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ABSTRACT
One of the main challenges of the post-genomic era is the understanding of how gene
expression is controlled. Changes in gene expression lay behind diverse biological
phenomena such as development, disease and the adaptation to different environmental
conditions. Despite the availability of well-established methods to identify these
changes, tools to discern how gene regulation is orchestrated are still required. The
regulation of gene expression is usually depicted as a Gene Regulatory Network
(GRN) where changes in the network structure (i.e., network topology) represent
adjustments of gene regulation. Like other networks, GRNs are composed of basic
building blocks; small induced subgraphs called graphlets. Here we present LoTo,
a novel method that using Graphlet Based Metrics (GBMs) identifies topological
variations between different states of a GRN. Under our approach, different states
of a GRN are analyzed to determine the types of graphlet formed by all triplets of
nodes in the network. Subsequently, graphlets occurring in a state of the network
are compared to those formed by the same three nodes in another version of the
network. Once the comparisons are performed, LoTo applies metrics from binary
classification problems calculated on the existence and absence of graphlets to assess
the topological similarity between both network states. Experiments performed on
randomized networks demonstrate that GBMs are more sensitive to topological
variation than the same metrics calculated on single edges. Additional comparisons
with other common metrics demonstrate that our GBMs are capable to identify nodes
whose local topology changes between different states of the network. Notably, due to
the explicit use of graphlets, LoTo captures topological variations that are disregarded by
other approaches. LoTo is freely available as an online web server at http://dlab.cl/loto.

Subjects Bioinformatics, Computational Biology, Genomics
Keywords Differential analysis, Gene Regulatory Network, Metric, Graphlet

INTRODUCTION
In biological sciences, networks are becoming one of the main tools to study
complex systems (Newman, 2010). Networks are employed to represent metabolic
pathways (Palumbo et al., 2005), signaling cascades (Pescini et al., 2012; Ben Hassen,
Masmoudi & Rebai, 2008), and protein-protein interactions (Wuchty, Oltvai & Barabási,
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2003), among others. Networks used to represent the regulation of gene expression are
known as Gene Regulatory Networks (GRNs) (Hu, Killion & Iyer, 2007; Rodríguez-Caso,
Corominas-Murtra & Solé, 2009). GRNs are directed networks where nodes represent genes,
and the links between nodes exist solely if the regulatory element, e.g., a Transcription
Factor (TF), encoded by a source gene directly regulates the expression of another target
gene. Major applications of GRNs are intended to perform differential studies in which
diverse states of a network representing the same biological system are compared (Davidson
et al., 2002; Shiozaki et al., 2011; Yang & Wu, 2012; Cheng, Sun & Socolar, 2013; Gaiteri et
al., 2014; Okawa et al., 2015). Interestingly, the structural similarity between two networks
can be established at various levels, ranging from the comparison of global network
properties to the identification of single nodes and edges whose relationship with the rest
of network elements varies. Network properties that can be used to compare networks and
therefore to asses their structural difference include the distribution of connections versus
non-connections (density), diameter, size/order, connectedness, betweenness, centrality
and the distribution of node degree (Newman, 2010).

Networks are composed of small induced subgraphs called graphlets (Przulj, Corneil &
Jurisica, 2004). Graphlets represent structural patterns of networks that in the case of GRNs,
may encode diverse functional and biologically relevant roles (Knabe, Nehaniv & Schilstra,
2008). Statistically over-represented graphlets are usually called motifs (Milo et al., 2002),
but over-representation depends on the null model employed as baseline (Artzy-Randrup
et al., 2004; Przulj, Corneil & Jurisica, 2004). Moreover, the existence of some graphlets has
been functionally characterized in GRNs of different organisms, ranging from bacteria
to higher animals (Shen-Orr et al., 2002; Ronen et al., 2002; Odom et al., 2004; Zaslaver
et al., 2004; Levine & Davidson, 2005; Alon, 2007; Boyle et al., 2014). Graphlets can be
characterized by the number of their component edges and nodes, are classified accordingly.
The smallest graphlets occurring in directed networks are composed of two nodes, while
those most frequently employed to characterize networks are graphlets composed of three
nodes (Milo et al., 2002). Despite larger graphlets constituted of n nodes can be described
and used to characterize networks, all of them can be decomposed into at least one graphlet
formed by n− 1 nodes (Aparício, Ribeiro & Silva, 2015). In addition, the use of larger
graphlets is limited by the computational cost of their enumeration which, depending on
the network, could be highly expensive (Tran et al., 2015). As expected, several Graphlet
Based Metrics (GBMs) can be employed to characterize and compare networks (Yaveroğlu,
Milenković & Pržulj, 2015). These include graphlet distribution (Przulj, Corneil & Jurisica,
2004; Sporns & Kötter, 2004), graphlet degree distribution (Przulj, 2007; Koschützki &
Schreiber, 2008; McDonnell et al., 2014), graphlet correlation distance (Yaveroğlu et al.,
2014) and graphlet reconstruction rate (Martin et al., 2016). Nevertheless, with the
exception of graphlet reconstruction rate, all these GBMs describe global properties of
networks disregarding local differences that could be important to compare different states
of biological networks. Therefore, in this work GBMs are proposed to describe and compare
the properties of diverse states of a network and for instance, to identify the elements that
differ between states.
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Table 1 Description of graphlet types. The number of required TF-coding genes, true edges, false edges
is shown for each graphlet type.

