
Frontiers in Immunology | www.frontiersin.

Edited by:
Aurelio Cafaro,

National Institute of Health (ISS), Italy

Reviewed by:
Matthew Peter DeLisa,

Cornell University, United States
Mangai Asokan,

Vaccine Research Center (NIAID),
United States

*Correspondence:
Alex Olvera

aolvera@irsicaixa.es

Specialty section:
This article was submitted to

Viral Immunology,
a section of the journal

Frontiers in Immunology

Received: 18 June 2020
Accepted: 04 December 2020
Published: 22 January 2021

Citation:
Olvera A, Cedeño S, Llano A, Mothe B,
Sanchez J, Arsequell G and Brander C

(2021) Does Antigen Glycosylation
Impact the HIV-Specific

T Cell Immunity?
Front. Immunol. 11:573928.

doi: 10.3389/fimmu.2020.573928

PERSPECTIVE
published: 22 January 2021

doi: 10.3389/fimmu.2020.573928
Does Antigen Glycosylation Impact
the HIV-Specific T Cell Immunity?
Alex Olvera1,2*, Samandhy Cedeño1, Anuska Llano1, Beatriz Mothe1,2,3, Jorge Sanchez4,
Gemma Arsequell 5 and Christian Brander1,2,6

1 IrsiCaixa—AIDS Research Institute, Badalona, Spain, 2 Universitat de Vic–Universitat Central de Catalunya (UVic-UCC),
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It is largely unknown how post-translational protein modifications, including glycosylation,
impacts recognition of self and non-self T cell epitopes presented by HLA molecules. Data
in the literature indicate that O- and N-linked glycosylation can survive epitope processing
and influence antigen presentation and T cell recognition. In this perspective, we
hypothesize that glycosylation of viral proteins and processed epitopes contribute to
the T cell response to HIV. Although there is some evidence for T cell responses to
glycosylated epitopes (glyco-epitopes) during viral infections in the literature, this aspect
has been largely neglected for HIV. To explore the role of glyco-epitope specific T cell
responses in HIV infection we conducted in silico and ex vivo immune studies in individuals
with chronic HIV infection. We found that in silico viral protein segments with potentially
glycosylable epitopes were less frequently targeted by T cells. Ex vivo synthetically added
glycosylation moieties generally masked T cell recognition of HIV derived peptides.
Nonetheless, in some cases, addition of simple glycosylation moieties produced neo-
epitopes that were recognized by T cells from HIV infected individuals. Herein, we discuss
the potential importance of these observations and compare limitations of the employed
technology with new methodologies that may have the potential to provide a more
accurate assessment of glyco-epitope specific T cell immunity. Overall, this perspective is
aimed to support future research on T cells recognizing glycosylated epitopes in order to
expand our understanding on how glycosylation of viral proteins could alter host T cell
immunity against viral infections.
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INTRODUCTION

Since the early years of the human immunodeficiency virus (HIV) pandemic, it has been noticed
that not all HIV-1 infected individuals show equally fast disease progression to acquired
immunodeficiency syndrome (AIDS) (1). It is now well-recognized that a small proportion of
HIV infected people can maintain low or even undetectable levels of plasma viremia for a long time
in the absence of antiretroviral treatment. This population of long term non-progressors has been
org January 2021 | Volume 11 | Article 5739281
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extensively studied, with the intention to identify immune
correlates of controlled HIV replication and to develop an
effective HIV vaccine. The immunological mechanisms that
allow superior HIV infection control are not fully understood
(2–4), but some HIV-specific CD8+ cytotoxic T lymphocyte
(CTL) responses have been consistently associated with HIV
viral set point. In line with this, different human leukocyte
antigen (HLA) alleles have been related to HIV virus control
or disease progression (4–6) and major efforts have been made to
fine map HLA-restricted epitopes targeted by virus-specific CTL
responses across the entire viral proteome (7). However, recent
studies indicate that this impressive amount of information is
possibly still lacking a significant portion of the full HIV epitope
landscape (8, 9). One potential gap in the current knowledge of
the CTL response to HIV is the potential existence of HLA class I
restricted epitopes containing post-translational modifications
(PTM) derived from HIV proteins. There are many types of
PTM, we will focus herein on the most abundant, glycosylation,
and the existence of HIV-specific T cell responses to glycosylated
epitopes (“glyco-epitopes”). T cell responses to such glyco-
epitopes have been described in tumors (10–14), tuberculosis
(15) and other viruses (16–18), but to our knowledge only in two
studies for HIV (19–21).
DOES GLYCOSYLATION HAVE AN
IMPACT ON EPITOPE PRESENTATION?

