oocyte
Ca2+ releasing ability and eliminates [Ca2+]i oscillations.
Another reason for the discrepancy between our results
and the observations made by Tang et al. [26] could be
related to differences in the amounts of activating factor in
spermatozoa of different species. It was demonstrated pre-
viously that protein extracts prepared from spermatozoa
of different species induce [Ca2+]i oscillations of untypical
parameters in human [37] and mouse [38] oocytes. Tang
et al. [26] used sperm extracts prepared from bovine sper-
matozoa to induce Ca2+ response in mouse oocytes. There
is a possibility that bovine sperm extract induces stronger
stimulation, and in consequence, stronger inactivation of
IP3 receptors than activating factor from a single mouse
spermatozoon, and results in a weaker Ca2+ response after
repeated microinjection with sperm extract. Thus the con-
clusion of Tang et al. [26] that [Ca2+]i oscillations are
dependent on the mechanism that functions only once in
mouse oocytes and is abolished by sperm-derived oocyte-

activating factor is probably applicable only to their exper-
imental system and is not universally correct.

Refertilisation of oocytes fertilised during maturation 
generates lower number [Ca2+]i transients than in oocytes 
fertilised only once
We observed that at least some oocytes, which were refer-
tilised, were able to generate more than one [Ca2+]i tran-
sient as a reaction to penetration by spermatozoa.
However, number of transients in these oocytes was sig-
nificantly lower than in oocytes that were fertilised only
once at MII. The most likely explanation of this observa-
tion is that oocytes, which were fertilised during matura-
tion had a lower number of IP3 receptors present in ER
that normal mature oocytes. As it was already mentioned
above, it was shown that IP3 receptors are downregulated
after fertilisation by proteolytic degradation [14,36]. Dur-
ing fertilisation an intense production of IP3 is observed
due to the activity of spermatozoon derived phospholi-
pase Cζ [13,39-41]. Binding of IP3 to IP3 receptors causes
Ca2+ release and subsequently leads to the degradation of
IP3 receptors by the proteasome [14]. The loss of IP3 recep-
tors was also observed in immature oocytes upon penetra-
tion by spermatozoa, which demonstrates that
degradation of IP3 receptors does not require the normal
events associated with oocyte activation [36]. We also per-
formed a preliminary experiment on the effect of the
sperm penetration during maturation on the level of IP3
receptors in oocytes. We found that at MII stage oocytes
fertilised during maturation had much less IP3 receptors
than uninseminated control oocytes. The role of the deg-
radation of IP3 receptors in regulation of [Ca2+]i transients
during fertilisation was demonstrated by Brind et al. [36]
who exposed maturing oocytes to a potent IP3 receptor
agonist adenophostin A. In these oocytes adenophostin
caused downregulation of IP3 receptors to a greater extent
than spermatozoa because its 100-fold greater potency
than IP3 and its resistance to IP3-metabolising enzymes
[42]. The oocyte response to the adenophostin was dose
dependent: oocytes treated with low dose responded to
fertilisation at MII stage with only one [Ca2+]i transient
and oocytes exposed during maturation to higher concen-
tration of adenophostin had their Ca2+ signalling com-
pletely abolished [36]. These results strongly support our
conclusion that the downregulation of IP3 receptors in

Table 2: Number of [Ca2+]i transients generated in M II oocytes in response to spermatozoa during 60 min from fertilization.

Proportion (%) of oocytes in which given number of [Ca2+]i transients were observed:

0 1 2 3 4 >4

ICSI + IVF 3/10 (30) 2/10 (20) 4/10 (40) 1/10 (10) 0 0
IVF 0 0 5/20 (25) 8/20 (40) 6/20 (30) 1/20 (5)
sham + IVF 0 0 2/12 (17) 5/12 (42) 1/12 (8) 4/12 (33)
Page 5 of 11
(page number not for citation purposes)



BMC Developmental Biology 2007, 7:72 http://www.biomedcentral.com/1471-213X/7/72
immature oocytes after ICSI was responsible for the
reduced [Ca2+]i oscillations during refertilisation.