Graphlet type 1 2 3 4 5 6 7 8 9 10 11 12 13

TF required 1 2 2 2 2 2 3 3 3 3 3 3 3
True edges 2 2 3 2 3 4 3 4 3 4 4 5 6
False edges 4 4 3 4 3 2 3 2 3 2 2 1 0

This study describes LoTo, an online web-server for the comparison of different states
of a GRN. LoTo treats the existence or absence of graphlets in two compared networks as
a binary classification problem (Baldi et al., 2000; Davis & Goadrich, 2006; Powers, 2011).
To do so, LoTo assigns a type of graphlet to each triplet of nodes in the two compared
network states. This step is done with an efficient method that takes advantage of the
sparsity of GRNs: the majority of edges are false or nonexistent, and they originate from
the fraction of nodes representing regulator-coding genes. Next graphlet types assigned
to the same triplet of nodes in both network states are compared via the construction of
confusion matrices. In the final step, the topological similarity between the two networks
is quantified by calculating several metrics from these confusion matrices. In this way,
LoTo first performs a comparison of the global topology; and then it identifies variations
in the local topology of each node. Interestingly, the approach implemented in LoTo is
able to capture topological variations that are not detected by other metrics and would be
disregarded otherwise.

In this work, we first propose our definition of graphlets to later explain the GBMs
employed in LoTo. We then demonstrate how GBMs are more sensitive to random edge
removal than their single edge counterparts. We also provide an example where we
compare two condition specific states of the Escherichia coli GRN: a knock-out of ompR,
a TF that controls the expression of genes involved in the response to osmotic and acid
stresses (Stincone et al., 2011), with the control condition. This comparison also emphasizes
that TF-coding genes whose local topology changes according to our GBMs are different
to those detected by other metrics. Hence, we propose LoTo as a novel tool to identify
changes in the local structure of GRNs.

METHODS
Expanding the definition of graphlets
In this study, graphlets are defined as small induced subgraphs formed by three nodes
with at least two regulatory relationships (true edges) between them. Thus, considering
all possible connectivity patterns that meet the previous definition, 13 graphlets could be
formed (Fig. 1). Importantly, the classical definition of graphlets proposed in Milo et al.
(2002) was expanded by making both the presence and absence of edges between nodes,
equally relevant. Under this definition, all graphlets depicted in Fig. 1, except number 13,
require non-existing regulatory relationships (false edges) between nodes (see Table 1).

Martin et al. (2017), PeerJ, DOI 10.7717/peerj.3052 3/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.3052


Figure 1 All possible realizations of three node graphlets that can be defined in LoTo. The direction
of edges indicate the sense of the transcriptional regulation. Black edges denote true interactions, and red-
dashed edges depict false ones. In this definition, true and false edges are given equal relevance. Adapted
fromMilo et al. (2002).

Comparing the structure of GRNs
Let G be a state of a GRN with V nodes and E edges, we want to compare its topology
with another state of the same network G′. G′ should be composed of a set of nodes V ′, at
least partially shared with G, and a set of edges E ′. Thus, one should perform a comparison
between the local topology of G= (V ,E) and G′= (V ′,E ′).

Similarity metrics derived from graphlet based confusion matrices
As mentioned before, the problem of enumerating the occurrence of graphlets in two
networks is treated as a binary classification problem. By doing so, graphlet or node
specific confusion matrices are built. A confusion matrix or contingency table, is a table
in which each column contains the occurrence of predicted instances and each row shows
the actual class of those instances. Therefore, the confusion matrix contains the number
of correctly and incorrectly classified true and false examples grouped into True Positives
(TPs), False Positives (FPs), True Negatives (TNs) and False Negatives (FNs). Hence, TPs
are graphlets present in the two networks; FPs are graphlets found in G′ but absent in
G; FNs are graphlets found in G but absent in G′; and TNs are graphlets absent in both
network states. It is important to clarify that even if the terminology employed to define
the elements of the confusion matrix seems to indicate that one of the compared states
is correct and the other is incorrect, this is not the case in LoTo. In binary classification
problems, the goal is to establish how similar are the predictions of a test set to that of the
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actual known classes, i.e., how many of the predictions are correct. In consequenze, a TP
example is a true example that was correctly predicted, a FP is a true example misclassified
as false and so on. In the comparison of network states performed by LoTo, there is not
such a thing as the actual class (or type) of a graphlet, and thus, TP graphlets are found in
the two states, TNs are absent in both states and FPs and FNs are graphlets present only
in one of the two states and absent in the other one. Importantly, the confusion matrices
can be built in three different fashions depending on which graphlets are used in their
construction and on the purpose of the comparison. If one wants to compare the local
topology of single nodes, only the graphlets in which each node participates in G and G′ are
used; if the purpose is to compare the overall local topology of the two networks, then the
matrix can be constructed employing all graphlets in both networks; and finally, confusion
matrices can be built with only certain types of graphlets, e.g., all graphlets of type 13.
In this work we only focus on the application of GBMs to identify variations in the local
topology of single nodes or node-based GBMs and on the comparison of overall network
topology or global GBMs.