Eukaryotic cell proteins can undergo two main types of protein
glycosylation: i) N-glycosylation of asparagine residues and ii) O-
glycosylation of serine and threonine residues, which can be a-
or b-O-linked (22). Glycosylation enzymes are thought to be
highly compartmentalized which explains why the cellular
localization of a protein can determine its glycosylation profile.
N- and a-O-glycosylation are thought to occur predominantly
on secreted proteins, whereas b-O-glycosylation affects nuclear
and cytosolic proteins (23, 24). Of importance for T cell
reactivity to glyco-epitopes, several studies have documented
that glycans can survive the antigen processing and presenting
process. In the late 1990s, CD4+ and CD8+ T cells that specifically
recognizedpeptidescarryingmono-ordisaccharideswhere isolated
(19, 25–32). The existence of HLA class I presented epitopes was
further supported when it was shown that 0.1% of all peptides
bound to HLA class I carried O-linked GlcNAc residues (33, 34).
However, this number could be an underestimation since the
epitope elution process can cause the stripped glyco-epitopes to
lose their sugar moieties (35).

Despite this evidence of HLA-presented glyco-epitopes, the in
vitro demonstration of reactive T cell responses has been limited,
since most research on T cell responses and epitope mapping has
employed only synthetic peptides to stimulate T cells. Such
synthetic peptides do not carry any PTM and T cells targeting
glyco-epitopes will thus not be detected. Alternatively, epitope
mapping studies have used recombinant proteins or viral vectors
expressing the antigen of interest (e.g. adenovirus or vaccinia
virus). In recombinant proteins, glycosylation could be present if
Frontiers in Immunology | www.frontiersin.org 2
eukaryotic systems were used to produce them, while antigens
expressed off viral vectors could be glycosylated by the host cells.
In both cases the sugar residues added could possibly match the
ones seen in the native protein, but this may only be the case if
the same intracellular protein trafficking pathways are
targeted (36).

These considerations indicate that in theory, protein
glycosylation could affect antigen-specific T cell responses in
several ways: i) epitope residues modified by glycosylation
could be loaded onto HLA class I and recognized by the T cell
receptor (TCR), but would be missed when using non-
glycosylated peptide stimulations in vitro. ii) Glycosylation
of epitope residues could mask proteolytic sites from
proteasome digestion, HLA anchor residues or TCR binding
residues, offering viruses an escape strategy to avoid CTL
immune recognition.