Activation of refertilised oocytes, which were fertilised 
during maturation, does not result from the lower level of 
MPF activity
The increase of [Ca2+]i that occurs during fertilisation
leads to the degradation of M-phase cyclins and in conse-
quence to the drop of the activity of MPF kinase and to the
exit of oocytes from the MII block [43-45]. Our present
results demonstrate that refertilised oocytes undergo acti-
vation despite the lower, than in normal fertilization,
number of [Ca2+]i transients generated by refertilising
spermatozoon. At first we suspected that fertilisation of
oocytes during maturation could lower the level of MPF
activity in these oocytes. However, we found that this was
not the case; matured in vitro oocytes, which were ferti-
lised during maturation had similar levels of MPF activity
to those of unfertilized oocytes. Thus, the MPF activity of

MII oocyte that developed from the oocyte fertilised dur-
ing maturation, is not affected by the premature fertilisa-
tion.

Kubiak [33] has shown that after ovulation, the MII
oocytes gradually develop the ability for activation. Soon
after reaching MII stage (13 h after the administration of
hCG) oocytes were able to be activated by the sperm, but
not by the parthenogenetic factor (ethanol), which is
known to generate only a single [Ca2+]i transient [46].
However, the activation of MII oocytes, which were iso-
lated 16 – 17.5 h after hCG, was induced with equal effi-
ciency by [Ca2+]i oscillations (induced by spermatozoa)
and by a single [Ca2+]i transient (produced by ethanol)
[33]. In our experiments MII oocytes, which completed
maturation in vitro, were refertilised approximately 18 h
after hCG, i.e at the time when prolonged [Ca2+]i oscilla-
tions most likely are no longer necessary for full activa-
tion.

[Ca2+]i oscillations, measured as the ratio of Fura-2 fluorescence excited sequentially at 340 and 380 nm every 10 sFigure 3
[Ca2+]i oscillations, measured as the ratio of Fura-2 fluorescence excited sequentially at 340 and 380 nm every 10 s. (A) matur-
ing oocyte fertilised with ICSI. Due to technical reasons the first [Ca2+]i spike was not recorded. (B) MII oocyte, which was fer-
tilised by ICSI during maturation and was refertilised after completion of the maturation, (C) MII oocyte, which during 
maturation was subjected to sham microinjection and was fertilised after completion of the maturation, (D) MII oocyte, which 
matured in vitro, and was fertilised at the end of maturation.
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In summary, we have demonstrated that when maturing
mouse oocytes were fertilised by ICSI, they did not
develop a membrane block to the polyspermy, and could
be refertilised at MII. Oocytes, which were refertilised
underwent activation, extruded PB2s and formed pronu-
clei with similar frequency as control in vitro matured
oocytes, which were fertilised only once at MII stage. Acti-
vation after refertilisation was accompanied by Ca2+

response, which in 50% of oocytes had a form of [Ca2+]i
oscillations. However, the number of [Ca2+]i transients
observed in refertilised MII oocytes was significantly
lower than in oocytes fertilised only once at MII.

Conclusion
We demonstrated that in mouse oocytes the Ca2+ signal-
ling pathway that is responsible for generation of [Ca2+]i
oscillations during fertilisation and for activation of the
oocyte, is not completely inactivated after premature pen-
etration by spermatozoon. Thus, we have shown that in
mouse oocyte, the molecular mechanism, which is
involved in oscillatory Ca2+ response to fertilisation can
be switched on more than once.

Methods
Animals
F1 (C57Bl/6 × CBA/H and CBA/H × C57Bl/6) female (4 –
12 weeks old) and male (4 – 6 months old) mice were
used for the experiments. Animal studies were approved
by Local Ethic Committee No.1 in Warsaw, Poland,
according to the European Union Council Directive 86/
609/EEC of 24 November 1986 on the approximation of
laws, regulations and administrative provisions of the
member states regarding the protection of animals used
for experimental and other scientific purposes [47,48]. All
animals were raised on the premises.