Several performance metrics can be calculated from a confusion matrix (Baldi et al.,
2000). LoTo focuses on those commonly used to evaluate binary classifiers; Recall (R, Eq.
(1)), Precision (P, Eq. (2)), their harmonic mean F1 (Eq. (3)), and Mathews Correlation
Coefficient (MCC, Eq. (4)). It is also very important to clarify that both MCC and F1 are
symmetric, i.e., their values do not depend of which network state is used as reference to
determine FP and FN graphlets, since their values are the same either way.

• Recall:

R=
TP

TP+FN
; (1)

• Precision:

P =
TP

TP+FP
; (2)

• F1 score:

F1=
2PR
P+R

; (3)

• Matthews Correlation Coefficient (MCC):

MCC=
TP×TN−FP×FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

. (4)

Comparison of GBMs and single-edge based metrics as metrics of global
network similarity
GBMs and their single edge counterparts were compared on a reference network to
determine their sensitivity to variations in a controlled environment. To do so, RegulonDB
(Salgado et al., 2013) version 8.7 was used to construct a gold standard or reference GRN of
E. coli. All TF-coding and all non-TF-coding genes with at least one regulatory interaction
in RegulonDB were kept. Notably, RegulonDB only contains information about true edges,
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actual regulatory interactions, therefore, false edges were assumed to occur between nodes
that are not linked.

In order to establish a fair comparison between single-edge basedmetrics and GBMs, the
E. coli gold standard network was randomized in two different ways. First, randomly chosen
true connections were removed by transforming them into false edges. This procedure is
termed REMO hereinafter. Second, randomly selected true connections were transformed
into false edges, and for each true edge that was transformed, a randomly selected false
edge was transformed into a true edge. Hence, the randomized network maintains the
same number of true edges as in the original network but the distribution of node degree
varies with the changes. This second procedure is termed SWAP hereinafter. The two
randomization procedures were repeated varying the percentage of changed edges from
0% to 100%. In REMO, removed true edges were transformed into FN edges. On the
other hand, in SWAP, removed links were transformed into FN edges and removed false
edges were transformed into FP edges. These randomizations were intended to evaluate the
behavior of the metrics using a dataset for which the actual percentage of change produced
by random alterations is known. To reduce possible dependences on the randomization
and to allow proper statistical comparisons, both protocols were repeated 1×103 times,
each with a different seed for the random number generator.

Estimation of the contribution of each graphlet type to GBMs. Confusion matrices built for
every graphlet type were used to determine the relevance of each type in the calculation of
global GBMs. To do so, F1 andMCCwere calculated and averaged for the thirteen types on
the 103 replicas of both REMO and SWAP at each percentage of randomization. Averaged
values were added to then calculate the proportion over the total sum of the metric for
all types at every percentage of randomization. On top of helping to determine which
graphlet type dominate the metrics, this analysis also allowed to study how the different
types fluctuate over the randomization procedures.

Comparison of GBMs with node centrality differences to identify nodes whose
local topology varies
To further validate if GBMs calculated for single node confusion matrices, i.e., node based
GBMs, implemented in LoTo are related to other methodologies, they were compared
to a more traditional approach considering differences in node centrality metrics. Node
centralities were computed for all TF-coding nodes in Cytoscape version 3.3.0 (Shannon et
al., 2003) in two condition specific GRNs of E. coli whose construction is described below.

