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HIV and cancer remain prevailing sources of morbidity and mortality worldwide. There are 
current efforts to discover novel therapeutic strategies for the treatment or cure of these 
diseases. Humanized mouse models provide the investigative tool to study the interaction 
between HIV or cancer and the human immune system in vivo. These humanized models 
consist of immunodeficient mice transplanted with human cells, tissues, or hematopoi-
etic stem cells that result in reconstitution with a nearly full human immune system. In 
this review, we discuss preclinical studies evaluating therapeutic approaches in stem 
cell-based gene therapy and T cell-based immunotherapies for HIV and cancer using a 
humanized mouse model and some recent advances in using checkpoint inhibitors to 
improve antiviral or antitumor responses.
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iNTRODUCTiON

Humanized mice have emerged as an invaluable tool in providing a model system that enables 
researchers to study the human immune system and its development and function/dysfunction 
in vivo (1). The identification of the severe combined immunodeficiency (Prkcdscid or SCID) mouse 
provided the cornerstone of the development of the humanized mouse model by allowing the 
xenoengraftment of human (hu) cells [specifically, human peripheral blood lymphocytes (PBLs)] 
without mouse immune system-mediated rejection (known as the hu-PBL SCID model) (2). This 
allowed limited examination of components of the human immune system in a manipulatable 
model system. Further development occurred with the engraftment of SCID mice with human fetal 
thymus and liver tissue, which is implanted under the kidney capsule of the animals (termed the 
SCID-hu mouse) (3, 4). The fetal liver tissue provided the hematopoietic cells and the thymus tissue 
provided the stromal elements to facilitate the engraftment and development of a functional human 
thymus in these animals. This allowed the closed examination and long-term engraftment of human 
hematopoietic tissue in  vivo. Humanized mouse model development rapidly expanded with the 
identification and breeding of immunodeficient strains of mice that facilitated a greater engraftment 
of human cells. SCID mice have been crossed with other mouse strains, such as the nonobese diabetic 
(NOD) mouse to generate NOD/SCID mice that have defects in innate and adaptive immunity (5). 
Other mice that have been crossed to SCID mouse strains include those that have genetic mutations 
in the Rag1, Rag2, or the IL-2 receptor common gamma chain (IL2rγ) genes to generate new strains 
of immuno-incompetent mice which allow greater human cell and tissue engraftment, particularly 
the tissues and cells that have a high hematopoietic potential (6). The NOD/SCID and NOD/SCID/
IL2rγ-knockout (NSG) strains have been used to generate one of the more recent humanized mouse 
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Table 1 | Engraftment of human immune system in the most commonly used immunodeficient mouse models.

Common engraftment method of 
human cells

Common immunodeficient strains 
used

Characteristics of the reconstituted human 
immune system

Source and references

Injection of peripheral blood 
mononuclear cells

Nonobese diabetic (NOD).CB17-Prkdcscid  
(NOD-SCID)

Engraftment of T cells, rapid GVHD 
development

Jackson Laboratory (2)

Injection of HSCs NOD.Cg-PrkdcscidIL2rgtm1WjN/Sz  
(NSG)

Multiple hematopoietic lineages including T and 
B cells, APCs, and NK cells

Jackson Laboratory (7)

Implantation of fetal liver and thymus 
tissue

NOD-SCID  
NSG

Robust thymocyte development, thymocytes 
educated on autologous thymic epithelium, 
minimal development of peripheral immune 
system

Jackson Laboratory (3, 4)

Implantation of fetal liver and thymus 
tissue and injection of autologous HSCs

NSG
NOD-SCID
NOD.129S7  
(B6)-Rag1tm1MomIL2rgtm1WjN/Sz  
(NRG)
B6.129 (Cg)-Rag2tm1FwaCd47tm1FpI//2rgtm1WjI/J 
(TKO-C57BL6)

Complete human immune system, human 
leukocyte antigen-restricted T cells, mucosal 
immune system, delayed GVHD

Jackson Laboratory (14, 16–18)