Indeed, crystal structure analyses of MHC/glyco-peptide/
TCR complexes indicate that MHC binding is mediated by the
peptide backbone, while the glycan moieties interact with the
TCR variable sites (17, 25, 37, 38). In a report by Avci et al. (39,
40), a carbohydrate CD4+ T cell epitope derived from a
streptococcal glyco-conjugate was found to significantly
increase vaccine-induced T cell responses. Also, the presence of
a sugar moiety was tolerated by T cells, except when the
glycosylation affected the epitope anchor residues (27–30). Still,
Apostolopoulos et al. showed that in some cases, the MHC class I
binding pocket itself could also accommodate an a-O-linked
GalNAc (41). This glyco-epitope elicited CTL responses and was
capable of cross-reacting with the non-glycosylated counterpart
as its structure could be superimposed with a peptide showing a
canonical anchor (42). Indeed, some data indicate that the
smaller O-glycans may be more readily tolerated by T cell
receptors than the larger N-glycans and that the central CDR3
region of abTCR cannot accommodate more than four sugars
(43). Whether this is rather the exception than the rule and
which HLA complexes could accommodate glycosylated anchor
residues on presented epitope remains to be clarified (31, 44). It
is however interesting to note that several HLA class I alleles use
anchor residues that could potentially be glycosylated, including:
A*01, A*26, A*30:04, A*34:02; A*66, A*68, A*69, B*15:16,
B*15:17, B*40, B*57:01, B*57:02, B*58:01, and B*58:02, (http://
www.syfpeithi.de/bin/MHCServer.dll/FindYourMotif.htm). Six
of these alleles (B*15’s, B*57’s, and B*58’s) have been
associated with superior control of HIV infection in vivo (4).
Yet, no study has addressed how and whether glycosylation at
anchor residues could affect epitope binding and recognition by
HIV-specific T cells.

To date, most studies on HIV protein glycosylation have been
focused on the envelope protein (Env) and its relationship with
viral escape from humoral immunity (45). As other viruses, HIV
is highly dependent on the host cellular machinery and extensive
glycosylation of viral proteins has been documented (18, 23, 46,
47). In addition, there are several reports that suggest that HIV
could interfere with the host glycosylation machinery (45, 48–
54), but only two (19, 21) describe T cell responses to
glycosylated epitopes.
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Together, the available studies indicate that glycosylated
epitopes can be presented by HLA molecules and that T cell
responses directed against glyco-epitopes can be induced in vivo
(35, 55, 56). It is tempting to speculate that, if HIV glyco-epitope
specific T cell responses exist and are restricted by HLA class I
alleles that are associated with superior HIV control in vivo, they
could contribute to HIV control. Strikingly, they would have
been largely missed by the use of synthetic non-glycosylated
peptides to screen for T cell responses.
ARE HIV PEPTIDES CONTAINING
PREDICTED GLYCOSYLATION SITES
LESS FREQUENTLY TARGETED BY T
CELLS?

To establish evidence for potential effects of glycosylation on T
cell recognition of HIV derived epitopes, we assessed whether
HIV protein fragments containing predicted glycosylable
positions were less frequently targeted by T cells than the rest
of the viral proteome. N-linked oligosaccharides are covalently
attached to glycoproteins on asparagine residues within the Asn-
X-Ser/Thr sequence motif (where X is any amino acid residue
except proline) (57) and can be fairly well predicted in silico. In
contrast, O-glycans have no single consensus sequence, although
most frequently occur on serine or threonine residues. Current
prediction tools use artificial neural networks that examine the
sequence context of glycosylable amino acids to predict them (23,
58, 59). We used NetNGlyc (N-glycosylation sites), NetOGlyc
(mucin type GalNAc O-glycosylation) and YinOYang (O-b-
GlcNAc attachment sites) in the CBS website (http://www.cbs.
Frontiers in Immunology | www.frontiersin.org 3
dtu.dk/services/), to predict 87 glycosylation sites in the HIV
clade B 2001 consensus protein sequences (https://www.hiv.lanl.
gov/content/sequence/NEWALIGN/align.html). Since the type
of glycosylation that a protein can undergo is highly depended on
cellular location, we used protein location to reduce these
predictions to a total of 59 glycosylation sites (Figure 1A). The
distribution of these 59 sites could affect T cell epitopes
distributed over a range of approximately 1000 amino acids of
the virus and affect thus T cell immunity to a third of the viral
proteome. Overall, Gag and Tat proteins showed the highest
number of glycosylable positions, with Tat containing the highest
density (8 glycosylable positions/100 amino acid, Figure 1A).