NetworkAnalyzer (Assenov et al., 2008), a built-in tool of Cytoscape, was employed
to calculate the following centrality metrics: Average Shortest Path Length, Betweenness
Centrality, Closeness Centrality, Clustering Coefficient, Eccentricity, Degree, Indegree,
Outdegree, Stress Centrality and Neighborhood Connectivity, see Newman (2010) and
Assenov et al. (2008) for their definitions. Pearson’s and Spearman’s correlations were
calculated between GBMs and the differences in node centralities to discern if there is a
relationship between them. Correlation coefficients were calculated using the R package
version 3.0.2 (R Core Team, 2013). P-values provided by R were utilized to determine the
significance of the correlation coefficients (p-value ≤ 0.01).
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Construction of condition specific networks from gene expression data. A comparison
between two condition specific networks that represent E. coli in two different states is used
as an application example of LoTo. These two networks or states of the E. coli GRN were
built following a similar approach to Faisal & Milenković (2014), where protein-protein
interaction networks were constructed using gene expression micro-arrays. Instead of
considering interactions between proteins whose coding genes were expressed in a micro-
array, here only known regulations from TF-coding genes whose expression was detected
weremaintained. These regulations are kept independently of the presence or absence of the
target gene. In this way, gene expression data for E. coli previously used to study resistance
to acidic environments in Johnson et al. (2014) was employed to generate the condition
specific networks. Four different E. coli RNA profiles, each with two replicas, were reported
in Johnson et al. (2014), but for the sake of simplicity, we only employed, analyzed and
compared two of them, the wild-type and the knock-out ompR, a TF that controls the
expression of genes involved in the response to osmotic and acid stresses (Stincone et al.,
2011). Since there are two different replicas of each experiment, regulator-coding genes
were considered as expressed if at least one of their specific probes showed a significant
signal in each of the replicas (author reported p-values < 0.05).

Functional characterization. Genes regulated by TF-coding genes which were absent in one
of the two network states were characterized by manually querying RegulonDB (Salgado et
al., 2013) and EcoCyc (Keseler et al., 2010).

Algorithm for graphlet enumeration
LoTo uses an efficient algorithm to enumerate graphlets in directed networks similar to
other graphlet enumeration algorithms previously published (Wernicke, 2005; Aparício,
Ribeiro & Silva, 2015; Tran et al., 2015). Since graphlets involve three nodes, a brute force
implementation would have a complexity of O(n3), where n is the total number of nodes
in the network. In GRNs, edges only connect regulator-coding genes to their targets,
therefore, one can reduce the complexity to find graphlets to O(t ∗n2), where t is the
number of regulator-coding genes. In our implementation, networks are represented using
an adjacency list. The adjacency list contains only true edges arising from regulator-coding
genes, thus, allowing to take advantage of GRNs being sparse and edges originating only
from a fraction of the nodes. Self-connections are not included in the adjacency list,
so the three nodes forming a graphlet are forced to represent different genes. For each
regulator-coding gene, a loop over each of its true connections stored in the adjacency
list is carried out. This reduces the computational cost in finding the first true edge of
each graphlet from O(t ∗n) to O(t ∗k), where t is the number of regulator-coding genes
and k is the number of their outgoing true connections. Therefore, the total estimation of
computational complexity of the algorithm to find graphlets becomes O(t ∗k ∗n), where k
is at most an order of magnitude smaller than n in real whole genome GRNs.

LoTo Web server
The web-server allows to characterize a single network, reporting the occurrence of each
graphlet type in it, or to perform a comparison between two states of a network. For the
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latter, the user needs to provide two directed networks: one used as reference network,
and a second network that will be compared to the first. Instead of binary values to define
the type of edge, the true connections can be established with a number in the [0,1] range
provided as an edge weight. This number can be used to represent a score or p-value of
each true edge. False edges are defined as those with an edge weight below a user-defined
threshold and edges found in the reference network that are not explicitly defined in the
second network. Importantly, LoTo accepts several network file formats of common use
(tsv, sif, xgmml, cyjs, graphml and gml).

The output page of the web server shows a table in which both single-edge and GBMs
are displayed. The metrics included in the table are those described above, plus two metrics
named REC and REC Graphlet Degree or RGD that are based on the rate of graphlet
reconstruction (Martin et al., 2016). REC measures how many of the edges, both true and
false, present in a graphlet found in a network state are also present between the same
nodes in the second state, and RGD is the average REC for all graphlets in which the same
node participates. The web server also generates an output file containing several more
GBM metrics and tables describing the comparison. This file also shows the number of
graphlets in which regulator-coding and non-regulator-coding genes participate, listing
each graphlet that is accounted as TP (present in both network files), FN (only present in
the reference network) and FP (only present in the second network). By looking at the lists
of FNs and FPs, one can identify the subnetworks formed by nodes whose local topology
varies between the two compared networks, and thus might show different regulation.

LoTo also produces several additional output files, including a xgmml file containing a
network where different colors are used to visualize variations in the compared networks
in Cytoscape; together with two other files containing a table describing edges and nodes.
For more information and a more detailed description of both the input and output files,
please visit http://www.dlab.cl/loto.

RESULTS
Graphlet characterization of GRN
Characterization of the RegulonDB gold standard
Starting from RegulonDB version 8.7, a gold standard GRN was built (see Methods). This
GRN is formed by 1,805 genes, of which 202 encode for TFs, and 4,511 true edges. As
expected, the number of false edges is much higher than that of true edges, surpassing
more than 3×106. The occurrence of each graphlet type found by LoTo in this GRN is
shown in Table 2. Interestingly, only 11 nodes are isolated and do not participate in any
graphlet.

