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Abstract: Stress adaptation is of utmost importance for the maintenance of homeostasis and, therefore,
of life itself. The prevalence of stress-related disorders is increasing, emphasizing the importance of
exploratory research on stress adaptation. Two major regulatory pathways exist: the hypothalamic–
pituitary–adrenocortical axis and the sympathetic adrenomedullary axis. They act in unison, ensured
by the enormous bidirectional connection between their centers, the paraventricular nucleus of
the hypothalamus (PVN), and the brainstem monoaminergic cell groups, respectively. PVN and
especially their corticotropin-releasing hormone (CRH) producing neurons are considered to be the
centrum of stress regulation. However, the brainstem seems to be equally important. Therefore,
we aimed to summarize the present knowledge on the role of classical neurotransmitters of the
brainstem (GABA, glutamate as well as serotonin, noradrenaline, adrenaline, and dopamine) in stress
adaptation. Neuropeptides, including CRH, might be co-localized in the brainstem nuclei. Here we
focused on CRH as its role in stress regulation is well-known and widely accepted and other CRH
neurons scattered along the brain may also complement the function of the PVN. Although CRH-
positive cells are present on some parts of the brainstem, sometimes even in comparable amounts
as in the PVN, not much is known about their contribution to stress adaptation. Based on the role
of the Barrington’s nucleus in micturition and the inferior olivary complex in the regulation of fine
motoric—as the main CRH-containing brainstem areas—we might assume that these areas regulate
stress-induced urination and locomotion, respectively. Further studies are necessary for the field.

Keywords: stress; brainstem; PVN; CRH; Barrington’s nucleus; inferior olivary complex

1. Introduction

Evolution enabled complex systems to develop intricate and dynamic biological
functions not only capable to restore, but also maintain the equilibrium of their internal
environment [1]. Any stimuli, either real or perceived (psychogenic), that threaten this bal-
ance can be defined as stressors. Psychogenic stressors are able to activate the adaptational
systems even without a physiological stimulus [2]. These psychogenic stressors activate
the brain in a top-down order and the descending information is summed up in the hy-
pothalamus, more precisely in the paraventricular nucleus (PVN). However, the ascending
information emerging from the internal milieu is first collected in the brainstem [3], then
transmitted further to the PVN. Especially during systemic immune challenges, bidirec-
tional communication exists between the PVN and the brainstem [4].

Thus, external and internal stimuli activate the hypothalamic center of the hypothalamic–
pituitary–adrenal (HPA) axis, the PVN, as a “final common pathway” [5] (Figure 1). Activa-
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tion of the HPA axis is considered a hallmark of the stress response as it is responsible for
the orchestration of the efficient usage of available energy in the body [6]. Neurosecretory
neurons in the medial parvocellular region of the PVN release adrenocorticotropin (ACTH)
secretagogues such as corticotropin-releasing hormone (CRH) and arginine vasopressin,
and project to the blood vessels in the median eminence [7]. In response, the anterior
pituitary secretes ACTH, which causes the adrenal cortex to synthesize and release gluco-
corticoids [8]. Negative feedback, a process in which end-products (glucocorticoids) limit
their own release, is used to modulate the activity of the HPA axis due to the necessity to
temporally constrain secretion [6]. Both inhibition and activation of glucocorticoid release
is a well-coordinated process involving fast neuronal activation and timely inhibition. The
inhibitory process can be fast and cease within minutes, resulting in the termination of PVN
neural activity and ACTH release that characterizes an adaptative response to stress [9].

Figure 1. Main regulatory pathways of stress adaptation. There are two major limbs of stress
adaptation: (1) the hypothalamic–pituitary–adrenocortical axis originating from the paraventricular
nucleus of the hypothalamus, as well as (2) the sympatho–adrenomedullary system originating in
the brainstem. Abbreviations: ACTH: adrenocorticotropin hormone, CRH: corticotropin-releasing
hormone, SPN: sympathetic preganglionic neurons. This figure was created in BioRender.

The central regulatory role of the hypothalamus is without doubt, but even the
father of the stress concept, Hans Selye, recognized the importance of the sympatho–
adrenomedullary system (SAS) during stress. According to his general adaptation syn-
drome theory, during the most acute phase of the stress response, there is a sympathetic
activation leading to general changes in body homeostasis [10]. The ultimate goal is to
avoid acute danger, which can be reached by a “fight or flight” response and translates to
muscle activity [11]. To ensure optimal muscle function, blood supply has to be increased
(tachycardia, hypertension), larger amounts of O2 (hyperpnea) and glucose (catabolic
processes) should be provided, and the increased body temperature should be also nor-
malized. These processes are regulated by catecholamines released from the sympathetic
nerve endings (mainly noradrenaline (NA), also known as norepinephrine) or from the
adrenal medulla (mainly adrenaline) (Figure 1). Both systems originate in the brainstem.
Central pontine A5 noradrenergic neurons are directly connected to spinal sympathetic
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preganglionic neurons (SPNs), composing the base for SAS activity control [12]. The SPNs
are located within the spinal cord. Their axons travel across the ventral horn, exit through
the ventral roots, and reach sympathetic ganglia, where they form synapses with post-
ganglionic neurons. The adrenal medulla is a special sympathetic ganglion, where the
postsynaptic cells directly secret adrenaline into the bloodstream. Hence, the SNPs are the
last control point for the brain on changes in sympathetic outflow [13].

The above-mentioned systems (HPA and SAS) are the basis of stress adaptation. This
process is of utmost importance for the maintenance of homeostasis and, therefore, of
life itself. Based upon Hans Selye’s theory, PVN, and especially its CRH neurons, are
considered to be the centrum of stress regulation. However, as mentioned above, the
brainstem seems to be equally important and other CRH neurons scattered all over the
brain may also complement the PVN. Therefore, in this review, we will focus on the role of
the brainstem in stress adaptation with special attention to CRH.