2

Carrillo et al. Hu-Mouse Models for HIV and Cancer Therapy

Frontiers in Immunology | www.frontiersin.org April 2018 | Volume 9 | Article 746

models that has shown to have the most robust human immune 
system engraftment, providing long-term human hematopoietic 
stem/progenitor cell (HSPC) engraftment and functional multi-
lineage hematopoietic differentiation. This model facilitated the 
engraftment of human CD34+ HSPCs in the bone marrow of the 
animals and subsequent multilineage hematopoiesis, including 
B  cell production and limited T  cell development [termed the 
CD34-humanized mouse (7)]. More robust T cell reconstitution, 
which provides a more relevant model for HIV infection and the 
study of T  cell immunity (8), was subsequently developed and 
involved the intravenous injection of autologous CD34+ human 
hematopoietic cells from fetal liver tissues, which engraft in the 
bone marrow (B), along with the transplantation of human fetal 
liver (L) and thymus (T) tissue under the kidney capsule of the 
mice, which forms a recapitulated human thymus [known as the 
bone marrow–liver–thymus (BLT) mouse] (9, 10). New mice 
strains, such as NOD-SCID IL2Rγnull/IL-3/GM-CSF(NSG-
SGM3), are also being adopted for constructing BLT mice for 
better differentiation of myeloid cells or cancer engraftment 
(11, 12). Overall, immune-incompetent mouse strains can be 
humanized by either the transplantation of human peripheral 
blood mononuclear cells (PBMCs), the transplantation of human 
HSPCs, or the engraftment of human fetal tissue and HSPCs 
(Table 1). Among them, the humanized BLT mice are the most 
robust model in supporting multilineage human immune system 
development (13). The development of humanized mouse models 
has been extensively reviewed in Ref. (6, 14, 15) and been utilized 
in preclinical studies that revealed important discoveries in sev-
eral fields of research (1).

In particular, HIV researchers have taken advantage of the 
humanized mouse model to better understand the pathogenesis 
of the infection and to examine novel therapeutic strategies to 
treat and possibly eradicate infection (19). Relatively early in 
the use of these types of humanized mice, researchers used the 
SCID-hu mouse as a platform to design and test a gene therapy 
approach for the treatment of HIV infection. Human HSPCs were 
transduced with a retroviral vector expressing a reporter gene and 
were then injected into the human thymus organoid to evaluate 

the differentiation and development of mature cells carrying the 
transgene reporter in vivo (20, 21). These studies formed the basis 
of the development of this approach to protect cells from HIV 
infection in what was the largest phase II gene therapy trial to that 
date (22). This sets the stage for the forward progression of other 
types of HSPC-based gene therapy research involving the devel-
opment of lentiviral vectors expressing anti-HIV components 
that result in HIV-resistant immune cells in vivo in humanized 
mice (23–27). Results for some of these studies enabled stem 
cell-based gene therapy clinical trials that are currently ongoing 
(ClinicalTrials.gov Identifier: NCT01734850). Thus, studies such 
as these performed in humanized mice illustrate the utility of test-
ing new stem cell-based gene therapy approached in humanized 
mice and highlight the potential therapeutic efficacy and safety of 
engineering such aspects as HIV resistance through the genetic 
modification of HSCs with anti-HIV genes (28).

Currently, humanized mouse models are being highly uti-
lized to study human diseases and develop novel therapeutic 
approaches that can potentially be translated into clinical trials 
as described above. HIV and cancer are two research fields that 
have been taking advantage of the humanized mouse model to 
study stem cell- and T cell-based immunotherapy approaches to 
treat these chronic diseases. In this review, we highlight impor-
tant studies using the humanized mouse model in stem cell- and 
T  cell-based immunotherapy using highly potent transgenic 
T cell receptors (TCRs) and chimeric antigen receptors (CARs). 
We also discuss utilizing checkpoint inhibitors to overcome com-
mon immunosuppression mechanisms used by both diseases that 
promote disease progression and persistence.

