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Profiling host ANP32A splicing landscapes to
predict influenza A virus polymerase adaptation
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Species’ differences in cellular factors limit avian influenza A virus (IAV) zoonoses and
human pandemics. The IAV polymerase, vPol, harbors evolutionary sites to overcome
restriction and determines virulence. Here, we establish host ANP32A as a critical driver of
selection, and identify host-specific ANP32A splicing landscapes that predict viral evolution.
We find that avian species differentially express three ANP32A isoforms diverging in a vPol-
promoting insert. ANP32As with shorter inserts interact poorly with vPol, are compromised
in supporting avian-like 1AV replication, and drive selection of mammalian-adaptive
vPol sequences with distinct kinetics. By integrating selection data with multi-species
ANP32A splice variant profiling, we develop a mathematical model to predict avian species
potentially driving (swallow, magpie) or maintaining (goose, swan) mammalian-adaptive vPol
signatures. Supporting these predictions, surveillance data confirm enrichment of several
mammalian-adaptive vPol substitutions in magpie IAVs. Profiling host ANP32A splicing could
enhance surveillance and eradication efforts against IAVs with pandemic potential.
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nfluenza A viruses (IAVs) infect a broad spectrum of mam-

malian and avian species, with wild waterfowl and shorebirds

being the major natural reservoirs!. In recent years, incur-
sions by zoonotic IAV strains, including highly pathogenic
avian influenza viruses (HPAIV) of the H5N1 subtype and low-
pathogenic H7N9 strains, have continually threatened to cause
potentially devastating new human pandemics2. However,
despite these cross-species transmission events, viral establish-
ment in the new human host is severely limited by a series of
powerful host-range restriction barriers to which novel IAVs
must first adapt®. The IAV RNA-dependent RNA polymerase
complex (vPol) is essential for viral genome replication and
transcription?, and is a major site for evolution of host-adaptive
viral changes to overcome some of these restrictions®~10.
ANP32A and ANP32B, two host chromatin regulators,
have recently been described as co-factors for vPol function,
and a 33 amino-acid insert difference between mammalian
(ma) and avian (av) ANP32A orthologs may promote vPol
adaptation!!-14, Indeed, the current model suggests that avian
IAV vPols cannot function efficiently with the shorter
maANP32A protein (which lacks a hydrophobic sequence rela-
ted to SUMO-interaction motifs!?), without prior acquisition of
at least one of several key substitutions, such as the typical
example of lysine (K) for glutamic acid (E) at position 627 of the
vPol subunit, PB2 (E627K)!12. Adaptation of vPol then leads to
increased viral replication, transmission, and virulence in the
new host>®16-18 Nevertheless, some features of this critical and
dynamic virus-host interplay remain unresolved. For example,
direct experimental evidence is lacking that ANP32A species’
differences are the driving force behind selection of disparate
residues at PB2-627 or other vPol adaptation sites!®, and host
factors such as RIG-I, importins, TUFM, or DDX17 have alter-
natively been implicated20-23. Furthermore, the simple avian vs
mammalian ANP32A model does not provide a satisfactory
explanation for sporadic observations that IAVs possessing
mammalian-adaptive vPol substitutions (including PB2-627K)
can be detected in some avian species, such as sparrows or geese,
and may be maintained for long periods24-26,

In this study, we establish experimental tools to dissect whether
ANP32A sequence differences alone can drive IAV vPol adap-
tation. In addition, we apply such systems to understand potential
variations in ANP32A across avian and non-avian species, with
the aim of identifying specific host conditions that may favor or
restrict IAV adaptation.

Results

ANP32A splice variants differentially impact vPol activity. The
33 amino-acid insert in avANP32A after position 175 is a critical
and transferable determinant of avian IAV vPol activity!2. While
analyzing non-mammalian ANP32A sequences available in
GenBank, we noted that some avian species are predicted to
express multiple ANP32A splice variants that differ in composi-
tion of the critical insert. This is exemplified by Gallus gallus
(chickens; Fig. 1a), which possesses a long isoform containing the
described 33 amino-acid insert (ANP32A_X1), a shorter isoform
with only a 29 amino-acid insert (ANP32A_X2, lacking 4 residues
from the hydrophobic SIM-like sequence!®), and a mammalian-
like isoform completely lacking any insert (ANP32A_X3). Using
Next-Generation Sequencing (NGS) of an ANP32A cDNA
amplicon generated by RT-PCR from the DF-1 chicken fibroblast
cell-line?”-28, we confirmed expression of all three splice variants,
and determined that ANP32A_XI1 is the major variant expressed
in these cells (66%), with an abundance at least twice as great as
ANP32A_X2 (25%), and 7-times as great as ANP32A_X3 (9%)
(Fig. 1a).

To assess whether ability to support avian vPol activity differs
between these ANP32A splice variants, we obtained expression
constructs representing each ANP32A isoform and used
transfection-based polymerase reconstitution assays to compare
their abilities to promote model avian-signature (PB2-627E) vPol
function. All isoforms could be expressed to similar levels
following transient transfection into human 293T cells (Fig. 1b).
However, ANP32A_X2 was compromised in its ability to
promote PB2-627E vPol function, exhibiting ~50-times less
activity than ANP32A_X1 (Fig. lc, d). ANP32A_X3 (which
completely lacks the 33 amino-acid insert) is unable to support
avian-signature vPol activity, and behaves like huANP32A!2.
Mechanistically, the defect in ANP32A_X2 function correlated
with its reduced capacity to interact with the trimeric avian-
signature IAV polymerase complex (Fig. le), precisely mimicking
the activity and binding phenotypes of an artificial ANP32A_X1
construct with loss-of-function mutations in the SIM-like
sequence!®. Consistent with prior work, only the fully binding-
competent ANP32A_X1 could subtly increase expression/stabi-
lization of vPol components (Fig. le)!>. These data support
previous observations that the hydrophobic SIM-like sequence in
ANP32A_XI1 is important for promoting efficient avian-signature
IAV vPol activity, likely by enhancing interactions with the viral
enzyme!®. Furthermore, the data reveal that different ANP32A
isoforms expressed by avian cells can have disparate effects on
avian vPol function.