2. Acute or Chronic Stress

The outcome of neuronal responses to stressors is determined by their intensity, length,
and frequency and is highly dependent on past stress experiences, manifested not only via
behavioral patterns but also via endocrine changes [14,15].

Most of the studies focusing on stress regulatory pathways examined acute stressors
due to less labor requirements and ethical considerations. However, chronic stress is
implicated more in stress-related disorders. It is considered a major risk factor for almost
every disorder, as it surpasses the regulatory capacity and adjustive resources of the
organism and produces maladaptive responses [16]. Sometimes it is hard to properly
distinguish between one and another, as recent work suggests that acute stress may also
provoke long-lasting molecular and anatomical changes in the brain [17].

Nevertheless, in 1994, Greti Aguilera suggested that during chronic stress the activity
of the HPA axis is maintained by vasopressin rather than CRH as it is less sensitive to the
glucocorticoid feedback [18]. Subsequent studies (including experiments from Aguilera’s
laboratory [19]) failed to confirm this idea [20,21].

Moreover, the general belief is that SAS does not contribute to chronic stress regulation
(see its activation during the first phase of the general adaptation syndrome) [22]. However,
several weeks of repeated immobilization results in elevated baseline catecholamine levels
with reduced reactivity to a new homotypic challenge, but an exaggerated response to a
heterotypic stimulus. Moreover, the level of the rate-limiting catecholamine synthesizing
enzyme, tyrosine hydroxylase (TH), was increased in the noradrenergic brainstem neu-
rons after repeated immobilization, electric foot-shock, and chronic social stress. Thus,
adaptation to chronic stressors occurs in the SAS, too.

All in all, there is still a need to address the gap between acute and chronic stress-
regulation [23].

3. The PVN-CRH Neurons and Stress Adaptation

CRH neurons are most abundant in the hypothalamic PVN region [24] and play
a crucial role in the body’s adaptation to stress. They initiate hormonal cascades and
coordinate stress-related behaviors through direct projections to limbic and autonomic
brain systems [14,25,26].

Acute stress increases the steady-state CRH mRNA levels four hours after its initia-
tion [27]. In the case of chronic, repeated stimuli desensitization of the ACTH response is
observed, which also promotes the return of the transiently elevated CRH transcription to
basal levels [28]. In contrast to the above-mentioned repeated homotypic stressor-induced
inhibition, the PVN-CRH neuron activity is maintained or enhanced by heterotypic stres-
sors [29]. Paradoxically, stress among certain conditions—such as lactation, or in the early
stages of life, known as the stress hyporesponsive period—is characterized by decreased
CRH expression and attenuated ACTH responses [30].
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Daily fluctuation can be observed in the activity of PVN-CRH neurons which is
most likely controlled by the suprachiasmatic nucleus of the hypothalamus (SCN) and
is responsible for the development of the characteristic circadian pattern of HPA axis
activity [31]. Indeed, the lowest level of glucocorticoids (and their upstream regulators)
can be found during the beginning of resting phases (e.g., at the beginning of the night
in humans, while in rodents at the beginning of the light period since they are nocturnal
animals). Therefore, stress studies are generally conducted during this period allowing
the identification of stressor-induced activations. Changing this long-standing practice
should be considered, as stressors do not usually reach people during sleep, so studying
stress processes in rodents during early light, thus in their sleeping period, may result in
misleading information. However, the circadian rhythm may be upset by the sustained
growth of glucocorticoids during chronic stress situations [32].

In relation to stress, CRH neurons, and their receptors also play a key role in the
processes of learning and memory. Some studies have proved that a transient increase
in CRH levels under acute stress promotes learning and memory development [33–35].
Acute stress results in CRH expression in hippocampal inhibitory interneurons which
exert their effects through CRH receptor 1 (CRHR1), resulting in spine loss and dendritic
remodeling of CA3 pyramidal neurons [36]. The glucocorticoid elevation induced apical
dendritic retraction of CA3 pyramidal neurons may drive—among others—the deficit of
spatial memory [37]. On the other hand, chronic stress reduces the dendritic complexity of
CA3 neurons, which upsets the function of the HPA axis and leads to elevated glucocorti-
coid levels [38]. In mice, CRHR1 deficiency in the forebrain prevents the effects of chronic
stress on CA3 dendritic length and complexity [26]. These findings confirmed the role of
hippocampal CRH-CRHR1 signaling in modulating cognitive, structural, and molecular
adaptations to chronic stress.

A close, albeit complex bidirectional relationship between central regulation of stress
responses and energy homeostasis is assumed [39,40]. Depending on the duration and
intensity of stress, the activity of pre-autonomic PVN neurons has an inhibitory effect on
digestive processes [41]. Excessive food intake is thought to suppress, while prolonged
hunger exacerbates stress responses, which can be explained by the fact that PVN-CRH
neurons also receive inputs related to nutrition [42]. These observations confirmed that
local hypothalamic mechanisms act at the level of CRH neurons and their afferent terminals
are mutually integrated with the energy balance.

Food might also be considered, as reward and reward consumption allows rapid and
strong inhibition of PVN-CRH neurons, resulting in a reduction of anxiety-like behavior
and stress hormone surges [43]. Other authors also confirmed that fine foods reduce the
HPA response to stress [44,45].

Considering pathological states, anxiety and depression are the best-known stress-
related disorders. They are strongly connected to disturbed stress adaptation to chronic
stimuli. Indeed, increased CRH content was found in the cerebrospinal fluid (CSF) of
depressed patients [46]. Moreover, non-suppression in the dexamethasone test —testing
altered feedback sensitivity—has been associated with an increased risk of suicide in
depressed patients [47].