Characterization of condition specific GRNs
Table 3 characterizes the two network states that represent gene expression regulation for
wild-type E. coli and a knock-out of ompR. As shown, the occurrence of TF-coding genes,
the total number of genes and the number of connections between them is slightly smaller
than in the gold standard. This decrease in network components is caused by the procedure
followed in their construction, i.e., some genes in the gold standard were not present in the
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Table 2 Graphlets occurrence in the condition specific GRNs and in the reference network.

Graphlet type 1 2 3 4 5 6 7 8 9 10 11 12 13

Reference 329819 6305 1634 4338 1641 488 89 5 0 8 31 3 1
Wild-type 329790 6302 1634 4307 1578 488 89 5 0 8 31 3 1
ompR 329685 6060 1592 4154 1552 485 82 3 0 6 27 3 1

Table 3 Characterization of condition specific GRNs of E. coli. The number of TF-coding genes (TF),
total number of genes (V), existing regulations (EP) and the number of nodes that do not participate in
any graphlet (NG) for the two GRNs representing wild-type E. coli and the ompR knock-out.

GRN TF V EP NG

Wild-type 196 1796 4478 11
ompR 189 1787 4437 11

transcriptomic experiments or they were not expressed. The occurrence of each graphlet
type in these two networks is shown in Table 2. Following the same tendency observed with
nodes and edges, and for the same reasons, graphlets are also slightly less frequent than in
the gold standard network.

Comparison of GBMs with single-edge based metrics on the
randomized gold standard
We assessed the sensitivity of GBMs and single-edge based metrics on two types of
randomization of the E. coli reference network. To do so, F1 and MCC were calculated
considering both graphlets and single edges on 103 replicas of SWAP and REMO
randomizations. The averaged metrics calculated for all replicas are shown in Fig. 2.
As seen in all four panels, according to the same percentage of random changes, both
metrics calculated for graphlets lay below single-edge metrics. Standard deviations for
averaged F1 and MCC are not shown in Fig. 2, since they overlap the averaged metric lines.
We also studied the contribution of each graphlet type to the graphlet based versions of
F1 and MCC (Fig. 3). In this case, both randomization procedures behave in a similar
way, as the percentage of randomization increases the occurrence of simpler graphlets,
i.e., types 1 to 6, becomes predominant and thus, they dominate the metrics. On the other
hand, graphlets that require their three nodes to be regulator-coding genes, i.e., more
complex graphlets, are only relevant at lower percentages of randomization since at higher
randomization they are only present in the reference network.

Comparison of node-based GBMs with differences in node
centralities in the comparisons of the condition specific GRNs
With respect to comparisons of node-based GBMs and differences in node centralities,
Table 4, Pearson’s and Spearman’s correlations were calculated between all metrics for
all TF-coding genes in the comparison of condition specific GRNs. Interestingly, both
coefficients indicate better correlation when calculated between the differences than when
they were calculated between the differences and GBMs. This tendency is more evident
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Figure 2 Comparison between single-edge and GBMs. For each randomization procedure, average val-
ues over 1× 103 replicas for single-edge (solid blue line) and graphlet-based (solid red line) F1 and MCC
are shown at different percentages of randomization. (A and B) Show F1 for SWAP and REMO random-
izations respectively; and (C and D) show MCC for the SWAP and REMO cases respectively.

with Pearson’s correlation than with Spearman’s rank correlation, where the relationship
between Neighborhood Connectivity and GBMs is especially strong.

Concerning the agreement between specific TFs whose local topology varies detected by
the difference in centralities and by GBMs, these results are shown as confusion matrices in
Table 5. In this case, nodes whose topologies were different in the two compared networks
and were detected by differences in centrality and by GBMs are considered TPs; those
detected only by a node centrality are FPs; FNs are identified only by GBMs, and those
nodes that did not have any variation are TNs. Notably, GBMs are in better agreement
with Neighborhood Connectivity, while the larger differences are with Betweenness
Centrality. Nevertheless, there are differences in the specific nodes showing variations in
all comparisons.