ANP32A variants differentially impact IAV replication. To
compare how ANP32A_X1, ANP32A_X2, and ANP32A_X3 support
full replication of an avian-signature IAV, we first established a
clonal human A549-derived cell-line completely lacking endo-
genous functional ANP32A expression (A549-ANP32Ako) by
targeted CRISPR/Cas9 genome editing (Fig. 2a, b). Levels of
ANP32B, the closest ANP32A paralog in humans, were not
affected by the absence of ANP32A (Fig. 2b). Using lentiviral
transduction methods, we stably reconstituted these cells with
ANP32A_X1 (ch), ANP32A_X2 (ch), or ANP32A_X3 (hu)
(Fig. 2c), and subsequently assessed the propagation abilities
of genetically engineered isogenic rWSN-based model
IAVs expressing typical avian-signature PB2-627E or typical
mammalian-signature PB2-627K. As expected in multicycle
growth assays, the PB2-627E virus (but not the PB2-627K virus)
was severely attenuated in cells expressing mammalian-like
ANP32A_X3. However, the PB2-627E virus replicated similarly
to the PB2-627K virus in cells expressing ANP32A_X1. Notably,
the PB2-627E virus exhibited subtle attenuation in cells expres-
sing ANP32A_X2 as compared to the PB2-627K virus (Fig. 2d-f).
The PB2-627E virus, unlike the PB2-627K virus, was also severely
attenuated in the parental A549-ANP32Ag cell-line, confirming
the inability of PB2-627E to utilize human ANP32B for replica-
tion (Supplementary Fig. 1A)!2. These observations reveal that
ANP32A_X1 and ANP32A_X2, but not ANP32A_X3 (mamma-
lian-like), can alleviate attenuation of model avian-signature vPol
expressing viruses, although ANP32A_X2 is not as efficient as
ANP32A_XI1, particularly at early times post-infection. This
broadly correlates with results from our transfection-based assays,
where ANP32A_X2 (lacking the hydrophobic SIM-like sequence)
exhibited a diminished ability to promote avian-signature vPol
activity and to interact with the IAV polymerase complex.

ANP32A variants differentially select mammal or avian PB2s.
Given the varying abilities of each ANP32A isoform to support
replication of the model PB2-627E virus, we sought to assess
whether the isoforms consequently differed in their potential to
drive mammalian adaptation of an avian-signature IAV. To this
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Fig. 1 Avian species express at least three ANP32A variants that differentially impact avian-signature |IAV polymerase activity. a Sequence alignment
between human ANP32A (huANP32A, Homo sapiens, NP_006296.1) and chicken ANP32A (chANP32A, Gallus gallus_X1, XP_413932.3; Gallus gallus_X2,
XP_004943985.1; Gallus gallus_X3, XP_025009881.1). Hydrophobic residues (red), acidic stretches (blue) and basic residues (green), are highlighted. SLS,
SIM-like sequence. Relative abundance of ANP32A isoform transcripts in chicken DF-1 cells, as determined experimentally by NGS quantification of cDNA-
derived amplicons, is shown on the right. b Western blot analysis of lysates from human 293T cells transfected with the indicated FLAG-ANP32A
constructs. € Polymerase reconstitution assay comparing the impact of each FLAG-ANP32A construct (50 ng) on PB2-627E vPol activity in human
293T cells. d Similar to ¢, but using 500 ng of each FLAG-ANP32A construct. In panels ¢, d, bars represent mean values from three independent
experiments, with the individual data points shown. e 293T cells were transfected with the indicated FLAG-tagged constructs together with PB1, PA, and
PB2 (627E). Following anti-FLAG precipitation (PD), the indicated proteins were detected by western blot. For panels b and e, representative data from two
independent experiments are shown. Source data for panels b-e are provided in the Source Data file

end, we established a competition-based NGS assay involving low
multiplicity-of-infection (MOI) serial passaging of a defined
mixture of rWSN-based PB2-627K and PB2-627E model viruses
to determine which PB2 variant would be selected for by each
ANP32A isoform. To simulate the ‘real-life’ scenario found in
most avian species, where viruses expressing avian adaptations
such as PB2-627E are dominant prior to mammalian adaptation,
we biased the system against PB2-627K by using an E:K ratio of
5:1. Passaging revealed that ANP32A_X1 expression could enrich
for the PB2-627E population (Fig. 2g), identifying a general fit-
ness cost to the PB2-627K virus in this ‘avian-like’ cell model that
was not detectable by the less-sensitive multicycle growth analysis
titrated by plaque assay (Fig. 2d), and mimicking the situation in
most birds. This effect was clearly driven by the overexpression of
ANP32A_XI1 in this system, as PB2-627K was selected for in the
parental A549-ANP32Axo cell-line, indicating that expression of
ANP32A variants can titrate out the effect of endogenous
ANP32B (Supplementary Fig. 1B). Strikingly, despite different
kinetics, both ANP32A_X2 and ANP32A_X3 selected for PB2-
627K in this system (Fig. 2h, i). Similar results were obtained
when competition assays were performed with virus mixtures
where the input E:K ratio was 99:1 (Supplementary Fig. 1C-E),
albeit this extremely low input amount of PB2-627K permitted
slow de novo selection of alternative mammalian-adaptive
mutations in PB2, such as 630R?° (Supplementary Fig. 1F, G).
This confirms that ANP32A_X2 and ANP32A_X3 must be

partially or wholly defective, respectively, at supporting avian-
signature vPol activity, and therefore have the capacity to drive
efficient selection of mammalian-adaptive vPol substitutions.
These data provide direct experimental evidence to support
previous findings that ANP32A alone is a key determinant of IAV
vPol host restriction!2, and uncover that different ANP32A splice
variants can drive selection of critical species’ adaptations in the
TIAV PB2 gene.