4. Function of Brainstem in Stress

The brainstem connects the cerebrum, cerebellum, and spinal cord [48]. Numerous
internal and peripheral sensory information directly activate the brainstem, as it contains
important areas of many vital functions for life, such as breathing, consciousness-sleep,
blood pressure, and heart rate. All of these vital processes are adapting to the situation
during stressor exposure. On the other hand, even external, physical, and psychological
stressors activate the SAS, originating also in the brainstem and regulating the autonomic
output in mammalian physiology [3]. Moreover, a bidirectional connection exists between
the HPA and SAS [4].
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4.1. Some Anatomical Considerations

The brainstem is composed of four sections in descending order: the diencephalon,
midbrain, pons, and medulla oblongata [48]. Their cell bodies are arranged into important
brain nuclei forming the grey matter. However, the origin of the white matter might be
outside of the brainstem, as it contains many traversing pathways. Albeit, some of the
white matter tract cell bodies are located within the brainstem as well and both receive
and send axons to the periphery forming the so-called somatosensory pathways and the
corticospinal tracts, respectively. Ten of the twelve cranial nerves arise from their respective
brainstem nerve nuclei. The efferent and afferent connections with higher-order brain
centers are also dense, and interaction with hormonal regulation may also occur here. For
example, there is mounting evidence that sex hormones modulate autonomic physiology
at the level of the brainstem [49].

4.2. Neurotransmitters

Classical neurotransmitters are stored in small synaptic vesicles (SSV) and released first
after short action potential bursts [50,51]. The most important inhibitory neurotransmitter
of the mammalian brain is gamma-aminobutyric acid (GABA) [52]. On the other hand, the
main excitatory neurotransmitter, glutamate, is also abundant. Monoamine transmitters
(serotonin or catecholamines such as NA, adrenaline, and dopamine (DA)) are also well-
known, together with acetylcholine. They were first discovered at the periphery and till
now their main role is supposed to be the sympathetic—parasympathetic regulation. They
can be stored either in SSV or in large dense-core vesicles (LDCV) [53]. LDCV might be
released extrasynaptically via the so-called non-synaptic [54] or volume transmission [55].
These small molecules might be part of normal cell metabolism, therefore, ubiquitous in
all cells. Moreover, they are hard to detect, and thus, neurons operating with them are
characterized by the specific vesicular transporters (vesicular GABA transporter, VGAT
for GABAergic neurons; vesicular glutamate transporter, VGluT for glutamate; serotonin
transporter, SERT for serotonin, etc.). Furthermore, their expression, detected at the mRNA
level, can be followed in the cell bodies at the site of the origin of the efferents, while
the proteins are present in axon-terminals, in the projection areas. These areas rarely
overlap, but the GABAergic neurons are exceptions as they mostly form a local interneuron
network [56].

Besides classical, small molecules all neurons contain several peptides, which are
stored in LDCV and released upon stronger activation or extrasynaptically [51,55,57]. In
relation to stress, CRH is the best-known neuropeptide transmitter. In fact, in the PVN, it
is colocalized with glutamate characterized by VGluT2 [58]. In other brain areas, e.g., in
the central amygdala (CeA) and bed nucleus of stria terminalis (BNST), it can be found in
GABAergic neurons [59].

4.2.1. Inhibition: GABA

GABA is synthesized from glutamate by decarboxylation (by the enzyme glutamate
decarboxylase, GAD). It was first discovered in rotten pancreas in 1912, while in the 1950s
its presence was confirmed in the mammalian brain with negligible amounts in other
organs [60]. The majority of the synapses in the central nervous system (CNS) are GABAer-
gic [61–63]. An interesting feature of these GABAergic neurons is their colocalization,
e.g., with CRH. Some CRH-expressing, GABAergic, long-range-projecting neurons in the
extended amygdala (i.e., BNST) innervate the ventral tegmental area (VTA) and may alter
anxiety [64]. Paradoxically, GABA may also co-localize with glutamate [65]. Although
the function of this colocalization is not clear, one might hypothesize that using multiple
transmitters may serve to reduce the metabolic cost and errors of signaling. Moreover,
during development GABAergic synapses might be stimulatory in contrast to their general
inhibitory role [60]. One paper in 1997 showed that in SCN, GABA activated the neurons
during the day and inhibited them at night [66]. However, this finding was not replicated,
and it seems that the situation in the SCN is rather complex.
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GABA may regulate the body’s physiological response to stress [67] by controlling the
activation of CRH-releasing parvocellular neurons of the PVN [68]. In support, microinjec-
tions of GABA antagonists in the PVN promoted the activation of the HPA axis, resulting
in an increase in the blood glucocorticoid levels [69]. On the other hand, microinfusions
of GABA agonists into the PVN reduced the levels of stress hormones [70]. Due to this,
systemic administration of GABA agonists, such as benzodiazepine, is beneficial for the
treatment of stress-related disorders, e.g., anxiety [61,71,72]. Moreover, in the CSF, brain,
and plasma of depressed patients, a low level of GABA was found, which was not nor-
malized after treatment [73]. Thus, this low GABA function is proposed to be an inherited
biological marker of vulnerability for the development of mood disorders. On the other
hand, GABAA receptor binding density was not altered in the locus coeruleus (LC), the
main noradrenergic centrum with GABAergic innervation, suggesting that LC overactivity
in depression may not be secondary to reduced GABAergic input to the LC [74].