To investigate whether these sites could indeed be involved in
the T cell response to HIV infection, we reanalyzed existing T cell
response data (2, 60), adding the predicted glycosylation sites
across all HIV proteins into the analysis. We asked whether the
potential glycosylation sites fell within previously described CTL
epitopes or in regions in which screenings using non-
glycosylated synthetic peptides have shown little T cell
reactivity. For this, we used the Optimal HIV CTL epitope
list at the Los Alamos HIV Immunology Database (http://
www.hiv.lanl.gov/) curated by our laboratory to define
epitope-rich regions (9). We found a statistically significant
underrepresentation of glycosylation sites among all the
optimally defined CTL epitopes compared to the rest of the
viral proteome (Fisher exact test p=0.0001, Figure 1B). This
trend still held true for all viral proteins analyzed individually
(except Nef), with statistical significance maintained for the Env
protein (p=0.009).

In a second step we used the frequency of recognition and the
magnitude of response to 410 overlapping peptides (OLP),
spanning the entire viral proteome, in a cohort of 250 clade B
A

B

C

FIGURE 1 | Potential impact of glycosylation on T cell responses to HIV. (A) Predicted glycosylated positions in HIV proteins taking into account cellular location of
viral proteins. (B) Percentage of predicted glycosylated sites in known, optimally defined CTL epitopes (9) in comparison to regions for which no optimal CTL
epitopes have been defined. Frequency differences were analyzed by the Fisher exact test, p<0.05 are highlighted in bold numbers. (C) Frequency of recognition and
magnitude of the response to HIV OLP in 250 HIV infected individuals stratified by the number of potential glycosylations in each OLP. The existence of statistically
significant differences was analyzed using the Kruskal-Wallis test, Mann-Whitney p values are indicated by *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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HIV chronically infected subjects previously tested in our
laboratory (2, 61). The OLP reactivity data were stratified by
the presence of one or more predicted glycosylation positions
within each OLP and compared to the frequency of OLP
recognition. This analysis showed a strong inverse relationship
between the presence of glycosylation site(s) in a given OLP and
the frequency at which the OLP was targeted (Figure 1C,
Kruskal-Wallis p<0.0001). In addition, when OLP containing
glycosylation sites were targeted, they elicited responses of
reduced magnitude (Figure 1C, Kruskal-Wallis p= 0.018).
Together, these results indicate that fragments of the viral
proteome containing potentially glycosylated positions are less
frequently targeted by T cells - in studies using non-glycosylated
synthetic peptides as stimuli. These observations suggest two
different scenarios: (i) glycosylation sites are inherently poorly
immunogenic because of the PTM or (ii) epitopes can contain
glycosylated residues and are able to induce a T cell responses,
but they have not been detected because essentially all T cell
epitope screenings have been performed using non-glycosylated
synthetic peptides. There are several arguments that give strong
support to the second scenario: OLP with potential glycosylation
sites do not differ in entropy from the ones not containing these
sites (Figure 1C). This indicates that the frequency of response to
these regions was not underestimated because of increased
sequence divergence between autologous virus and the OLP
sequences used as recall antigen (62). In addition, there are
studies that have shown different results when T cell responses to
HIV were assessed using synthetic peptides or viral antigens
expressed by a vaccinia virus, further supporting the hypothesis
that some responses are detected only when the antigen is
produced in a eukaryotic cell system, which allows PTM to
occur, but not when using PTM-free synthetic peptides (63).
TECHNICAL LIMITATIONS OF SYNTHETIC
GLYCOPEPTIDE SCREENS