ANP32A splicing ratios vary across avian species. Given our
data that different ANP32A splice variants can functionally
impact host adaptation of IAVs, we surveyed the ANP32A spli-
cing landscapes of various species. We aimed to understand if
ANP32A splicing differences exist between potential avian IAV
hosts that could explain sporadic observations of mammalian-
adaptive vPol substitutions in viruses isolated from certain bird
species, including tree sparrows, pigeons, geese, and swans24-26,
Such an explanation would be an extension of the finding that
mammalian-adaptive PB2 substitutions can occur in ratites, such
as ostriches, emus and rheas, which only have an X3-like
ANP32A variant!230, To this end, we generated ANP32A cDNA
amplicons from mRNA extracted from cells of different mam-
malian and avian species, and used NGS to estimate the abun-
dance of each X1-like, X2-like, X3-like, and other novel ANP32A
spliced isoforms (corresponding to the chicken orthologs; see
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Fig. 2 ANP32A variants differentially impact avian-signature IAV replication and selection. a Genotype of the A549-ANP32Ao cell-clone used in this
study. The target site of the crRNA is depicted. Four distinct ANP32A alleles were detected in A549s suggesting duplication of chromosome 15. b Western
blot analysis of parental A549 (Ctrl) and A549-ANP32Ako (KO) cells for ANP32A, ANP32B, and actin. ¢ Western blot analysis of A549-ANP32Ao cells
stably reconstituted with the indicated FLAG-ANP32A constructs or empty vector. d-f Viral growth kinetics of rWSN-based viruses expressing PB2-627E
or PB2-627K in the indicated ANP32A-reconstituted cell-lines (MOI = 0.001 PFU/cell). g-i Competition assays between rWSN-based viruses expressing
PB2-627E or PB2-627K (5:1 input ratio) in the indicated ANP32A-reconstituted cell-lines. PO represents input. Percentage of PB2-627K/E was determined
by NGS. In panels d-i, mean values from three independent experiments are plotted with lines, and the individual data points are shown. For panels b and
¢, representative data from two independent experiments are shown. Source data for panels b-i are provided in the Source Data file

Supplementary Table 1). To promote accuracy, we ensured that
our sequenced amplicons had a total read depth greater than
50,000 reads, and only considered those splice variants with a
coverage of at least 0.5% of the total read count. As expected, all
mammalian species tested expressed only a single ANP32A_X3-
like isoform. Horse was an exception, which expressed an addi-
tional low-abundance X3-like isoform that lacks a portion of the
Low Complexity Acidic Region (LCAR; Fig. 3a). In contrast, gulls
(a major reservoir species for many avian IAV subtypes) exclu-
sively expressed a single ANP32A_X1-like isoform, while all other
avian cells expressed multiple ANP32A isoforms that varied
greatly in relative abundance between species. For example, in
chicken, duck, and turkey, ANP32A_X1 was clearly the most
abundant isoform (62-83%), followed by ANP32A_X2 (15-29%)
and ANP32A_X3 (2-11%). A similar relative abundance was
found in quail, except ANP32A_X3 was not detected in this
species. However, while ANP32A_X1 was also the most abundant
isoform in the four cell-lines derived from goose and swan, it was
striking that in these species ANP32A_X3 (24-28%) dominated
over ANP32A_X2 (6-9%; Fig. 3a, Supplementary Table 1).
Notably, the passerine birds (swallow, blackbird, and magpie)
were the only avian species examined where ANP32A_X1 was
not the most abundant isoform expressed: ANP32A_X3 expres-
sion dominated in swallows; ANP32A_X2 dominated in black-
birds; and all three isoforms were equally abundant in magpies
(Fig. 3a, Supplementary Table 1). This variability in ANP32A

splice variant abundance does not appear to be related to tissue-
specificity or transformation status of cells, as the isoform
ratio was stable across different chicken tissues derived from
healthy adult animals and from egg chorioallantoic membranes
(Fig. 3a, b, Supplementary Table 2), and did not vary between
primary chicken cell cultures and different chicken cell-lines
(Fig. 3a). Furthermore, two independent duck cell-lines and three
independent goose cell-lines exhibited the same intra-species
ANP32A splice variant ratios, supporting a species-specific
determinant to ANP32A splicing landscapes (Fig. 3a). Notably,
the relative ANP32A splice variant ratios did not change in
chicken cells during the stress of IAV infection (Fig. 3c). How-
ever, we did find that temperature had a marked effect on
the chicken cell ANP32A splicing landscape, with cooler
culturing temperatures promoting expression of ANP32A_X2
and ANP32A_X3 at the expense of ANP32A_XI1 (Fig. 3d). Phy-
logenetic analysis of the avian species examined, based on the
determined ANP32A_X1 sequences, revealed that splicing land-
scapes also mirrored evolutionary relationships, with passerine
birds grouping separately from the others and land-based poultry
(chicken, turkey, and quail) grouping together (Fig. 3e). Overall,
these data indicate that birds express a wider range of ANP32A
isoforms than previously appreciated (including splice variants
suboptimal for avian-signature IAV vPol activity), and the
expression ratios of these isoforms can vary greatly between
different avian species.
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Fig. 4 Modeling and validating the impact of different ANP32A splice variant ratios on selection of mammalian- or avian-like IAV adaptations.