Stress may also modulate the GABAergic system. A mild stressor, e.g., handling
may increase, while stronger stimulus like foot-shock may decrease GABA binding-most
probably reflecting changes in receptor numbers [75]. Additionally, formalin-induced acute
stress resulted in a significant depletion of GABA levels in the lower brainstem as well
as in the hypothalamus but not in the cortical areas [76]. On the other hand, increased
motor and behavioral activity induced by a large dose of amphetamine markedly elevated
the concentrations of GABA only in the major biogenic amine-containing brainstem cell
groups (substantia nigra (SN), LC, and dorsal raphe (DRN)).

The brainstem GABAergic cells may also participate in stress regulation. One of
the important regulatory sites might be the medullary raphe pallidus (RP or B1; see
Section Serotonin) regulating sympathetic responses (e.g., heart rate or body temperature)
via its premotor neurons [77]. RP neurons activate brown adipose tissue, the principal
means for non-shivering thermogenesis, and cutaneous vasoconstriction in the tail, an
important method of conserving body heat in rats. These sympathetic effects serve to
maintain body temperature in a cold environment or to increase it during fever and are
typically accompanied by tachycardia. Indeed, microinjection of the GABAA receptor
agonist muscimol into RP markedly attenuated stress-induced tachycardia. A similar
response was seen after chemical stimulation of the dorsal hypothalamic area (DHA).
Thus, the pathway from DHA neurons to sympathetic premotor neurons in the RP may
constitute a key relay mediating the increase in heart rate seen during emotional stress.
However, GABAergic neurotransmission within the nucleus tractus solitarius (NTS)—a
sensory nucleus transmitting peripheral information to higher-order brain centers—may
also regulate the heart rate during a threatening defense reaction [78].

4.2.2. Excitation: Glutamate

Glutamatergic neurons are classified based on their VGluT content. The three subtypes
discovered so far (VGluT1, 2, and 3) show complementary localization throughout the
brain. The dominant isoform in the cortex is VGluT1, VGluT2 in the brainstem, while
VGluT3 is expressed in certain subcortical nuclei [79].

Being the main excitatory neurotransmitter, the contribution of glutamate to stress
adaptation is without doubt. Indeed, PVN-CRH neurons, the hypothalamic regulator
of the HPA, contain VGluT2 [58]. Moreover, glutamate agonists (N-methyl-D-aspartate,
(NMDA); and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)) may stimu-
late the HPA through the PVN [80], while systemic administration of glutamate antagonists
(NMDA antagonist: MK-801; AMPA antagonist: GYKI52466) may inhibit stressor-induced
glucocorticoid release [81]. Moreover, repeated stress increased spontaneous excitatory
activity in the PVN-containing brain slices [82].

Brainstem glutamatergic neurons may directly influence the activity of the PVN.
Indeed, the periaqueductal gray matter (PAG), zona incerta, subparafascicular nucleus, and
lateral parabrachial nucleus send VGluT2 rich projections to the PVN, while raphe nuclei,
and medullary portions are less implicated in this respect [83]. Glucagon-like peptide
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1 positive cells in the NTS also express VGluT2 and project to the PVN [84] and their
activation result in stress-related hormonal [85–87] and behavioral changes [88].

It was also shown that different stressors may influence the brainstem glutamatergic
system. Mice that underwent chronic mild stress had increased glutamate levels in the
raphe nuclei, but chronic social defeat stress did not yield the same result [89]. Another
study showed that rostral medullary raphe nuclei (B1 and B3, see Section Serotonin)
express c-Fos—a marker of neuronal activation [90]—after social defeat, a model for
psychosocial stress [91]. Furthermore, it was also found that VGluT2-positive dorsomedial
hypothalamic cells innervate VGluT3-positive B1 and B3 nuclei and elicit thermogenesis
through sympathetic activation [92,93]. Rats submitted to chronic stress showed the
classical signs of depressive-like behavior—a stress-related psychopathology—along with
alterations in glutamate receptor (AMPA and metabotropic receptors) mRNA levels in the
brainstem [94]. It is worth mentioning that acute stressor-induced changes were different
from the effects of 2 weeks of repeated stimuli.

Stress may also affect the brainstem reward circuit potentiating substance abuse: social
defeat stress facilitated NMDA receptor-mediated long-term potentiation (LTP)—a model
of synaptic learning—in the VTA as well as the cocaine-induced place preference [95].
On the other hand, inhibiting glutamatergic neurotransmission (via AMPA and NMDA
receptors) in the VTA of stressed rats rescued them from cocaine addiction [96]. These
changes seem to be glucocorticoid dependent, as glutamatergic excitatory synapses are
strengthened in midbrain dopaminergic neurons after glucocorticoid receptor activation
via dexamethasone [97].

4.2.3. Monoamines
Serotonin

The majority of serotonin (also known as 5-hydroxytryptamine, 5-HT)-producing
neurons can be found in the raphe nuclei of the brainstem. There are nine distinct nuclei:
raphe pallidus (B1 or RP), raphe obscurus (B2), raphe magnus (B3), certain cells of the
reticular formation (B4), raphe pontine (B5), dorsal raphe (B6-7 or DRN), and median raphe
(B8-9 or MRN) [98,99]. Based on their antero-posterior localization, they show distinct
projection patterns: the midbrain raphe nuclei (DRN and MRN) mainly innervate the
forebrain, while the nuclei in the pons (B4-5) and medulla (B1-3) project caudally to the
brainstem and spinal cord (see review [98]). Although, for example, the B3 nucleus shows
prominent direct efferent projections to the PVN, the majority of these innervations are not
serotoninergic [100]. These nuclei also receive a wide range of afferents from the forebrain,
among others dense innervation comes from hypothalamic and limbic areas [101–104].
Indeed, direct CRHergic innervation from the PVN might exist as the raphe nuclei express
CRH receptors, and the activity of these receptors modulate the serotonergic system [105],
and behavior [106,107]. However, this modulation was found to be relevant only in the
case of external stressors such as shock [108], restraint [109], tail suspension, or forced
swim stress [107].