Subnetwork of ompR
Figure 4 depicts the subnetwork formed by all graphlets in which ompR participates. This
subnetwork is formed by all those nodes that are also part of the graphlets in which ompR
is one of the nodes and all connections found in these graphlets in any of the two network
states. There are 84 TF-coding genes in this network, out of 761 nodes (only four genes are
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Figure 3 Contribution of each graphlet type to F1 andMCCGBMs on the two randomization proce-
dures of the E. coli reference network. For each randomization procedure, the plots show the contribu-
tion of each graphlet type to the averaged values of each metric over the 1× 103 replicas. The X-axis indi-
cates the percentage of randomization, ranging from total randomization on the lefthand side to no varia-
tion on the right side. The Y -axis indicates the contribution of each graphlet type to the metric in the form
of a percentage. (A) shows F1 for the SWAP randomization, and (B) F1 for the REMO randomizations re-
spectively; and (C and D), MCC for the SWAP and REMO cases, respectively.

absent in the knock-out state). TF-coding nodes in this subnetwork are connected to their
respective target genes by 2,325 edges. Of these regulatory interactions, 31 are present only
in the wild-type network (FN edges) and only seven in the state corresponding to the ompR
knock-out (FP edges). With respect to the subnetwork formed by the direct neighbors of
ompR (small inset), there are 8 TF-coding genes out of 21 nodes and five edges that are only
in the wild-type GRN (FN edges), while 43 connections are present in the two network
states (TP edges).

As expected, all direct neighbors of ompR are part of this subnetwork, including
genes coding for the three sRNAs (OmrA, OmrB and MicF), the genes of the OmpC
porin, DtpA, FadL, Sra, NmpC, OmpF and BolA, and the operons csgDEFG, ecnAB and
flhDC. According to EcoCyc (Keseler et al., 2010), these genes are related to functions
that include the formation of curli, the formation of biofilms, the composition of the
outer membrane, uptake of small ligands, and the regulation of other genes involved in
these functions. Nevertheless, our approach evidenced other differences between the wild
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Table 4 Correlation between differences in node centralities and GBMs for TF-coding genes. Pearson’s (upper right) and Spearman’s (lower
left) correlations computed between node centralities and GBMs calculated for TF-coding genes on the comparison between the wild type GRNs
of E. coli and ompR knock-out. Centralities metrics are: Average Shortest Path Length (ASPL), Betweenness Centrality (BC), Closeness Centrality
(CLC), Clustering Coefficient (CC), Eccentricity (ECC), Neighborhood Connectivity (NC), Stress (STR), Degree (DEG, sum of outdegree and inde-
gree), Outdegree (ODE), and Indegree (IDE). GBMs are F1 and MCC. Statistically significant correlation coefficients (p-value ≤ 0.01) are shown in
bold and their backgrounds are shaded in gray.

ASPL BC CLC CC ECC NC STR DEG ODE IDE F1 MCC

ASPL – 0.058 0.449 0.532 0.979 0.397 0.042 0.861 0.865 0.601 −0.238 −0.217
BC 0.328 – −0.012 0.002 0.108 −0.017 0.992 0.072 0.028 0.135 0.012 0.014
CLC 0.945 0.341 – 0.566 0.360 0.595 −0.018 0.678 0.605 0.616 −0.176 −0.174
CC 0.568 0.338 0.583 – 0.480 0.937 0.001 0.658 0.469 0.821 −0.034 −0.029
ECC 0.519 0.189 0.497 0.510 – 0.331 0.092 0.830 0.832 0.582 −0.218 −0.197
NC 0.677 0.358 0.661 0.626 0.422 – −0.022 0.593 0.408 0.765 −0.003 −0.001
STR 0.468 0.709 0.482 0.499 0.299 0.496 – 0.057 0.011 0.127 0.017 0.019
DEG 0.425 0.250 0.414 0.666 0.657 0.519 0.378 – 0.948 0.805 −0.184 −0.173
ODE 0.391 0.109 0.388 0.533 0.760 0.427 0.197 0.775 – 0.575 −0.235 −0.222
IDE 0.392 0.271 0.385 0.699 0.592 0.503 0.398 0.951 0.694 – −0.034 −0.030
F1 −0.589 −0.292 −0.567 −0.504 −0.371 −0.821 −0.440 −0.431 −0.319 −0.402 – 0.999
MCC −0.589 −0.292 −0.567 −0.504 −0.371 −0.821 −0.440 −0.431 −0.319 −0.402 1.000 –

Table 5 TF-coding nodes identified by centralities and graphlet based F1. The table shows confusion
matrices of TF-coding genes whose variation in local topology was identified by differences in the cen-
trality metrics and by F1 based on graphlets. This table was built on the comparison between GRNs of
E. coli for wild type and ompR knock-out conditions. In this case, nodes identified by both approaches are
considered TPs; those whose topological variation was identified only by a change in node centrality are
FPs; while those solely identified by F1 are considered FNs. Nodes that do not show any variation in their
topology are TNs. Centralities metrics are: Average Shortest Path Length (ASPL), Betweenness Centrality
(BC), Closeness Centrality (CLC), Clustering Coefficient (CC), Eccentricity (ECC), Neighborhood Con-
nectivity (NC), Stress (STR), Degree (DEG, sum of outdegree and indegree), Outdegree (ODE), and Inde-
gree (IDE).