a Diagrammatic representation of the mathematical model used in this study. b Modeling the competition-based passaging assays between isogenic
viruses expressing PB2-627E or PB2-627K in the indicated ANP32A-reconstituted A549 cell-lines (dotted colored lines: original data average, with original
data points; colored solid lines: model of best estimates of virus production rates, with lighter areas indicating the 95% bootstrap confidence intervals of
these estimates). ¢, d Model prediction and empirical passaging results in chicken DF-1 (¢) or LMH-1 (d) cell-lines. The average of two independent
replicates is indicated with a dotted line (original data points shown), the model prediction with a solid line, and the 95% bootstrap confidence interval of
the model with a shaded area. @ NGS analyses of A549-ANP32Ako cells engineered to express different ratios of FLAG-tagged ANP32A_X1 and
ANP32A_X3. f, g Model prediction and empirical passaging results in the engineered cells described in e (lines analogous to the scheme used in ¢, d; f two
independent replicates; g three independent replicates). Source data for panels ¢, d, f and g are provided in the Source Data file

Modeling the impact of ANP32A splicing on IAV adaptation.
We developed a mathematical model to predict the effect of
different ANP32A splice variant ratios (as found in different
avian species) on selection of mammalian vPol adaptations dur-
ing TAV replication. This model is an extension of one previously
described for general IAV dynamics3!, but specifically accounts
for two viral variants that differ only in their vPol use of ANP32A
(e.g. PB2-627K/E), and which therefore infect target cells at
identical rates. However, subject to the relative abundance of each
possible ANP32A splice variant, the infected cells are modeled to
produce new virus at rates defined as px or pg, depending upon
the respective input variant (Fig. 4a and Methods). We used our
experimental data to estimate virus production parameters for
each viral variant with each ANP32A isoform. Our derived
model faithfully recapitulated the original observations that
ANP32A_XI1 can select for avian vPol adaptations (such as PB2-
627E), while ANP32A_X2 and ANP32A_X3 select for mamma-
lian vPol adaptations (such as PB2-627K; Fig. 4b). In addition,
fitting the mathematical model to the ANP32A_X1, ANP32A_X2,
and ANP32A_X3 passaging data led to estimates of the virus
production rates of PB2-627K/E viruses in cells expressing solely
one of the three ANP32A splice variants. We then sought to
establish whether feeding a weighted average of these rate esti-
mates (based on the relative abundance of ANP32A splice var-
iants) into our model could predict PB2-627K/E selection in cells
expressing different ratios of ANP32A splice variants (see Meth-
ods). We validated this approach by performing competition
experiments using the model rWSN-based PB2-627K and PB2-
627E viruses in chicken DF-1 and LMH-1 cells, which express
endogenous ANP32A X1, X2, and X3 isoforms at ratios of 66:25:9

and 62:27:11, respectively. We found that the empirically derived
PB2 variant selection patterns correlated very well with the model
predictions for these avian cell-lines based on the weighted
average approach (Fig. 4c, d). To further experimentally validate
our system, we used double lentiviral transductions to select two
independent cell populations (in the A549-ANP32Axo back-
ground) reconstituted with defined ratios of ANP32A_X1 (ch)
and ANP32A_X3 (hu), namely X1:X3 at 10:90, and X1:X3 at
85:15 (Fig. 4e). Subsequent competition experiments using the
model PB2-627K and PB2-627E viruses revealed distinct PB2
variant selection patterns in each engineered cell-line that also
correlated well with the selection pattern predicted by the model
(Fig. 4f, g). Overall, these data support the hypothesis that
ANP32A variant ratios, rather than absolute levels of any parti-
cular variant, can drive IAV vPol adaptation in mammalian and
avian cells, and that knowledge on ANP32A splicing ratios can be
used to broadly predict adaptive routes.

Using ANP32A splicing to predict adaptation. We applied our
experimentally validated algorithm to all species for which we
obtained ANP32A splice variant expression data, modeling the
expected impact that each host might have on selection of IAVs
bearing mammalian adaptations in vPol. From these models, it
was clear that all mammalian and ratite species (expressing only
ANP32A_X3) are predicted to provide a high selection pressure
favoring rapid acquisition of mammalian-like vPol adaptations
(Fig. 5a), which has previously been observed empirically30. In
contrast, and as expected, most avian species are predicted to
favor selection of avian-like vPol adaptations (Fig. 5b-g,
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Fig. 5 Modeling the impact of species’ ANP32A splice variant ratios on selection of mammalian- or avian-like IAV adaptations. a-i Model predictions of
mammalian-like vPol selection in the indicated species, taking into account their ANP32A splice variant ratios as shown in Fig. 3a. Each input mammalian-
like vPol percentage assessed is indicated by a separate color. The solid lines indicate the model prediction with the best estimates of virus production

rates, and the lighter areas show the 95% bootstrap confidence intervals

Supplementary Fig. 2). Strikingly, swallows and magpies were
clear exceptions: both these species are characterized by a low
abundance of ANP32A_X1 relative to ANP32A_X3, therefore the
model predicts that they might promote selection of mammalian-
like vPol adaptations (Fig. 5h, i). A notable additional observation
from our model outputs was that the rates of selection predicted
for each avian species varied considerably. For example, gull,
duck, chicken, and turkey appeared to be rapid avian-like vPol
adaptation selectors, while species such as blackbird, goose, and
swan were much slower, and could even be relatively neutral with
regard to selection (Fig. 5b-g, Supplementary Fig. 2B).