The role of the serotoninergic system in stress and especially in depression—one of the
best know stress-related psychopathologies—has been implicated on numerous occasions.
For example, RP regulates sympathetic responses on the heart and body temperature.
Significant c-Fos activity was measured here after cold swim stress [110]. Moreover,
restraint stress-activated nesfatin-1 positive cells in the rostral RP [111]. Cardiovascular
responses are mediated via the activation of 5-HT1A somatodendritic autoreceptors in
the RP: inhibition by the 5-HT1A receptor agonist 8-hydroxy-2-tetraline hydrobromide
(8-OH-DPAT) resulted in the abolishment of heart rate and blood pressure increment upon
various stressors [112]. These were mainly acute effects, but 5-HT is also implicated in
long-term stressor-induced changes. For example, prenatal stress resulted in an anxious
behavioral phenotype in adult rats, which was accompanied by decreased 5-HT1A receptor
mRNA levels in the raphe nuclei and susceptibility to drug abuse [113].
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The inhibition of the rostral RP via the GABAA receptor agonist muscimol resulted in
the absence of tachycardia and hyperthermia upon audiogenic stress [114]. The opposite
is true as well: disinhibition of the nucleus via GABAA receptor antagonist bicuculline
increased the heart rate, arterial pressure, and cardiac sympathetic nerve activity in anes-
thetized rats [115]. Thus, GABA innervation—most probably through local interneurons—
may influence the activity of the serotoninergic neurons.

Similar to the RP, the DRN also showed c-Fos activity upon cold swim stress [110]
and conditioned fear stress [116]. The DRN was already activated after a single injec-
tion of anesthetic, while the B2—a well-known centrum of chemoreception [117] —and
B5 showed enhanced c-Fos positivity only upon moderate stressors [118]. Apparently,
there is a sex difference in the DRN-CRHR1 activity: antagonizing the receptor resulted in
a diminished hormonal response, a high number of c-Fos positive cells, and less anxious
behavior in males, while neurons from female mice showed reduced excitability upon CRH
binding in brain slices [119]. Interestingly, the DRN also regulates maternal care via CRH
receptors [120].

The DRN and MRN seem to play a role in different aspects of stress reactivity. The
mRNA levels of the tryptophane hydroxylase-synthesizing enzyme of serotonin already
increased after a single restraint stress in the MRN, while for a similar stimulation in the
DRN repeated stress protocols were needed [121]. However, chronic social defeat led to
different results: serotonin-system-related mRNA levels (tryptophane hydroxylase, SERT,
monoamine-oxidase, 5-HT1A receptor) were all decreased in the midbrain raphe nuclei
(DRN and MRN) even after 2 weeks in correlation with increased anxiety- and depressive-
like behavior [122]. Electric stimulation of the MRN reduced stressor-induced plasma
corticosterone levels [123]. Moreover, stress adaptation is mediated via 5-HT7 receptor
activation in the MRN [124].

A further connection between stress and the brainstems serotoninergic system is sup-
ported by the monoamine theory of depression and the effectiveness of serotonin reuptake
inhibitors (SSRI) in depression [125]. However, later theories suggested that the main effect
of—at least some—SSRI antidepressants might be via increased neuroplasticity [126].

Nevertheless, based upon the above-mentioned experiments, we can conclude that
the serotoninergic system actively regulates stress responses, but different anatomical
subdivisions might have different functions. For example, the medullary and pons nu-
clei regulate the sympathetic answers to stress, while the midbrain nuclei organize the
behavioral aspects.

Catecholamines

Catecholamine-containing nuclei in the brainstem represent the main source of cate-
cholamines in the CNS. Neurons belonging to these nuclei produce and release either NA,
DA, or adrenaline [127]. NA can be detected upon the presence of TH—the first and rate-
limiting enzyme of catecholamine biosynthesis—as well as dopamine beta-hydroxylase
(DBH)—the final enzyme in converting DA to NA—but the absence of phenylethanolamine
N-methyltransferase (PNMT), the characteristic enzyme for adrenaline synthesis [53].

If these nuclei in the so-called lateral zone of the brainstem contain catecholamines,
the neuronal phenotype is labeled with the letter “A”, and this is currently the case for NE
or DA, while adrenaline-releasing neurons were later distinguished with the letter “C” (in
contrast to serotonin-producing nuclei with the letter “B”) [127].

From a phylogenic perspective, the mesencephalic DA system, represented by A8
(retrorubral field), A9 (SN pars compacta), and A10 (VTA) nuclei, is probably the most
ancient component of the reticular formation. However, all catecholaminergic brainstem
nuclei are highly conserved structures during the evolution of the CNS, and are involved
in the regulation of basic activities such as breathing, blood circulation, sleep-waking cycle,
and motor control [127]. Most of them are also implicated in stress. Different subdivisions
might have slightly different roles [128], supporting the theory that the brain categorizes
stressors by a specific activation pattern [129].



Int. J. Mol. Sci. 2021, 22, 9090 9 of 21

Catecholamines: Noradrenaline (NA) and Locus Coeruleus (LC)

NA is the major neurotransmitter in the sympathetic nerve endings at the periph-
ery. However, it can be also found in the CNS, e.g., in the brainstem nucleus LC (also
known as A6) [53]. The LC is localized in the fourth ventricle base and is known for its
vast and divergent efferent system, whose noradrenergic fibers reach nearly the entire
neuroaxis. On the other hand, CRH innervation (in co-localization with excitatory neu-
rotransmitters coming mainly from the PVN) directly controls LC neuronal excitability
and activity via CRHR1 receptors. The connection between LC and PVN—the centrum
of the HPA axis—is bidirectional, as massive noradrenergic innervation reaches the CRH
positive cells of the PVN [130]. Of particular interest are the afferents expressing CRH
from the CeA, which are thought to activate the LC to engage cognitive processes in re-
sponse to environmental stressors, thus, has been conceptualized as the cognitive limb
of the stress response [131,132]. Indeed, LC is also part of the central ‘stress circuitry’,
because robust activation of the LC has been reported after divergent stressor exposure in
experimental animals.