TP FP TN FN

ASPL 40 8 131 18
BC 35 45 94 23
CLC 40 8 131 18
CC 23 1 138 35
ECC 11 1 138 47
NC 51 1 138 6
STR 30 8 131 28
DEG 14 1 138 44
IDE 13 1 138 45
ODE 8 1 138 50

type and the knock-out network. There are several TF-coding genes which are not in the
direct neighborhood of ompR but are still part of its subnetwork and were present only
in one of the two states. Five TF-coding genes are only present in the wild type (yeiL,
mlrA, feaR, rhaR and rhaS) while a fifth TF is only expressed in the knock-out (tdcA). yeiL
encodes for a TF with no known targets but itself; mlrA is part of the signaling cascade
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Figure 4 ompR subnetwork. Subnetwork formed by all graphlets in which ompR participates (red colored node) showing the comparison between
wild-type and the ompR knock-out GRNs. The subnetwork elements are displayed using different colors for TF-coding genes and effector genes. TP
elements are those present in both networks being compared, FN are network elements present only in the wild-type network and FP are those ele-
ments present only in the ompR network. The small insert represent the subnetwork formed by only direct neighbors of ompR in the comparison us-
ing the same coloring scheme.

that controls the biosynthesis of curli; feaR is considered an activator of phenylacetate
synthesis from 2-phenylethylamine and its only two direct regulations are feaB and tynA;
rhaR and rhaS are part of the same operon and their product regulates genes involved
in l-rhamnose degradation and transport. TdcA, the product of tdcA, controls the tdc
operon that contains genes which products are involved in the transport and metabolism
of threonine and serine. With respect to TF-coding genes present only in one state but
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are not part of the ompR subnetwork, solely two nodes are only present in the wild type
network: tdcR and ydeO. The TFs encoded by tdcR and tdcA are positive regulators of the
tdc operon, but in contrast to tdcA, which is part of this operon, tdcR is not. On the other
hand, YdeO induces the expression of genes involved in the response to acid resistance,
including respiratory genes and four TF-coding genes governing stress response.

These networks and the results of their comparisons are available in the form of a
Cytoscape session provided as supplementarymaterial. This session also contains additional
metrics for each node, including other metrics calculated by LoTo based on the rate of
graphlet reconstruction (Martin et al., 2016) and if the expression of each gene was detected
in each studied condition.

DISCUSSION
Quantification of gene expression is a widely used approach to determine the effect
of genetic alterations, such as deletions, mutations or even differences between diverse
conditions. Nevertheless, this technique reports quantitative differences in gene expression
while it disregards the causes of these variations. On the other hand, differential network
analysis tries to identify the variations in network topology, and thus, it helps to identify
the mechanisms that cause the alterations in gene expression profiles.

LoTo is a tool to perform differential network analysis of GRNs that makes explicit
use of graphlets. In the definition of graphlets used in LoTo, both true and false edges are
equally considered. Despite the need for proper bibliographic and experimental support
for true edges in GRNs, there is no doubt about their relevance. True edges represent how
the products of source genes control the expression of target genes, implying both the
direction and the causality of the regulation. Due to their importance, most of the current
metrics used to describe and compare networks such as shortest paths and centralities only
consider true edges, disregarding false ones. Thus, false edges are commonly considered
as less informative or simply ignored. However, false edges depict indispensable elements
of the network topology because its existence indicates the absence of the regulation.
Therefore, once a false edge has been identified, its removal—i.e., conversion to a true
edge—implies the apparition of a new regulatory relationship that may influence gene
expression.

Graphlets depict local network topology and their existence or absence is treated in
LoTo as a binary classification problem. By doing so, several metrics applied in this type
of problems can provide a quantification of the topological similarity of two compared
networks. Notably, only 11 nodes found in the gold standard created from RegulonDB
are not included in any graphlet. Thus, the definition of graphlets employed in LoTo
includes most of the network components present in the gold standard. Interestingly,
graphlets that do not require their three nodes to represent regulator-coding genes (types
1 to 6) are by far more numerous than those graphlets in which all three nodes represent
regulator-coding genes (types 7 to 13). This is expected when one considers that the number
of regulator-coding genes is less numerous than those coding for other gene products, and
therefore graphlets that require more regulators are deemed to be less frequent. Another
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trend is that the occurrence of graphlets decreases as both the number of true connections
and the number of regulator-coding genes in their composition increases. Since the number
of regulator-coding genes is smaller, this tendency is also expected because an increment
in the number of true edges would require the presence of more regulator-coding nodes.
Moreover, type 9 (a cycle) is completely absent in the three networks analyzed.Whether the
lack of type 9 graphlets is due to their absence in real GRNs or due to the incompleteness
of the E. coli gold standard, is yet to be determined.