By calculating the area under the passaging prediction curve
(AUC) relative to input for all species for which we obtained
ANP32A splice variant ratios, we determined risk scores relating
to the potential for a particular species to act as a driving force to
select for mammalian-like adaptations in vPol (Fig. 6a). The risk
scores summarize the modeling output, and can be used to
predict species that may select for classical mammalian-like vPol
adaptations (mammals, ratites, swallow, and magpie), or classical
avian-like vPol adaptations (blackbird, goose, swan, turkey, quail,
chicken, duck, and gull). As the mathematical model for

passaging prediction — and therefore also these risk scores - is
dependent on several input parameters and conditions for
estimating virus production rates, we performed three different
sensitivity analyses: (i) varying conditions for estimating virus
production rates (Supplementary Fig. 3A); (ii) varying infection
rate (f8), rate of infected cell death (6), and rate of viral clearance
(c) (Supplementary Fig. 3B); and (iii) relaxing assumptions that
these three rates are the same for each virus variant (Supple-
mentary Fig. 3C). All potential modeling scenarios broadly
supported our risk estimates for which species might select for, or
maintain, mammalian-like vPol adaptations. In addition, we
integrated our model and risk analysis output into a user-friendly
web-based platform that allows individual variation of parameter
estimates, as well as input of ANP32A splicing ratios (see Meth-
ods). This tool can be used to identify threshold values for
ANP32A splicing ratios that likely drive mammalian versus avian
vPol adaptations (e.g. <30% ANP32A_X1 always selects for
mammalian-like adaptations in vPol; Fig. 6b), to vary model
parameters, or to input newly determined ANP32A splice variant
ratios from different species in the future and predict their
propensity for selection.

| (2019)10:3396 | https://doi.org/10.1038/s41467-019-11388-2 | www.nature.com/naturecommunications 7


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

a 404
= A
i 3
0.5 4 ‘_g%
o §°
S =
@ 0 4
X
K]
o
-0.5 1 I { z=
i1y,
-1.0..........5
Pt P O %0§,§®<\¢{~\§\
@@@\&Q & 9‘“ T @
@’b% C)
b

Fraction of X3
R L
Mammalian
-like

Avian
-like

0 02 04 06 08 1.0
Fraction of X1
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Enrichment of mammalian adaptations in magpie IAVs. Poor
replication of our model IAV strain in the primary swallow and
magpie cells hampered efforts to directly test these two species as
experimental selectors of mammalian-like vPol adaptations in vitro.
To circumvent this problem, as well as to assess our predictions in a
‘real-life’ in vivo setting, we took a natural surveillance approach
and analyzed over 8000 viral sequences obtained from different
mammalian and avian species that are stored in the NIAID Influ-
enza Research Database (IRD)32. We focused on H5, H7, and H9
IAVs to limit any bias from sporadic spill-over events of
mammalian-adapted viruses into birds, and identified experimen-
tally validated mammalian vPol adaptation sequences!*33 in IAVs
isolated from magpies. The total number of available magpie IAV
sequences are relatively low (n = 12) due to a lack of surveillance in
this species. We did not analyze sequences from swallows as only
four such IAVs have been isolated to date. Nevertheless, we com-
pared the prevalence of these known mammalian-like vPol adap-
tations in IAVs isolated from humans, swine, ratites (emus,
ostriches, and rhea), geese, swans, turkeys, quails, chickens, ducks,
and gulls. Using the surveillance results from gulls as a benchmark
for ‘typical’ avian-like vPol adaptation (as wild waterfowl and
shorebirds are the major natural reservoirs for IAVs!), we found
that only H5, H7, and H9 IAVs naturally isolated from humans and
ratites exhibited a significant enrichment for the typical mammalian
vPol adaptation PB2-627K3? (Fig. 7a). PB2-701N was only found to
be significantly enriched in human isolates (Fig. 7b). However,

other experimentally validated mammalian-like vPol adaptations,
such as PB2-391Q, PB2-456D'%, and PA-100I33 are significantly
enriched in magpie IAVs as compared to gull IAVs (Fig. 7c-e).
Notably, PB2-456D and PA-100I are also enriched in swine and
human IAVs, respectively, providing additional evidence for their
likely involvement in mammalian vPol adaptation (Fig. 7d, e).
These surveillance data identifying mammalian-adaptive vPol sub-
stitutions in magpie IAVs support the validity and applicability of
our mathematical model for predicting adaptation routes.

Discussion

Herein, we show that cells from many different avian species can
express at least three ANP32A splice variants (X1, X2, and X3)
that differ only in composition of the avian IAV vPol-supporting
insert. Notably, the relative expression ratios of these three
ANP32A variants are highly species-specific, a finding corrobo-
rated by Baker et al.3* while our manuscript was in preparation. A
variant (ANP32A_X2) that lacks four amino-acid residues in the
hydrophobic SIM-like sequence is approximately 50-times less
efficient than the ‘full-length® ANP32A_X1 at promoting avian-
signature IAV vPol activity, which correlates with its reduced
ability to interact with this complex. Concomitantly, the ability of
ANP32A_X2 to support full replication of an avian-signature
TAV is also partially compromised. Strikingly, expression of this
less active ANP32A_X2, or the inactive ANP32A_X3, restricts
efficient avian-signature IAV replication to such an extent that
both isoforms are capable of driving selection of IAVs with
mammalian-like adaptations in the viral polymerase (i.e. PB2-
627K in our experimental system). Using these experimental
kinetic data, we modeled (and validated) predictions relating to
how different ratios of ANP32A isoforms can impact vPol
adaptation. Applying this model to data from disparate avian
species, we show how specific ANP32A splicing landscapes could
potentiate acquisition, or maintenance, of vPol substitutions that
might ultimately ‘pre-adapt’ IAVs to mammalian cells, a notion
also suggested by Baker et al.3. Remarkably, passerine species
such as swallow and magpie, are predicted to be drivers of
mammalian-like adaptations in vPol, and indeed, several
experimentally validated markers of mammalian-like vPol adap-
tation appear to be enriched in the few available magpie IAV
sequences already collected in limited surveillance studies. Our
findings therefore suggest that it might be prudent to expand
surveillance efforts for zoonotic IAVs of mammalian concern into
additional avian (passerine) species, and to combine this with a
broad survey of inter-species ANP32A splice ratios. Our model-
ing also predicts that blackbirds, geese, and swans might maintain
sporadic mammalian-adaptive vPol mutations for longer periods
of time than species such as gulls, ducks, or chickens. These
observations are noteworthy as some of these potential wild bird
‘maintainer’ species are migratory, and therefore could dis-
seminate avian IAVs with critical ‘pre-pandemic’ markers to
other species along their migratory fly-ways, a situation that has
been observed previously with bar-headed geese?*. The identifi-
cation of new, perhaps previously unappreciated, avian hosts that
can precipitate at least some mammalian adaptations could be
used to improve risk assessment and management strategies to
limit contact of such species with avian IAV sources. This is an
important consideration as swallows, magpies, and related pas-
serines have ample opportunities to interact with both poultry
and swine on farms, and could act as intermediate hosts pro-
moting the gradual adaptation of an avian IAV to mammals. In
sum, our functional description of ANP32A splicing landscapes,
and the adaptive forces they exert, may provide a new molecular
framework to understand and control new sources that contribute
to evolution of mammalian-adaptive mutations in avian IAVs,
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Fig. 7 Analysis of surveillance data suggests enrichment of mammalian-adaptive vPol substitutions in IAVs isolated from magpies. a-e Abundance of
mammalian-adaptive vPol sequences in H5, H7, and H9 |AVs isolated from the indicated species: a PB2-627K; b PB2-701N; ¢ PB2-391Q; d PB2-456D; and
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and their consequences for cross-species transmission and human
pandemic emergence.