PeRiPHeRal Cell-baSeD 
iMMUNOTHeRaPY MODeliNG iN 
HUMaNiZeD MiCe

Transgenic TCRs in Humanized Mice
One of the earliest attempts for treating HIV through an 
immunotherapy-based approach using peripheral T cells was to 
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isolate HIV-specific CTLs from HIV patients, expand ex vivo, 
and infuse them back into the patients (29–32). However, these 
studies demonstrated that this approach had very little impact 
on antiviral efficacy in treated individuals. There are current 
attempts to improve the efficiency of this approach through 
the “redirection” of peripheral T  cells to target HIV infection 
through the genetic modification of cells with HIV-specific, 
molecularly cloned TCRs [for review on transgenic TCRs, see 
Ref. (33, 34)]. Proof of principle studies were conducted in 
the humanized mouse model wherein Joseph et al. produced a 
lentiviral vector encoding the TCR that recognizes the HIV-1 gag 
epitope SL9, which elicits a potent antiviral response by CTLs 
carrying the SL9-specific TCR (35). Using the SCID-hu mouse 
model, transduced CD8+ T cells carrying the SL9-specific TCR 
were co-injected with human leukocyte antigen (HLA)-matched 
HIV-1-infected PBMCs and tested for in  vivo suppression of 
HIV-1. Isolated spleens of the mice treated with transduced HIV 
TCR CD8 T cells showed no signs of HIV-1-infected PBMCs; 
thus, peripheral CD8+ T cells modified with this potent anti-HIV 
TCR were capable of controlling and clearing HIV-1 infection 
in vivo. Although TCR-based immunotherapy has been shown 
to be effective in nonhumanized mouse models (36–38), there 
are rising safety concerns with using cloned TCRs in adoptive 
immunotherapy because of the possibility of exogenous TCR 
mispairing with an endogenous TCR chain, generating a new 
TCR that can have lethal off-target toxicity (39, 40). However, 
other studies conducted in humanized mice suggest that this 
may not be a significant issue (see below).

CaR-based immunotherapy in Humanized 
Mice
An ever-present issue with the use of molecularly cloned TCRs 
in therapy is that they have to be used in HLA-matched individu-
als, lessening their potential use to a limited number of people. 
CARs, which combine antigen-recognizing, HLA-independent 
extracellular domains with the TCR-zeta chain intracellular 
signaling domain, broaden these molecules’ potential use as a 
T cell redirection/engineering therapeutic approach [for a review 
on CAR T  cell design, see Ref. (41)]. There have been numer-
ous preclinical studies and clinical trials that have tested or are 
currently testing the effectiveness of CAR T cell therapy against 
certain cancers, reviewed in Ref. (42). In many preclinical stud-
ies, humanized mice were used to test the antitumor efficacy of 
various CAR designs: for example, second- or third-generation 
CARs which contain immune-enhancing costimulatory domains 
(43–45). Humanized mice can also be used to study the effect of 
combination therapy with CAR T  cells and antibody-targeting 
immune checkpoint inhibitors such as PD-1 and CTLA-4 (46). 
A combinatorial therapeutic approach using CAR T  cells and 
an immune checkpoint inhibitor has recently been studied in a 
humanized mouse model of metastatic clear-cell renal cell car-
cinoma (47). These CAR T cells targeting human anti-carbonic 
anhydrase are also equipped to secrete human anti-programmed 
death ligand 1 (PD-L1) antibodies to overcome checkpoint inhi-
bition mediated by PD-1 and PD-L1 interactions. This approach 
to immune-checkpoint blockade resulted in an enhanced antitu-
mor efficacy compared to mice treated with CAR T cells alone. 

Continuous efforts to study the behavior of CAR T cells in vivo 
using humanized mice can provide important understandings 
into overcoming the immunosuppressive properties of the tumor 
microenvironment.