Based on the previously referenced literature and the above in
silico data, an INFg ELISPOT or intracellular staining (ICS)
screen, using synthetically glycosylated OLP as stimulus, would
be the first-choice option to screen for HIV derived glyco-
epitopes. Such an approach has been successful in detecting T
cell responses to regular peptides but, in our hands poses a
number of technical limitations when attempting to detect
responses to glycosylated peptides. In particular, a-O- and N-
glycosylation of proteins includes complex, highly branched,
sugars that are challenging to approach by chemically synthesis
of the corresponding glycopeptides. Moreover, glycoproteins
suffer extensive de-glycosylation in the cytosol before entering
the proteasome, making difficult to predict which a-O- or N-
linked glycans will be present in the peptides eventually
presented by an HLA class I molecule. This severely limits
glycosylated peptide design, discouraging the use of a-O- or
N-glycosylated peptides in T cell screens. However, b-O-GlcNAc
glycosylation, involving the addition of a single N-
acetylglucosamine (GlcNAc) to a Ser or Thr residue, is
Frontiers in Immunology | www.frontiersin.org 4
comparably much easier to approach experimentally. For this
reason, we attempted to evaluate the effect of glycosylation on T
cell responses using b-O-glycosylated synthetic peptides.
Additionally, since N-glycosylation followed by complete N-de-
glycosylation causes a change of an Asn (N) residue to Asp (D),
we also tested OLP sequence variants that contained N to D
substitutions to account for potential responses to N-de-
glycosylated neo-epitopes (64).

To perform this proof-of-concept analysis, OLP covering
potentially glycosylated regions were designed using the 2010
compendium alignment of Gag, Pol, Env, and Nef from the Los
Alamos HIV Sequence Database (https://www.hiv.lanl.gov/
content/sequence/NEWALIGN/align.html). Seven regions in
Gag, Env and Pol containing predicted b-O-glycosylation sites
were selected for glycopeptide synthesis. Consensus sequence
based OLP and the corresponding O-GlcNAc glycopeptides
covering these regions (Figure 2) were synthesized using
stepwise solid-phase peptide synthesis following standard
Fmoc protocols using glycosylated serine and threonine
building blocks (see Supporting information). Additionally, we
synthesized OLP covering three potential N-glycosylation sites in
Env and Gag with the original N residue or the D substitution,
which can be caused by de-glycosylation of N-glycosylated
positions during antigen processing. Two shorter (9mer),
already described, epitopes containing N-glycosylation sites in
Env, together with their D modifications were also produced
(19). Four out of the five potentially N-glycosylated positions in
these peptides (positions 88, 156, 160, and 301 in Uniprot entry
P04578) have been demonstrated to be N-glycosylated
experimentally (65–67). These peptides were used to screen
HIV infected individuals for INFg-producing T cell responses
in peripheral blood mononuclear cells (PBMC) to potentially b-
O-glycosylated or de-N-glycosylated epitopes using an INFg-
ELISPOT (Mabtech). We used samples from a total of 71
individuals (supporting information) including individuals
with different HIV-infection status and representing 55
different HLA-A, -B, and -C alleles.

Globally, the frequency of responses to these peptides was low
and precluded drawing of strong conclusions from the results. This
low frequency of responses could be because glycosylated sequences
are inherently poorly immunogenic, but also by a poor
representation in the samples used of the HLA alleles capable of
presenting glycosylated epitopes. Since these HLA alleles have not
been identified and taking into account the vast number of different
HLA alleles described, they could have been largely missed in this
study. Overall, responses were more frequent (range: 0%–26%,
Figure 2A) and of higher magnitude (range: 0–2715 SFC/106

PBMC, Mann-Whitney p=0.0054) when targeting non-
glycosylated peptides compared to reactions to their O-b-
glycosylated counterparts (0%–19% and 0-560 SFC/106 PBMC,
respectively). Despite its low frequency, these results provide
evidence that O-b-glycosylation can interfere negatively with
epitope recognition. Indeed, analyzing each potentially
glycosylable region individually, the magnitude of the response to
O-b-GlcNAcmodified peptides was usually lower or zero (p<0.05 in
Figures 2C–G). However, responses to two regions in Gag and one
January 2021 | Volume 11 | Article 573928

https://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html
https://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Olvera et al. HIV T Cell Glyco-Epitopes
in Pol showed a significant increase after glycosylation in some
individuals (p<0.05 in Figures 2D, F, H). This suggested that,
although they are rare, responses to O-b-glycosylated epitopes can
be detected. We also screened 22 HIV infected individuals with the
OLP containing potentially N-glycosylable positions (N) and its
deaminated counterparts (D). We found only four responders and
were unable to detect differences among the different versions of the
peptides (data not shown).
FUTURE PERSPECTIVES