Methods

Cells. All mammalian and avian cells used, together with their source, are
described in Supplementary Table 3, and were cultured as detailed by the appro-
priate source datasheet.

CRISPR-Cas9 genome editing. To generate a clonal A549 cell-line lacking
expression of endogenous ANP32A (A549-ANP32Ak), we used a ribonucleoprotein
(RNP)-based system consisting of Alt-R S.p. Cas9 nuclease (IDT, #1074181) in
complex with Alt-R CRISPR-Cas9 crRNA (AltR1/rGrU rArArG rUrUrU rGrCrG
rArUrU rGrArG rGrUrG rGrUrU rUrUrA rGrArG rCrUrA rUrGrC rU/AltR2, IDT)
and tractrRNA (IDT, #1075927). In brief, pre-assembled RNP complexes were
delivered into A549s by reverse transfection with RNAiMax (ThermoFisher Scien-
tific), and individual cell clones were generated by limiting dilution. An initial round
of phenotype screening was performed by immunoblotting for ANP32A in whole cell
extracts. Genotypes of selected clones were then determined by NGS. In brief, gel-
extracted, Illumina-compliant amplicons were analyzed by MiSeq (Illumina), with 260
cycles of read 1, 8 cycles of index 1, and 8 cycles of index 2. The following primers
were used for generation of the NGS amplicon: NGS-Fw, CTT TCC CTA CAC GAC
GCT CTT CCG ATC T ATG AAG GCA AAC TCG AAG GC; NGS-Rv, GAC TGG
AGT TCA GAC GTG TGC TCT TCC GAT CT GTC TGG CAT GTT GGT GCA
AG (underlined indicates priming sites for 2nd round PCR primers, D50x and D70y
TruSeq HT adapters, respectively).

Plasmids. The expression plasmids for FLAG-tagged mCherry, huANP32A,
chANP32A_X1, and the IAV polymerase components and appropriate reporter
constructs have been described!>%. All additional gene variants were generated by
Quikchange II XL Site-Directed Mutagenesis (Agilent Technologies). Indicated
constructs were also sub-cloned into pLVX-IRES-Puro or pLVX-IRES-Neo
(Clontech) and used to produce lentiviral stocks as described below. New con-
structs were authenticated by DNA sequencing. All plasmid transfections were
performed using Fugene HD (Promega) at 1:3 DNA:transfection reagent ratio.

Generation of cells expressing ANP32A variants. Lentiviral stocks were pre-
pared by co-transfecting 293T cells with each pLVX-IRES-Puro/Neo-based plas-
mid, together with pMD2.G and pCMVdR8.91. Lentiviral supernatants were
harvested 60 h post-transfection, filtered and aliquoted, and stored at —80 °C. To
generate polyclonal cell-lines expressing FLAG-ANP32A variants, A549-
ANP32Ag cells were transduced with the appropriate lentivirus stock for 48 h in
the presence of 8 ug/mL of polybrene (Millipore) prior to selection with puromycin
and/or neomycin.

Polymerase assays, immunoprecipitations, and western blots. Polymerase
reconstitution assays, vPol interaction assays (co-immunoprecipitations), and
western blot analyses were all performed using standard described methods!>.
FLAG-tagged constructs were detected using FLAG M2 antibody F1804 (Sigma;
1:2000 dilution), PB2 was detected using a custom rabbit polyclonal anti-serum
(1:2000 dilution), PA was detected using antibody GTX118991 (Genetex; 1:2000
dilution), actin was detected using antibody A2103 (Sigma; 1:3000 dilution), and
ANP32A and ANP32B were detected using antibodies ab51013 and ab184565
(Abcam; 1:1000 dilution), respectively.

Construction and analysis of recombinant viruses. Recombinant A/WSN/33
(HIN1) (rWSN) viruses were rescued and titrated as described3®37 with minor
modifications. In brief, 6 x 10> 293T cells were seeded in 6-well plates and co-
transfected 24 h later with eight ambisense pDZ-based expression plasmids encoding
all WSN segments: nucleoprotein (NP), PA, PB1, PB2 (627 K or 627E variants),
matrix (M), hemagglutinin (HA), neuraminidase (NA), and NS (gift from Adolfo
Garcfa-Sastre (Icahn School of Medicine at Mount Sinai, USA)). A plasmid expressing
chicken ANP32A was co-transfected together with the appropriate rescue plasmids
while generating the PB2-627E virus. Twenty-four hours post-transfection, cells were
washed once in sterile phosphate-buffered saline (PBS) and 3 x 10° MDCK cells
(stably-expressing chicken ANP32A for the PB2-627E virus) were added in DMEM
supplemented with 1 pg/mL tosylsulfonyl phenylalanyl chloromethyl ketone (TPCK)-
treated trypsin (Sigma-Aldrich, MO). Forty-eight hours later, supernatants were
harvested, viruses plaque-purified, and virus stocks grown and titrated using standard
methods in MDCK cells (stably-expressing chicken ANP32A for the PB2-627E virus).
RNA was extracted from stock aliquots using the ReliaPrep™ RNA Tissue Miniprep
System (Promega), and the PB2 genomic segments of each virus were fully sequenced
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after segment-specific reverse transcription-PCR (RT-PCR) to ensure absence of
undesired mutations.