NA is also connected to depression since, in humans, the NA content of depressed
subjects was changed in their LC [74]. Moreover, lower levels of an NA metabolite in the
CSF was associated with suicide risk [47].

Catecholamines: Dopamine (DA)

In recent years, the dopaminergic system has been investigated with great interest
in regard to stress regulation [133–135]. DA is a catecholamine neurotransmitter in the
mammalian brain, responsible for controlling—among others—locomotion, cognition,
emotion, positive reinforcement, and endocrine function [136]. Most importantly, changes
in the brain levels of DA have been associated with stress-related psychopathologies,
such as post-traumatic stress disorders (PTSD), substance abuse disorder, and psychotic
disorder [137,138].

The dopaminergic transmission originates from the brainstem and is organized in
four major neural pathways; the nigrostriatal, the mesolimbic, the mesocortical, and the
tuberoinfundibular pathways [139]. (1) The nigrostriatal pathway stems from the SN pars
compacta and ends in the dorsal striatum. This pathway is responsible for the regulation of
locomotion—the degeneration of this pathway is known to cause Parkinson’s disease [140].
It also contributes to feeding behavior [141]. (2) The mesolimbic pathway starts in the
VTA and ends at the nucleus accumbens. This pathway is associated with motivation,
reward, and pleasure [142], although there is growing evidence that it is also implicated
in stress-related disorders, such as anxiety and depression [143]. (3) The mesocortical
pathway starts from the VTA and projects to the prefrontal cortex, and it is associated with
emotion and cognitive functions, such as attention and planning [144,145]. (4) Lastly, the
tuberoinfundibular pathway projects from the arcuate nucleus of the hypothalamus to the
median eminence, and it is involved in the constant, tonic inhibition of secretion of the
prolactin hormone [146–148].

The dopaminergic response to an acute stressor seems to be remarkably dependent
on the stress source. Response to physical stressors is usually linked to an increase in DA
activity in the dorsal striatum, whereas psychological stressors seem to enhance medial
prefrontal cortex DA content [149]. Many studies have shown an increase in the DA
release when the animals were facing aversive stimuli. This suggests that DA is likely to
be involved not only in the processes underlying a positive reward but also in aversive
events [150,151]. It has been reported that repeated restraint stress in animals changes the
way the mesolimbic DA system responds to a stressor and that repeated stressors, such
as foot-shocks, increase the self-administration of psychostimulants, thus, indicating a
possible direct relationship between the DA system and the HPA axis [137,152].
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As for the endocrine regulation, the DA-regulated prolactin—besides its well-known
function in lactation—is also a stress hormone [81]. Divergent stressors may induce
hyperprolactinemia and evidence shows that this stressor-induced prolactin secretion plays
a significant role in the development of stress-induced pathology, including intestinal and
tracheal epithelial barrier dysfunction, cardiac dysfunction as peripartum cardiomyopathy,
and emotional problems [153]. However, prolactin secretion during stress may have an
important physiological role in maintaining homeostasis within the immune system [154].
Indeed, in contrast to the immunosuppressive role of glucocorticoids, prolactin stimulates
the immune system. Moreover, prolactin may also play an important role in maintaining
metabolic homeostasis [155]. Stress-level of prolactin improved insulin sensitivity and
decreased adipose tissue dysfunction in obese rodents and humans.

On the other hand, prolactin can influence the HPA axis at several points, among
others, by increasing the secretion of ACTH and the sensitivity of the adrenal cor-
tex to ACTH [156]. Prolactin may also directly induce adrenal steroidogenesis and
catecholamine synthesis.

All in all, brainstem dopaminergic cells are deeply implicated in stress processes both
among physiological as well as pathological conditions.

5. CRH Cells in the Brainstem

Based upon the importance of CRH as well as the brainstem in stress regula-
tion we hypothesized that CRH synthesized locally in the brainstem might also be
important in stress adaptation. In support, not only PVN but also BNST and CeA
CRH-positive cells react to stressors suggesting a ubiquitous role of CRH in stress
response [157].

However, detecting and visualizing CRH-positive neurons in the brain is challenging
due to its low basal level in the cell bodies and the absence of highly sensitive CRH
antibodies. Therefore, earlier studies used in situ hybridization to visualize CRH-producing
cells at the mRNA level. In the mice brainstem, the highest CRH mRNA density was present
in the Barrington’s nucleus (B) as well as in the inferior olivary complex (IO) [158]. Lower
levels were detected in the tegmental (TRN) and parabrachial nuclei (PB) as well as in
ventrolateral medulla and medial vestibular nucleus. Scattered cells were also present in
the PAG, external cuneal nucleus (ECN) and in the raphe region.

Several attempts were also made to detect the CRH protein. For instance, immunohis-
tochemistry can be used after invasive tissue exploration. However, the disadvantage of
this procedure is the relatively reduced number of detectable neurons [159]. With colchicine
treatment, a more accurate CRH cell distribution can be monitored throughout the brain,
as it results in peptide accumulation in the soma by blocking the axonal transport of the
neurons. By this method, the presence of additional CRH neurons in PB was found beside
the intensive labeling of B and IO regions [160] (Table 1). However, despite the better
immunoreactivity, it is doubtful if this technique is able to detect physiologically relevant
CRH positivity. This notion is supported by the fact that CRH synthesis may occur in neu-
rons upon stimulation/injuries [161,162], thus, the colchicine treatment itself may induce
ectopic CRH expression.
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Table 1. Brainstem regions of the mouse that contains CRH-positive neurons.