With the success of CAR T cell therapy against B cell malig-
nancies, HIV researchers are revisiting the CAR T cell approach 
for the treatment of HIV infection (48–50). Very recently, 
peripheral anti-HIV CAR T cells have been tested for antiviral 
efficacy using a humanized mouse model of HIV infection (51). 
The study’s approach was to redesign a CD4-based CAR vector 
used previously in clinical trials to augment expression and CAR 
T  cell performance. Anti-HIV CAR T  cells that contained the 
costimulatory 4-1BB domain outperformed those that contained 
the CD28 costimulatory domain in reducing viral rebound after 
ART treatment and prolonged persistence in vivo in the absence 
of antigen. Thus, opposed to the minimal clinical efficacy seen 
with the first-generation CD4-based CAR, newer generation of 
anti-HIV CARs can potentially have a more promising outcome 
in clinical trials. Future studies using humanized mouse models 
of HIV infection can provide more information on differences in 
anti-HIV responses and the clearance of HIV infection in vivo 
using anti-HIV CAR T cells containing different combinations of 
costimulatory domains.

STeM Cell-baSeD GeNe THeRaPY iN 
HUMaNiZeD MiCe

Recent developments of new humanized mouse models have 
opened opportunities in efforts to modify human stem cells to 
generate an immune system designed to mount a more efficient, 
targeted immune response against a specific pathogen or a dis-
ease. Humanized mice are being employed to test the therapeutic 
efficacies of stem cell-based gene therapies involving the modifi-
cation of HSPCs with potent antigen-specific TCRs and CARs, 
and engineering a human immune system equipped to specifi-
cally target HIV or cancer antigens in vivo. Below, we discuss key 
studies that have utilized the humanized mouse model system for 
stem cell-based therapy for HIV and cancer.

Stem Cell-based Gene Therapy Using 
TCRs against Hiv and Cancer
To enhance the immune response to HIV infection, studies have 
used HSPCs to introduce HIV-specific TCRs into immunodefi-
cient mice to reconstitute a human immune system that contains 
a population of T cells carrying an HIV-specific TCR. The testing 
of this concept initially utilized the SCID-hu mouse model (52). 
CD34+ HSPCs were isolated from a human fetal liver, transduced 
with a molecularly cloned anti-HIV TCR, and transplanted 
into irradiated HLA-matched SCID-hu mice. This resulted in 
the generation of mature CD8+  T  cells carrying the transgenic 
anti-HIV TCR. These anti-HIV TCR+  T  cells were functional 
in response to peptide stimulation ex vivo, differentiating into 
effector cells, producing interferon (IFN)-gamma, and lysing 
targeted cells. To test the functionality of anti-HIV TCR+ T cells 
generated from transduced HSCs in vivo, a follow up study used 
the NSG strain mouse that is engrafted with human liver/thymus 
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and injected with transduced fetal liver CD34+ cells. Using this 
NSG-CTL mouse model, the injected transduced HSCs were 
able to differentiate into mature human CD8+  T  cells carrying 
the transgenic anti-HIV TCR (16). More importantly, anti-HIV 
TCR+  CD8 T  cells were found to migrate into multiple tissues 
including the spleen, bone marrow, and the implanted human 
thymus. Following an HIV-1 challenge into these mice, these 
anti-HIV TCR+ CD8 T cells were able to suppress viral load at 
2 weeks and 6 weeks post infection in the peripheral blood. In 
addition, mice carrying the anti-HIV TCR T cells were protected 
against CD4 T cell depletion and had lower levels of infected cells 
by 6 weeks post infection. Other key outcomes observed in this 
study were the reduced viral burden in anti-HIV TCR mice in 
lymphoid tissues and the expansion and differentiation of anti-
HIV TCR+ T cells in response to an active HIV infection. These 
studies using two different humanized mouse models showed the 
feasibility and therapeutic potential of modifying HSCs with a 
potent anti-HIV TCR to produce a functional antiviral immune 
response to HIV.