To determine virus replication kinetics, 4 x 10° of the indicated cells were seeded
in 12-well plates and infected 24 h later with each virus diluted in PBS supplemented
with 100 units/mL penicillin, 100 pg/mL streptomycin (Gibco Life Technologies),
0.45% bovine albumin (Sigma-Aldrich), and 1 mM Ca?*/Mg?*. A multiplicity of
infection (MOI) of 0.001 plaque-forming units (PFU)/cell was used. Following 1 h of
adsorption, cells were washed three times in PBS before being incubated in DMEM
supplemented with 100 units/mL penicillin, 100 ug/mL streptomycin (Gibco Life
Technologies), 0.45% bovine albumin (Sigma-Aldrich), 0.1% FBS, and 20 mM HEPES
(Gibco Life Technologies). Supernatants were harvested at the indicated time points
and titrated by standard plaque assay on MDCK cells.

To perform passaging assays, 4-6 x 10° of the indicated cells were seeded in 12-
well plates and infected 24 h later with a mixed infectious virus inoculum (PB2-
627E:K at 5:1 or 99:1 as indicated) at an MOI of 0.001 PFU/cell (A549 based
assays) or 0.01 PFU/cell (DF-1 and LMH-1 based assays). Following 1 h of
adsorption, cells were treated as above. Supernatants were collected 48 h post-
infection (passage 1), and used for repeated infection of new cells at the estimated
same MOI to generate passage 2. This procedure was repeated until the indicated
passage. RNA from supernatants of each passage, and input inoculum, were
extracted using the ReliaPrep™ RNA Tissue Miniprep System (Promega). Viral
RNA was subjected to one-step RT-PCR (AccessQuick™ RT-PCR System,
Promega) to generate NGS-suitable amplicons centered around the PB2-627
region. Primers used for generation of the NGS amplicon were: PB2-627-NGS-F,
CTT TCC CTA CAC GAC GCT CTT CCG ATC TAT GAG GGA TGT GCT TGG
GAG; and PB2-627-NGS-R, GAC TGG AGT TCA GAC GTG TGC TCT TCC
GAT CTT GCG GAC TCA ACT CCA GCT G (underlined indicates priming sites
for 2nd round PCR primers, D50x and D70y TruSeq HT adapters, respectively).
NGS outputs were analyzed in two steps: firstly, each read was aligned to the wt
WSN reference sequence by Burrows-Wheeler Aligner;3® secondly, the frequency
of each variant of interest (e.g. the codon encoding 627E/K) was determined by the
variant caller LoFreq??, filtering out calls with a coverage depth <500 reads and
allele frequency (AF) <0.005.

Next-generation sequencing of ANP32A. To determine the relative abundance of
ANP32A_X1, ANP32A_X2, and ANP32A_X3 transcripts, cDNA was synthesized
from 1 pg of total RNA extracted from each cell-line (treated as indicated), primary
chicken chorioallantoic membrane, or healthy chicken tissue (AMS Biotechnology,
Switzerland) using Superscript III and Oligo-(dT) (Invitrogen), and an Illumina-
suitable amplicon was subsequently generated and sequenced by MiSeq with a 151-bp
read length. All primer sequences are provided in Supplementary Table 4. Relative
abundance estimation was carried out by Bowtie2-mediated alignment of the whole
read pool (between 50,000 and 500,000) to unique splice variants, defined as unique
sequences with a coverage of at least 0.5% of the total read count??,

Phylogenetic analysis. Evolutionary relationships were inferred from a ~150
nucleotide stretch of ANP32A_X1 sequence (experimentally determined by NGS
from each species) using BEAST2#! with an HKY substitution model and a strict
molecular clock. The maximum clade credibility tree was calculated with TreeAn-
notator and visualized with FigTree (https://github.com/rambaut/figtree/). The exact
model specifications are available from https://github.com/magnuscar/FluAdaptation.

Mathematical modeling and predictions. To predict the selective pressure towards
avian-like or mammalian-like vPol adaptations in different host species, we extended
an existing IAV dynamic model’! (Fig. 4a). Our model follows time-development of
the concentration of uninfected target cells, U, that become infected by isogenic IAV's
expressing PB2-627E or PB2-627K at rates SV or 3V, respectively, where Vg and Vi
describe the concentration of each virus. Cells infected with each IAV variant are
denoted by I and Ix. Infected cells die at rate §, and viruses are cleared at rate c. Cells
infected with the PB2-627E virus produce new particles at rate pg, while cells infected
with the PB2-627K virus produce new particles at rate px. The model is formulated as
a system of ordinary differential equations (ODE):
du