Density of CRH + Neurons.

Wang et al.
2011

Alon et al.
2009 Kono et al. 2016 Peng et al. 2017 Recent Results

Method Colchicin CRH-GFP CRH-Venus CRH-EYFP CRH-Cre ×
DIO-dtTomato

Inferior olivary complex (IO) ++ ++++ ++++ +++++ +++

Barrington’s nucleus (B) ++ ++++ ++++ ++++ ++

Tegmental reticular nucleus
(TRN) - ++ ++ +++ ++

Parabrachial nuclei (PB) ++ ++ + + +

Periaqueductal gray (PAG) - ++ + ++ +

External cunate nucleus
(ECN) - + +++ +

Raphe nucleus - + ++ (MRN) + (DRN) +

Nucleus incertus + + + +

Mesencephalic reticular
formation - + + + +

Interpeduncular nucleus + + +

Pontine gray +++ +

Medial vestibular nucleus - + ++ +

A11 +

Vagus nuclei (NTS, motor) ++

The areas are ranked according to the density of the cells during our experiment. Abbreviations, not given in the Table: CRH: corticotropin-
releasing hormone, DIO: double inverted open reading frame, DRN: dorsal raphe nucleus, EYFP: enhanced yellow fluorescent protein,
GFP: green fluorescent protein, MRN: median raphe nucleus, NTS: nucleus tractus solitarius, (In our recent experiment: ”+” = number of
CRH + cells/mm2 < 5; ”++ ” = number of CRH + cells/mm2 < 5–10; ”+++ ” = number of CRH + cells/mm2 > 15; in other experiments more
”+” indicate stronger relative expression, while ”-” indicate a value bellow the detection limit).

A recently developed genetic technique allows the expression of a fluorophore under
specific, e.g., CRH promoter. Thus, the direct visualization of CRH neurons is possible with-
out influencing the physical state of the animals or the need to use any other supplementary
detection methods. Furthermore, while immunohistochemical identification of CRH neu-
rons provides a current protein content above a detection threshold at an appointed time,
genetic technique tracks cellular expression of CRH over the lifespan of a mouse [163].
Previous studies using green fluorescent protein (GFP) under the CRH promoter identified
once again the IO and B as highly CRH-positive areas of the brainstem both at the level
of GFP as well as based upon their CRH mRNA content measured by in situ hybridiza-
tion [164] (Table 1). In fact, the intensity of the signal here was comparable with the ones
measured in the PVN and in the piriform cortex. Much lower CRH levels were found
in other, previously mentioned brainstem nuclei including the raphe magnus. Another
study using Venus fluorophore [165] or enhanced yellow fluorescent protein (EYFP) [166]
also confirmed the CRH expression in the B, as one of the main extrahypothalamic CRH
sources, as well as in the IO. Scattered cells were found in other, previously mentioned areas
including raphe nucleus (especially MRN [165]). To further confirm the presence of CRH in
the brainstem nuclei we crossbred CRH-Cre mice with dtTomato reporter mice containing
the fluorophore between two loxP loci (DIO: double inverted open reading frame). In this
case, the CRH-positive cells of the offspring (Crh-IRES-Cre;Ai9) were marked with a red
fluorescent protein. With this technique, we confirmed the presence of CRH in previously
mentioned brainstem areas (Table 1). The highest density of TdTomato expressing cells
was found in the IO and B regions. Besides that, a considerable amount of CRH-positive
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cells was located in the TRN, PB, PAG, and ECN as well as in the medial vestibular nu-
cleus, mesencephalic reticular formation, and pontine gray. The fluorescent signal of CRH
neurons was also perceived in raphe nuclei, nucleus incertus, and interpeduncular nucleus.

The above-mentioned data arose from the examination of mice, but besides funda-
mental similarities, some species differences may also exist. After colchicine treatment, rats
showed more intense labeling and in them, the dorsal lateral tegmental area contained the
most CRH-positive cells, which was immunonegative in mice [160]. However, IO and B
contained a considerable amount of CRH also in rats. In frog (Xenopus laevis), CRH was
found in the tegmental area as well as in the LC [167]. In humans, DRN and MRN showed
enhanced CRH immunopositivity in depressed subjects, however, this was attributed to
enhanced innervation rather than an increase in local synthesis [168].

Overall, there are several CRH expressing neuron populations in the brainstem, but
the exact role of these cells is still unknown

6. Assumed Function of Each CRH-Containing Brainstem Nuclei in Stress

The functioning of many brainstem nuclei can be related to the regulation of stress
(see earlier in relation to neurotransmitters), but the role of locally synthesized CRH in
stress regulation is highly neglected. We tried to summarize the available knowledge, but
further studies are required to confirm that not only does CRH innervation coming from
the PVN and/or CeA provide a connection to stress, but locally produced CRH is also
important in stress adaptation.

As one of the main CRH sources in the brainstem, Barrington’s nucleus (B) (Table 1,
Figure 2) regulates micturition with the help of its CRH-positive neurons [169]. We might
assume that B is implicated in the stress response as well based on its direct connection with
the PVN [170]. In support of this hypothesis, c-Fos positivity was increased in this area after
numerous stressor exposure. Moreover, some stressors, such as water avoidance stress,
may increase the urinary frequency [171] and social stress-induced long-lasting voiding
dysfunction [172], further connecting B to stress. In relation, upregulation of the CRH in B
accompanied the social stress-induced urinary retention and a CRHR1 antagonist prevented
this abnormal urodynamics [173]. This mechanism may underlie the development of stress-
induced bladder disorders.