Investigators have turned to the humanized mouse model to 
test the proof of principle of this type of stem cell-based gene 
therapy against cancer. Similar to the HIV-based studies, stem 
cell-based gene therapy for cancer is also being examined as a 
potential therapeutic strategy to provide a long-lasting immune 
surveillance against tumor cells using human HSPCs modi-
fied with an antitumor TCR (53). Using the BLT-humanized 
mouse model, Vatakis et al. transplanted HSPCs modified with 
a HLA-A*0201-restricted anti-melanoma TCR (54, 55). The 
transduced HSPCs were able to differentiate and produce high 
levels of naïve CD8+ T cells carrying the anti-melanoma TCR. 
Upon challenging these mice with HLA-matched tumors, mice 
treated with anti-melanoma TCRs were able to control tumor 
growth, and in some mice, clear the tumor compared to control 
mice carrying nonmodified T  cells. Further analysis on the 
functionality of these anti-melanoma-specific T  cells showed 
that they can differentiate into different subsets of effector 
and memory phenotype and infiltrate into tumors. Moreover, 
analysis of the bone marrow of these mice carrying transgenic 
HSCs showed continued expression of the integrated vector in 
isolated bone marrow samples. Thus, transgenic HSPCs can 
repopulate the bone marrow and provide a long-lasting supply 
of modified mature immune cells, including T and natural killer 
(NK) cells, directed against a specific pathogen. Other studies 
have also utilized the CD34-humanized mouse model in exam-
ining stem cell gene therapy using candidate antitumor specific 
TCRs which exhibited similar and new informative outcomes 
(56–58). In particular, these studies found that the introduc-
tion of the TCR transgene in HSPCs could inhibit endogenous 
TCR rearrangement in T cells (56, 57, 59). This is an important 
discovery as it can overcome the potential of off-target toxicities 
from transgene expression and endogenous TCR chains rear-
rangement and alpha and beta chain receptor mixing. Hence, 
humanized mouse models enabled investigators to study the 
development and dynamics of an immune system with unlim-
ited replenishment of immune cells carrying a disease-specific 
receptor which can provide key aspects of its therapeutic poten-
tial in clearing a persistent infection or a disease.

Stem Cell-based CaR T Cell Studies in 
Hiv and Cancer
To test the safety and efficacy of a stem cell-based CAR approach in 
HIV infection, Zhen et al. used the BLT-humanized mouse model 
and modified HSPCs with a lentiviral vector expressing an anti-
HIV CD4-based CAR to determine whether this can result in the 
generation of mature anti-HIV CAR+ CTLs (17). This anti-HIV 
CAR is based on utilizing the HIV receptor CD4 molecule that is 
fused to an internal TCR-signaling domain (60). Stem cells from 
fetal liver were modified with anti-HIV CAR-expressing lentiviral 
vector and infused into NSG mice transplanted with fetal liver 
and thymus. Investigators observed subsequent maturation of 
CAR+ T cells, NK cells, B cells, and myeloid cells in vivo. In addi-
tion, cells carrying the CAR-expressing lentiviral vectors were 
protected from HIV infection by coexpressing protective anti-HIV 
shRNAs and were able to functionally suppress HIV replication 
in vivo through CTL activity. Also, similar to the TCR-modified 
HSPC-based studies, developing T  cells carrying the anti-HIV 
CAR receptor can successfully go through positive selection in a 
human thymus, and the expression of the anti-HIV CAR resulted 
in the suppression of endogenous TCR rearrangement. This 
observation that developing T cells expressing an anti-HIV CD4-
based CAR suppressed endogenous TCR rearrangement suggests 
that the CD4-based CAR can act as the sole natural TCR during 
development. This could be a beneficial trait in the long term, as 
emerging T cells expressing CD4-based CARs will be specific to 
HIV antigen and chances of off-target activation will be minimal. 
A similar approach was also done examining the development 
of CD19CAR-expressing cells in the CD34-humanized mouse 
model (61, 62). They found that the introduction of a lentiviral 
vector expressing either a CD19CAR or a second-generation 
CD19CD28CAR into HSPCs and engrafting into NSG mice led to 
the differentiation of different hematopoietic lineages expressing 
CAR including T cells, B cells, and myeloid cells and produced 
potent antitumor responses in the CD19CD28CAR-treated mice 
(61, 62). It remains to be seen if the therapeutic effects of stem 
cell-based CAR T cell therapy performed on humanized mice will 
be translated into human clinical trials.