Chemicals, media and conditions of in vitro culture of 
oocytes
All chemicals, unless otherwise stated, were obtained
from Sigma-Aldrich Sp. z o.o. (Poznan, Poland). Medium
M2 (medium 16 buffered with HEPES [49]) containing
bovine serum albumin (BSA, 4 mg/ml) was used for col-
lection of immature oocytes, MII oocytes and for culture
of MII oocytes inseminated in vitro. In vitro maturation of
oocytes was carried out in DMEM. For ICSI, spermatozoa
were suspended in M2 (without BSA) supplemented with
pirovinylopirolidone (PVP MW 360000, 12% solution).
Microinjection of spermatozoa was carried out in M2
(without BSA) supplemented with polyvinyl alcohol
(PVA, 0.1 mg/ml). For in vitro fertilization spermatozoa
were capacitated in fertilization medium [50] containing
BSA (4 mg/ml). In vitro fertilization was performed in the
same medium. Fertilization medium was preincubated
before the beginning of experiment for about 24 h at
37.5°C in a humidified atmosphere of 5% CO2 in air. In
vitro culture was carried out in droplets of medium under
mineral oil in plastic dishes (35 × 10 mm, Falcon, Becton
Dickinson, USA) at 37.5°C in a humidified atmosphere
of 5% CO2 in air.

Obtaining of germinal vesicle (GV, immature) oocytes
Follicular development was stimulated in F1 female mice
by an intraperitoneal injection of 10 IU of pregnant mare
serum gonadotropin (PMSG, Folligon, Intervet, Nether-
lands). Forty-seven to fifty-one hour later females were
killed by cervical dislocation. Fully grown oocytes were
released from ovarian antral follicles punctured with a
needle into M2. Oocytes were freed from cumulus cells by

Western blot analysis of IP3 receptor in mouse oocytes which matured in vitro, and were fertilised during maturation, and in in vitro matured oocytes, which were not fertilisedFigure 5
Western blot analysis of IP3 receptor in mouse oocytes 
which matured in vitro, and were fertilised during maturation, 
and in in vitro matured oocytes, which were not fertilised. (a) 
in vitro matured oocytes in MII stage, 100 oocytes per lane, 
(b) oocytes fertilized during in vitro maturation, which 
achieved MII stage, 100 oocytes per lane.
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Mean number of [Ca2+]i transients generated in MII oocytes in response to spermatozoa during 60 min after fertilizationFigure 4
Mean number of [Ca2+]i transients generated in MII oocytes 
in response to spermatozoa during 60 min after fertilization. 
Differences between "ICSI + IVF" variant and "sham+IVF" and 
"IVF" variants are statistically significant (p < 0.05).
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pipetting, and were cultured in M2 for 2 h. Only oocytes
that during that time underwent germinal vesicle break-
down (GVDB) were used for further manipulations.

ICSI procedure
One to four hours after GVBD oocytes were injected with
spermatozoa according to the method of Kimura and Yan-
agimachi [51]. A piezo-driven micropipette (MW Piezo
Stepper PM 10-1, Leica, Germany) was used. Micromanip-
ulations were performed under an inverted microscope
(Diaphot 300, Nikon, Japan) equipped with Hoffman
modulation contrast optics. The microscope stage was

cooled with a temperature-controlling plate (Semic Bioe-
lektronika, Kraków, Poland) to about 12–14°C. One hour
before microinjection spermatozoa were released from
caudae epididymides of F1 male mice into M2. After disper-
sal of the spermatozoa, a small volume (~1 μl) of the sus-
pension was transferred to a droplet of M2 without BSA
supplemented with PVP. Oocytes were placed in a droplet
of M2 without BSA supplemented with PVA and in the
same droplet the microinjection was performed. Several
piezo pulses (speed 100 mm/s, step size 1 μm) were given
to allow zona pellucida penetration. The oolemma was per-
forated with 2 – 3 piezo pulses and the spermatozoon was
introduced into the oocyte. Injected oocytes were kept for
10 min in micromanipulation medium on the cooled
stage. They were then transferred to M2 for 10 min at
room temperature and subsequently incubated in DMEM
at 37.5°C under 5% CO2. On average it took 5 – 10 min
to inject spermatozoa into a group of 5 – 6 oocytes. Dur-
ing one experiment microinjection was carried out for 2 –
3 h.