Our preliminary data, indicate that O-b-GlcNAc glycosylation
usually reduces peptide recognition and suggest that sugar
moieties in synthetic glyco-peptides often interfere with
peptide binding to HLA or with TCR recognition. In the
context of HIV infection, this would be in line with a
mechanism where HIV could use glycosylation to escape from
the T cell response, similarly to what happens with antibody
recognition of the viral Env protein. Still, it seems that specific T
cell responses to O-b-glycosylated peptides could exist, although
they would be relatively rare and weak. It remains to be
addressed what physiological role these responses may have in
in vivo HIV control. As shown recently, inhibition of
glycosylation in HIV producing cells leads to massive increase
in virus replication; suggesting that the glycosylation of viral
proteins comes at some fitness costs while possibly protecting
Frontiers in Immunology | www.frontiersin.org 5
from immune surveillance (46, 68). It will be interesting to assess
the balance between such reduced replication fitness and the
ability to use glycosylation as an escape strategy to avoid T cell
immunity (if at all occurring in vivo) in future research.
However, future studies will need more refined methodologies
to identify glycosylated peptides that can be accommodated in
the HLA-class I groove, the specific HLA alleles that can bind
them and measure glyco-epitope specific T cell responses. The
use of HLA peptide elution methodologies in combination with
lectin columns will allow to specifically capture glyco-peptides,
while identifying the specific HLA alleles that can present them.
The exact molecular nature of the captured glyco-peptides can be
then characterized by mass-spectrometry (13, 69–74).
Independent synthesis of these newly identified HLA-binding
glycopeptides, containing the specific N- or O-linked glycans
characterized by mass-spectrometry, should allow identifying
specific T cell responses in individuals bearing the HLA class I
allele from where the glycosylated peptides were eluted from.
Additional structural analyses will be needed as well, to better
define the molecular structure of glyco-epitope glycan moieties,
to identify carbohydrates that can block recognition by specific
TCRs, but also to identify TCR that can accommodate such
(complex) sugars. This improved focus should permit to
accurately characterize glyco-epitope specific T cell responses
and to identify interference with CTL recognition due to epitope
glycosylation and relate both with HIV control. Filling this gap of
knowledge might contribute to the development of CTL based
A B

D

E
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H

C

FIGURE 2 | INFg-ELISPOT screening with b-O-GlcNAc OLP and its non-glycosylated counterparts. (A) Frequency of responders to OLP with and without
glycosylation modification. Presence of insertions or deletions is indicated in upper grey bars. Prediction of O-b-glycosylated positions by YingOYang is based on the
server output (http://www.cbs.dtu.dk/services/). The frequency of the potential glycosylation sites in the HIV sequence database alignments is also indicated.
(B–I) Magnitude of the response to b-O-glycosylated peptides and their non-glycosylated equivalents. OLP covering the same region are shown in the same graph,
individuals who decreased their OLP response to the glycosylated OLP version are shown in the left panels while individuals with increased responses to the
glycosylation containing OLP are shown in the right hand panels. Mann-Whitney p values are indicated by *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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vaccines, which may all depend on the proper glycosylation
profiles of vaccine-delivered antigens. This may require adequate
cellular expression and trafficking and may be especially
important for the induction of vaccine-encoded antigens.
However, our emerging data and the presented consideration
also highlight an urgent need to better understand the impact of
glycosylation on natural and vaccine-induced antiviral T
cell responses.
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