There are different levels in which network similarity can be measured. The first level
is the global topology, where the overall structure of two networks is compared and
their topological similarity reported. LoTo reports graphlet occurrence in a similar way
to other approaches (Przulj, Corneil & Jurisica, 2004; Sporns & Kötter, 2004; Przulj, 2007;
Koschützki & Schreiber, 2008; McDonnell et al., 2014; Yaveroğlu et al., 2014). In addition,
LoTo also makes use of binary classification metrics calculated for the presence or absence
of graphlets to quantify the similarity between two states of a network. F1 and MCC were
calculated at different percentages of randomization of the E. coli gold standard (Fig. 2)
to show how these metrics calculated for the presence or absence of graphlets behave in
a controlled environment. In all cases, GBMs are below their single-edge counterparts,
indicating that GBMs are more sensitive to the percentage of change in the network than
single-edge metrics. Moreover, when the metrics are calculated for graphlets, the removal
or swapping of an edge has a greater impact on the metrics than when calculated for
single edges. This can be foreseen since the change of a single edge may change the type
of several graphlets, thus explaining the lower values observed for GBMs. The increased
sensitivity of graphlets based metrics becomes especially relevant when considering SWAP
randomization (Fig. 2A and 2C), where the addition of edges (FPs) can create new graphlets.
As shown in Fig. 3, the contribution of each type of graphlet to F1 and MCC is sensitive
to the percentage of change. This is particularly relevant at high percentages of change,
where both metrics F1 and MCC are dominated by simpler graphlets of types 1, 2 and
4. This is expected when considering that the formation of these graphlets require only
two true edges and the highest number of false edges among all graphlet types. It is also
very important to consider that the arbitrary introduction of true edges in the SWAP
randomization increments the occurrence of these simpler graphlets as the percentage of
alteration increases, while in REMO, simpler graphlets only appear by decomposition of
more complex ones.

The second level of network similarity is local topology. In this case, the goal is to
report how well maintained are the relationships of individual genes with the rest of
the network. Variations in degree and other measures of node centrality can be used to
detect nodes that experience variations in their relationships with other genes, i.e., how
their regulatory relationships are altered. For this purpose, LoTo calculates the binary
classification metrics for the existence or absence of all graphlets in which the same node
participates. As an example of this second level of topological similarity, LoTo was used
to identify TF-coding genes showing differences in their local topology in two condition
specific networks. These two GRNs represent E. coli wild-type and a knock-out of ompR.
As evidenced in Table 4, graphlet based F1 and MCC do not show strong correlations
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with most of the differences in node centralities. Notably, this indicates that the various
metrics and centralities capture diverse aspects of the network topology and thus, each
metric depicts diverse traits of variation in the local topology. This is confirmed in
Table 5, where it is evident that each metric identifies different TF-coding genes as those
whose local topology varies in the compared networks, even though the agreement (TPs
+TNs) is larger than the disagreement (FPs +FNs). Interestingly, the main difference
between GBMs and the other metrics are due to the explicit usage of graphlets. As shown
in Fig. 4, the subnetwork of a gene formed by all graphlets in which that node participates
contains a large fraction of the entire network, almost half of it in the example shown.
This subnetwork includes not only direct neighbors of a node, but also its neighbors in
second grade and the relationship between them. Therefore, the higher similarity of GBMs
with Neighborhood Connectivity is expected, since this centrality quantifies links between
the direct neighbors of a node. In a similar way, the disagreement between GBMs and
Betweenness Centrality is also expected, since it counts the number of shortest paths that
traverse a node and thus includes all nodes in the network in its calculation. In relation to
the ompR subnetwork, six out of eight TF-coding genes that are only present in one of the
network states are part of it. This indicates an interconnection between these regulators
that is explicitly found by our graphlet based approach. Importantly, the function of
genes regulated by these TFs is related to the main functions previously reported in acid
stress response (Stincone et al., 2011; Johnson et al., 2014). These results evidence that the
approach followed finds similar results to the more traditional transcriptome profiling,
and simultaneously provides the means to identify regulatory relationships that would
have been obviated otherwise.

There is a third level in which network topology can be studied: the identification of
the individual edges and nodes that disappear or appear in the comparison of two GRNs.
Even if this level is not explicitly treated in this work, it is implicitly employed in LoTo,
as changes in single edges alter graphlet types. Nonetheless, this information is explicitly
provided in the output of LoTo.

CONCLUSIONS
Given the results shown, the GBMs calculated by LoTo are proposed as novel indicators
of the topological similarity between different realizations of the same GRNs. In addition,
LoTo is able to identify those nodes whose local topology varies in GRNs, and hence,
show differences in their regulation. Notably, by using graphlets instead of single edges,
the approach implemented in LoTo captures topological variations that are not detected
by other metrics and would be disregarded otherwise. Our approach can also be used to
perform topological comparisons of any type of directed network, as long as different states
of those networks are available.
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