= ~PUVe + Vi)

dI
d—tE = BUV; — 4,

dr,
d—f = BUVy — I

dv,
TtE = pelg — Vg
vy
T Prlx — cVx

To model passaging, we allowed the ODE model to proceed for a certain time
interval and then added additional uninfected cells to the system. Each of these
additions is counted as one passaging step. The virus production rates pg and px

are modeled to be dependent on the relative composition of ANP32A splice
variants within cells. To this end, we estimated the virus production rates pg; and
pxi (i=1,2,3) by fitting the above model to passaging data with cells solely
expressing ANP32A_X1 (i=1), ANP32A_X2 (i =2), or ANP32A_X3 (i =3) (see
Fig. 4b). We implemented the model and the fitting procedure in the statistical
language R*?, with the ODE solver deSolve*3. The scripts are available from https://
github.com/magnuscar/FluAdaptation. We used parameter values for the rates that
are in the same range as earlier reported values’!, namely an infection rate of f =
2.7 x 10~ ml per virion per day, an infected cell death rate of § = 4 per day, and a
virus clearance rate of ¢ = 3 per day. We set the starting values for the target cells as
Uy = 4 x 10° cells ml—1, the infected cells Iy = Ix = 0 cells ml~1, and the total viral
load to Vi + Vg = 400 virions ml~!. While fitting the model to the passaging data,
we constrained the possible production rates of PB2-627E or PB2-627K viruses in
cells solely expressing each variant ANP32A_Xi (i = 1,2,3), i.e., pg; and px;, to range
between 0 and 200 virions per cell per day). The best estimates were obtained by
minimizing the residual sum of squares between the model predictions and the
data with the optim() optimizer function in R. The starting values did not have any
influence on the final estimates. We obtained the 95% confidence intervals of each
parameter by bootstrapping (see also https://github.com/magnuscar/
FluAdaptation).

Given each species expresses fx;*100% ANP32A_X1, fx,*100% ANP32A_X2,
and fx3¥100% ANP32A_X3, the combined virus production rates were calculated
by:

Pe = fuber + froPe + faPes

Px = fabxa +fobre + ol

The 95% confidence intervals for the combined virus production rates were
determined by the weighted average of the lower bounds of the separate rates, and
the upper bounds of the separate rates, respectively.

Selection of a mammalian-adaptive virus (e.g. PB2-627K) should occur when its
fitness is higher than that of another variant (e.g. PB2-627E) in a particular
environment (i.e. shaped by expression of different ANP32A splice variants). In a
first model, we assumed that the infection rate (f8), infected cell death rate (), and
virus clearance rate (c) would be the same for the two PB2-627K/E virus variants.
This is a simpler (but biologically justified) version of a more general model, in
which these rates also vary depending upon the specific viral variants:

d
EU = —BgVeU — B ViU

d
EIE = ﬁEUVE — Ol

d
aIK = :BKU Vi — 0klx

d
a Ve =pelp — Vg

d
aVK =prlk — Vi

The fitness of the two different viral variants can then be defined as the basic
reproductive numbers:

e §
Rop = . ; foipEi
EYE =1

When the basic reproductive number of the PB2-627K virus is greater than that of
PB2-627E, then PB2-627K viruses will be selected. Thus, selection of PB2-627K
occurs when:

Rox _ Preude Y fab _ Bxeedi px 51
= = =
Rog Brexdx > fxiPEi Brcx Ok P

If the infection rates (B, Bg), infected cell death rates (8, d), and virus clearance
rates (ck, cg) are the same for both variants, selection of PB2-627K occurs when
Px > PE-

To assess the risk of selecting for PB2-627K-like genotypes (e.g. mammalian
adaptation) in different species, we defined a risk score, 7, which can be interpreted
as a normalized area between the constant initial PB2-627K percentage and the
passaging curve. ; is the percentage of PB2-627K at passage i =0,1,2,...,n, where n
is the number of passaging steps. In typical experiments n = 5. The risk score is
then:

r ! Z(Kj_ Ky)

ny <=
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n
where y is a normalizing constant with y = 100 — &, if 3_ (k; — 9) > 0 or y = &,
j=1
n
if 3°(k; — ,)>0. The risk score is closer to 1 the faster PB2-627K is selected for,
j=1
and closer to —1 the faster PB2-627E is selected for. It is 0 if no selective pressure is
exerted on either variant. We summarized the predicted risk scores for the different
species and estimates of pg; and pg; with their confidence intervals in Fig. 6a.

Model sensitivity analyses. To assess whether assumptions in the mathematical
model impact the risk scores qualitatively, we performed three different sensi-
tivity analyses: (i) we studied the effect of the parameter estimation procedure,
and tested 360 different scenarios for the parameter ranges for pg; and pg; (this
analysis takes into consideration the argument that these virus production rates
can only range between certain upper and lower rates); (ii) we studied the effect
of varying infection rate (f), the infected cell death rate (4), and the virus
clearance rate (c), all under the assumption that these parameters are the same
for both viral variants (this analysis takes into account that the values used for
these rates are based on earlier estimates that show some variation3!); (iii) we
relaxed the assumption that these parameters are the same (this analysis takes
into account the possibility that residue identity at PB2-627 could impact these
rates). Summaries of these analyses are shown as risk score violin plots** in
Supplementary Fig. 3.

Bioinformatic analysis of 1AV surveillance data. All H5, H7, and H9 subtype
TAV protein sequences for PB1, PB2, and PA from the indicated host species were
obtained and analyzed using tools from the NIAID Influenza Research Database
(IRD)32 (http://www.fludb.org). Known, experimentally validated, mammalian-
adaptive polymerase mutations!'®>3 were manually selected for their appearance in
magpie IAV isolates and were quantified across isolates from all other species.
Abundance was estimated assuming a binomial distribution from a varying
number of sequences per species. The point estimate is obtained assuming a
maximum likelihood estimator for the frequency in the data, and 95% confidence
intervals were estimated using the function BinomCI() from the R package
DescTools, with left Wilson intervals. To test whether the abundance of
mammalian-adaptive vPol substitutions in a given species is significantly higher
than in gulls (the reference species for 100% ANP32A_X1 expression), we used a
one-sided proportion test with a confidence level of 95% (prop.test() of R’s stats
package).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The authors declare that all data supporting the findings of this study are available within
the paper and its supplementary information files. The source data for Figs. 1, 2, 4, and 7
and Supplementary Fig. 1 are provided as a Source Data file.

Code availability
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