PD-1 aND  iFN-i blOCKaDe THeRaPY 
FOR Hiv aND CaNCeR

While humanized mice have been useful in the examination of 
human immunotherapeutic approaches involving gene therapies, 
their use in examining antiviral or antimalignancy responses and 
immunotherapies is at a relatively nascent stage. More sensitive 
immune-based assays and improvements in humanized mice 
now allow the examination of antitumor and antiviral immune 
responses and show great promise in the development of novel 
immunotherapies to treat these conditions. In recent studies, 
humanized mouse models were used to examine the effects 
of blocking key immune and antiviral factors in chronic HIV 
infection. Chronic viral infections can persist by upregulating 
immune checkpoint receptors that can functionally compromise 
virus-specific T cells and prevent them from clearing the infec-
tion (63). HIV infection has been shown to upregulate T  cell 
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exhaustion markers that enable the virus to chronically persist, 
which includes PD-1, Tim-3, LAG-3 among others (64–69). To 
investigate whether T cell exhaustion can be reversed and rescue 
function in exhausted T cells, these recent studies closely exam-
ined immune factors in chronically HIV-infected mice and found 
elevated PD-1 levels on T cells, similar to that seen in infected 
individuals. These chronically infected mice were treated with 
an antibody that blocks the PD-1/PD-L1 pathway and found 
reduced viral loads and increased CD4+ and CD8+ T cell levels 
(70, 71). In addition, PD-L1 blockade increased the percentages 
of naïve and central memory T cells and increased Th1 cytokines 
IFN-gamma and IL-12 during treatment (70). Thus, blocking the 
PD-1/PL-1 pathway during chronic HIV leading to reduced viral 
loads has now been shown in two different humanized mouse 
models and supports results seen in a study applying PD-1 block-
ade during chronic SIV infection in a macaque model, which 
reduced SIV levels (72). It remains to be seen whether PD-1/
PD-L1 blockade can have clinical success in antiviral therapy 
in chronically HIV-infected individuals as it has already been 
observed in individuals treated for human cancer (73–75). PD-1 
blockade treatment for cancer therapy has been shown to have 
therapeutic benefits in patients with certain types of malignan-
cies (76). Recently, preclinical studies have utilized humanized 
mice either transplanted with human CD34+ HSPCs (HuNSG) 
or mice containing a double knockout of MHC class I or class II 
(NOG-dKO) to show the therapeutic potential of utilizing PD-1 
blockade for cancer therapy (77, 78). These studies highlight the 
usefulness of humanized mice to study not only the antitumor 
effects of anti-PD-1 blockade but also the human immune 
responses to human tumors, as these studies revealed significant 
tumor growth suppression and antitumor CD8+ T cell responses 
following PD-1 blockade treatment.

Hyper-immune activation is a hallmark of chronic HIV 
infection, and arising evidence is suggesting that chronic type I 
(IFN-I) is driving this continuous immune activation that may 
be leading to disease progression (79). To investigate the role 
IFN-I plays in driving chronic HIV infection, investigators have 
turned to BLT-humanized mouse models of HIV infection to 
study this (80, 81). In the study by Zhen et al., after establishing 
a chronic HIV infection, blocking IFN-1 signaling using an anti-
interferon alpha receptor 2(IFNR2)-blocking antibody resulted 
in a decreased immune activation, a decreased expression of 
T exhaustion markers and reversal of T  cell exhaustion, and 
reduced plasma viral loads. In addition, treatment with the anti-
IFNR2-blocking antibody in combination with ART resulted in 
a rapid viral suppression and reduced viral reservoirs. Cheng 
et  al. found similar results using IFNR1-blocking antibody in 
combination with ART treatment throughout their study (80). 
These results shed light on the role IFN-I signaling plays during 
chronic HIV infection in maintaining chronic immune activation 
and T cell exhaustion that leads to uncontrolled HIV infection 
in vivo. Findings from these and future studies may lead to the 
application of IFN-I blockade treatment in combination with 
ART during chronic HIV infection that could alleviate residual 
immune activation and reduce viral reservoirs in HIV-positive 
individuals. It remains to be seen whether IFN-I blockade will 
have a beneficial antitumor efficacy during tumor progression 