In vitro maturation of oocytes
Oocytes injected with spermatozoa and uninjected con-
trol oocytes were placed in small droplets of DMEM and
cultured for 12 – 14 h. Oocytes were subsequently exam-
ined under inverted microscope (Labovert FS, Leitz, Ger-
many). Only oocytes, which extruded the first polar body
(PB1), were selected for further procedure.

In vitro fertilisation
Zonae pellucidae were removed by exposure of oocytes to
acidic Tyrode's solution (pH 2.5; [52]). Next, the oocytes
were washed in M2 and transferred to M2 for 30 min incu-
bation, subsequently oocytes were fertilised in vitro. Sper-
matozoa from caudae epididymides of a mature F1 male
mouse were suspended in 0.5 ml of fertilization medium
and incubated for 1.5 h to allow capacitation and sponta-
neous acrosome reaction. Concentration of spermatozoa
was approximately 2 × 107 spermatozoa/ml. Zona free
oocytes were placed in 100 μl droplets of fertilisation
medium and 1 μl of the preincubated suspension of sper-
matozoa was added (final concentration was approxi-
mately 2 × 102 spermatozoa/ml). Control oocytes were
incubated in fertilisation medium without spermatozoa.
30 min after the insemination, oocytes were transferred to
M2 and were gently pipetted several times to remove
loosely attached spermatozoa. Subsequently oocytes were
cultured in M2 for 7 – 8 h. Cultured oocytes were exam-
ined under inverted microscope at 40 min intervals, for
the signs of activation (i.e. extrusion of the second polar
body (2 PB) and pronuclear formation).

Cytological examination
Seven – eight hours after the insemination oocytes were
fixed with Heidenhein's fixative. Whole-mount prepara-

Histone H1 kinase activity in MII oocytes, which matured in vitro, and were fertilised during maturation, and in in vitro matured oocytes, which were not fertilisedFigure 6
Histone H1 kinase activity in MII oocytes, which matured in 
vitro, and were fertilised during maturation, and in in vitro 
matured oocytes, which were not fertilised. (A) autoradiog-
raphy showing the intensity of incorporation of [32P] into 
exogenous H1 histone in lysates prepared from MII oocytes. 
Each line corresponds to the activity prepared from 5 
oocytes. (a) control, uninseminated oocytes, (b, c) oocytes, 
which were fertilised during maturation, 1 – 4 h after GVBD. 
(B) mean activity of histone H1 kinase in MII oocytes, which 
were fertilised during maturation and in MII oocytes, which 
were not fertilised. Differences between these two groups 
are not statistically significant (p > 0.05).
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tions were stained with haematoxylin according to the
method of Tarkowski and Wróblewska [53].

Measurement of intracellular Ca2+

To monitor changes in the level of [Ca2+]i the oocytes
microinjected with spermatozoa during maturation in
vitro were cultured until they reached MII stage. Subse-
quently, oocytes were loaded with the Ca2+-sensitive fluo-
rescent dye, Fura-2 AM (Molecular Probes, Leiden,
Netherlands). For loading, oocytes were incubated in 2
μm Fura-2 AM in M2 for 30 min as described by Kline and
Kline [54,55]. After loading the oocytes were washed in
M2 and zonae pellucidae were removed with acidic
Tyrode's solution. Next oocytes were transferred to a
heated (37°C) chamber (Chance proper LTD, Smethwick,
Warley, UK) containing M2 without BSA and 1 μl of the
suspension of capacitated spermatozoa was added (except
maturing oocytes in which [Ca2+]i oscillations were exam-
ined after ICSI). Chamber was put on the stage of inverted
microscope (Diaphot, Nikon, Japan). Fura-2 was excited
sequentially at 340 and 380 nm every 10 s, and the fluo-
rescence was collected using 10× objective. The emitted
light was passed through a long pass filter (510 nm) and
was gathered using PCC (Photon Counting Camera,
Retiga 1300, Q Imaging, Burnaby, Canada). Oocytes were
observed for 2 h. After this time fluorescent signal corre-
sponding to [Ca2+]i transients ceased even in control MII
oocytes, which were supposed to generate long-lasting
[Ca2+]i oscillations. This was probably caused by com-
partmentalisation of the Fura stain. Data was analyzed
with AQM 6.0 software (Kinetic Imaging LTD, Liverpool,
UK).