Figure 2. Mouse brain areas containing a significant amount of CRH-producing cells. The figure was
created with the help of scalablebrainatlas.incf.org. Red: high CRH density; B: Barrington’s nucleus;
IO: inferior olivary complex. Green: repeatedly confirmed moderate CRH density; TRN: tegmental
reticular nucleus, PB: parabrachial nucleus. Blue: moderate CRH density; ECN: external cuneate
nucleus, PAG: periaqueductal grey.
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The other highly CRH-positive area of the brainstem is the inferior olivary complex
(IO) (Table 1, Figure 2). As this area has a tight connection with the cerebellum, it has an
important role in the regulation of motor coordination and motor learning [174]. Therefore,
it is possible that CRH in this brain area is also involved in the fine-tuning of motor
functioning. Even less is known about the role of this nucleus in stress. So far only
morphine-induced c-Fos activation of this area was described [175].

A smaller amount of CRH can be found in the tegmental reticular nucleus (TRN)
(Table 1, Figure 2) with an even smaller amount in the mesencephalic reticular formation.
They are also connected to the cerebellum regulating eye movement participating in posture
regulation [176,177], but with an unknown role in stress. There is no functional information
about the CRH neurons of the parabrachial nucleus (PB) either (Table 1, Figure 2). This
brain area transmits sensory information to forebrain structures such as itch, pain, or
taste [178], but none of these were associated with its CRH-positive neurons. The external
cuneate nucleus (ECN) [179] (Table 1, Figure 2), as well as pontine gray, may also contribute
to the regulation of motor skills [180].

In contrast, the moderately CRH-positive PAG (Table 1, Figure 2) was shown to
regulate restraint stress-induced anxiety-like behavior in Wistar rats, tested by nonselective
CRH receptor antagonist (alpha-helical CRH9-41) microinjections [181]. This research
group previously investigated the effect of CRH administration directly into the dorsal
PAG and found an anxiogenic effect in the elevated plus maze test [182]. However, in this
experimental design, a CRH receptor antagonist had no effect on anxiety-like behavior,
questioning the results of the agonist administration.

The previously mentioned raphe nuclei are of utmost importance in stress regulation.
However, their role is connected to their serotonin content (see Section Serotonin). They
contain only a small amount of CRH, but we must acknowledge that in the MRN the
serotonin-positive cells are also sparse, only 8.5% [183]. Thus, we cannot close out an
important role of the raphe-CRH cells in stress regulation. Raphe-CRH interaction was
studied in connection to freezing behavior during a fear conditioning paradigm—a model
of learning and memory as well as fear [184]. Injecting both CRHR1 and CRHR2 antag-
onists into MRN decreased freezing during fear recall. Moreover, when a nonselective
CRH receptor antagonist was administrated into the DRN before an inescapable shock,
it prevented a behavioral response to uncontrollable stress. Furthermore, direct admin-
istration of CRH mimicked the effects of inescapable shock, however, only when it was
administered at a high dose and into the caudal part of DRN [185]. We must acknowledge
that CRH administration, as well as CRH receptor manipulation in these nuclei, model the
effect of innervation rather than the role of locally produced CRH.

In relation to other CRH-containing brainstem nuclei, the nucleus incertus is also
important in fear memory formation [186]. Its GABAergic cells contain CRH receptors
and project to stress response regulatory centers such as the PVN [187]. In agreement,
intracerebroventricular CRH injection increased its c-Fos immunoreactivity [188]. Again,
these results suggest the importance of CRH innervation rather than the role of locally
synthesized neuropeptides.

A study on guinea pigs suggested that vestibular stress influences HPA axis activity:
after unilateral vestibular deafferentation increased night salivary cortisol level was mea-
sured [189]. The Palkovits laboratory explored the connections between vestibular nuclei
and PVN neurons with the help of retrograde tracing. They found vestibulo-paraventricular
polysynaptic, but not monosynaptic pathways, which might play an important role in
vestibular stress-induced HPA axis activation [190]. None of the related research revealed
the identity of the participating neurotransmitters or neuropeptides, therefore, we cannot
conclude on the role of vestibular CRH, either.

In relation to the interpeduncular nucleus, a study published in 2020 found that
the interpeduncular-ventral hippocampal serotonergic pathway is important in stress
coping [191], but there is no information if CRH contributes to this phenomenon.
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The vagus nuclei (NTS/dorsal vagal complex) may also contain scattered CRH-
positive cells [160] and might deeply influence HPA axis activity being a key regulatory
node for coordination of acute and chronic stress [192].

7. Conclusions

Despite the main focus on PVN and HPA in stress adaptation, the role of the brainstem
should not be neglected. It may influence the HPA axis via a bidirectional connection with
the PVN. Their different neurotransmitters might have divergent roles in fine-tuning the
stress response. Beside classical neurotransmitters (GABA, glutamate, as well as serotonin,
NA, DA, or adrenaline), several neuropeptides might be co-localized in the brainstem
nuclei. Here, we focused on CRH as its role in stress regulation is well-known and widely
accepted. Indeed, the CRH brain network seems to be stress-sensitive, forming an ancient,
unified stress regulatory system [157]. Although CRH-positive cells are present on some
parts of the brainstem, sometimes even in amounts comparable to the PVN [164], not much
is known about their contribution to stress adaptation. Based on the role of the Barrington’s
nucleus in micturition and the inferior olivary complex in the regulation of fine motoric—as
the main CRH-containing brainstem areas—we might assume that these areas regulate
stress-induced urination and locomotion, respectively. Further studies are necessary for
the field.
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