since IFN-I is important in inducing antitumor responses such 
as promoting CD8 T cell priming. However, continuous IFN-I 
signaling can also have immunosuppressive properties that may 
play a role in promoting tumor growth (82). It has been recently 
shown that continuous IFN signaling drives PD-L1-dependent 
and -independent resistance to radiation therapy and checkpoint 
blockade, and blocking IFN-I signaling restores tumor cell 
response to checkpoint blockade treatment (83). Whether IFN-I 
blockade treatment can restore response to treatment in tumors 
that are resistant to PD-1 blockade or other immune checkpoint 
blockade in a humanized mouse model of cancer remains to be 
determined.

FUTURe DiReCTiONS

Although humanized mice have been an essential tool in sev-
eral fields of research to better understand the mechanisms of 
disease progression and develop therapeutic strategies, these 
mouse models do come with their own limitations that need to 
be addressed to create more optimized models that will fit the 
needs of each research field (84). Currently, SCID mice engrafted 
with human PBMCs develop graft-versus-host disease (GVHD) 
within 4 weeks of engraftment, limiting the time of experimenta-
tion to just a few short weeks. The humanized BLT mouse model 
also has its own limitations for use. BLT mice can have poor 
B  cell development, limited antibody class switching following 
activation, and lymphocyte homing in lymph nodes and germinal 
centers, limiting their antibody responses. In addition, these 
mice also typically develop a GVHD-like condition after around 
20  weeks post engraftment of fetal tissue and HSCs, putting a 
limitation on the duration of a given study (84, 85). Therefore, 
there is a pressing need to develop new mouse strains with genetic 
properties that will eliminate the generation of this GVHD-like 
condition. Recently, a new modification of the BLT mouse model 
was made by transplanting fetal thymus, liver, and autologous 
CD34+ HSCs into a C57BL/6 mouse strain that contain a triple 
knockout of Rag2, IL-2Υc, and CD47 genes (TKO-BLT) (18). 
These mice were observed to be healthy with no signs of GVHD 
for 45 weeks post transplantation, which is months longer than 
that of the current BLT models. In addition, they retained high 
reconstitution of human cells throughout the 45 weeks. They also 
found this model to establish HIV latency, respond well to orally 
fed and subcutaneously injected ART treatment, and upon ART 
interruption, can generate rapid viral rebound. Thus, this new 
humanized TKO-BLT mouse model can provide an extended 
duration of a variety of studies that will be useful for addressing 
issues requiring longer periods of infection or disease progression.

Because of the variety of humanized mouse models currently 
available, it is important for investigators to be knowledgeable 
on the different mouse models and which one will be the more 
appropriate model to answer the questions they are investigat-
ing. Differences in the background mutations of the immuno-
compromised strains can have an impact on the engraftment of 
human cells and the development of peripheral lymph nodes 
and germinal centers (14). Therefore, results using humanized 
mice must be carefully interpreted. It is also important to include 
proper controls, particularly for immune-based studies, such as 
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uninfected and unmanipulated animals, to control for any poten-
tial changes/interference by GVHD or specific effects pertaining 
to the individual tissues.

Humanized mouse models are also currently being improved 
upon for cancer research (86). Cancer therapy studies evaluating 
the immune response to tumors would benefit from a humanized 
BLT model where the human reconstituted immune system is 
compatible with the transplanted tumor tissue. One possibility 
will be to acquire HSPCs from a patient and transplant autologous 
tumor cells or HLA-matched tumor cells into the mice. This will 
generate a closer representative of the patient’s antitumor response 
without the interference of alloreactive T cells resulting from the 
mismatch of the reconstituted immune system and engrafted 
tumor cells. Further advances in generating humanized mouse 
models that overcome current limitations will be highly benefi-
cial for HIV and cancer researchers to advance stem cell-based 
gene therapy, T cell immunotherapy, and other immunological 
studies such as T cell exhaustion and tumor immunosuppressive 
microenvironment for eradicating HIV and cancer.
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