Histone H1 kinase assay
Activity of MPF was calcuated as an activity of kinase of
histone H1 according to the method described by Verlhac
et al. [56], in MII oocytes, which during maturation in
vitro were inseminated approximately 3 h after GVBD.
Preparation of oocytes and spermatozoa and in vitro
insemination were carried out as described above. After
insemination oocytes were cultured in DMEM for 12 – 14
h and only oocytes, which extruded the first polar body
(PB1), were selected for MPF assay. To select monosper-
mic oocytes from polyspermic ones, oocytes were incu-
bated in Hoechst 33342 dye solution (100 ng/ml of M2)
to stain chromatin. Next, the oocytes were washed in M2
and were transferred into drops of M2 in glass-bottom
dish (WillCo-dish, WillCo Wells BV, Amsterdam, Nether-
lands). Oocytes were examined under inverted epifluores-
cence microscope (Axiovert 135, Carl Zeiss, Germany).
Only oocytes in which only one group of spermatozoon
derived chromatin was visible were selected, washed in
PBS and pooled in groups of 5 in 1 μl drops of PBS. Sam-
ples were frozen and stored in -80°C.

3 μl of lyses buffer (containing 0.16 M glicerophosphate,
40 mM EGTA (pH 7.3), 30 mM MgCl2, 2 mM DTT, pro-
tease inhibitor (diluted 1:20, Complete Protease Inhibitor
Cocktail, Roche, Germany), and BSA (11.3 mg/ml); final
concentrations) was added to each sample. Oocytes were
then lysed by freezing and thawing, and subsequently 1.5
μl of reaction buffer (containing 0.5 mg/ml histone H1, 5
mM ATP and 1.67 μCi/μl [32P]-ATP; final concentrations)
was added. Samples were incubated 30 min in 30°C. The
reaction was stopped by addition of Laemmli buffer [57].
Samples were boiled for 10 min and proceeded for 12%
SDS-PAGE. Gels were exposed to autoradiography films at
-80°C for 24–72 h. Intensity of bands on autoradiography
films was measured with GelDoc using software Quantity
One 4.2.2. (Bio-rad, Hercules, Canada). It reflected inten-
sity of histone H1 phosphorylation and enabled us to
quantify histone H1 kinase (MPF) activity. The experi-
ment was repeated eight times.

Examination of the level of IP3 receptors
The level of IP3 receptor was examined in monospermic
MII oocytes, which were obtained according to the proce-
dure described above for the histone H1 assay. Cell lysates
from 100 oocytes were mixed with 4× NuPage LDS sam-
ple Buffer and 10× NuPage Sample Reducing Agent (Inv-
itrogen, Carlsbad, CA, USA) and were heated for 10 min
in 70°C. The samples were subjected to NuPage Novex 3–
8% Tris-Acetate gels (Invitrogen, Carlsbad, CA, USA) and
separated proteins were transferred onto PVDF mem-
branes (Hyperbond-P, Amersham Biosciences, Little
Chalfont Buckinghamshire, UK), which were probed with
a rabbit polyclonal antibody (Rbt03) raised against a 15
amino acid peptide sequence of the C-terminal end of the
IP3 receptor-1 subtype [58] diluted 1:500 in 5% non-fat
milk in TTBS. A goat anti-rabbit antibody (Pierce, Rock-
ford, IL, USA) conjugated with horseradish peroxidase
diluted 1:7000 was used as a secondary antibody in 1 h
incubation. Detection was performed by the enhanced
chemiluminescence technique using SuperSignal West
Dura Extended Duration Substrate reagents (Pierce)
according to manufacturer's instruction. The experiment
was performed three times.

Photographic documentation and statistical analysis
Oocytes were photographed in the microscope equipped
with a digital camera (Coolpix 995, Nikon, Japan). Statis-
tical analysis of results was performed using Fisher's exact
test and t-Student's test.
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