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Cytotoxic T lymphocytes (CTLs) play a critical role in the control of various cancers and infections, and therefore the molecular
mechanisms of CTL generation are a critical issue in designing antitumor immunotherapy and vaccines which augment the
development of functional and long-lasting memory CTLs. Interleukin (IL)-27, a member of the IL-6/IL-12 heterodimeric
cytokine family, acts on naive CD4+ T cells and plays pivotal roles as a proinflammatory cytokine to promote the early initiation
of type-1 helper differentiation and also as an antiinflammatory cytokine to limit the T cell hyperactivity and production of pro-
inflammatory cytokines. Recent studies revealed that IL-27 plays an important role in CD8+ T cells as well. Therefore, this article
reviews current understanding of the role of IL-27 in CD8+ T cell functions and generation of CTLs.

1. Introduction

A functional CD8+ T cell response is an essential component
of the adaptive immune response to various cancers, and
bacterial and viral pathogens [1]. Upon engagement with
antigen (Ag), naive CD8+ T cells rapidly expand and differ-
entiate into effector CD8+ T cells, producing cytokines such
as interferon (IFN)-γ and the effector molecules, perforin
and granzyme B. Effector cytotoxic T lymphocytes (CTLs)
play a key role in the host defense, using at least two distinct
mechanisms to mediate direct killing of target cells. CTLs lyse
targets by perforin-mediated release of granzyme B, which
is a serine protease to induce apoptosis, and also express
Fas ligand (FasL) to engage Fas on a target cell resulting in
apoptosis.

The T-box transcription factor T-bet is a master regulator
of type-1 helper (Th1) differentiation [2] and cell-mediated
immunity capable of controlling the expression of genes

encoding effector molecules in CD4+ and CD8+ T cells
[3], as well as natural killer (NK) cells [4]. In addition to
regulating the effector genes of cell-mediated immunity, T-
bet functions in the maturation and homeostasis of NK
T cells (NKT cells) and NK cells [4] and contributes to
the induction of CD8+ T cell memory [5, 6]. Despite its
possible involvement in the development and function of
the cytotoxic lineages, there seems to be a substantial T-bet-
independent component of CD8+ T cell and NK cell effector
function and homeostasis [7]. Eomesodermin (EOMES) is
another T-box transcription factor that is highly homologous
to T-bet and is expressed in activated CD8+ T cells as
well as resting and activated NK cells [7]. EOMES plays
a critical role during vertebrate development, and EOMES
deficiency in mice shows embryonic death [8]. Dominant
negative EOMES expression in CD8+ T cells results in loss-
of-function of CD8+ T cells, whereas ectopic expression of
EOMES was shown to induce expression of IFN-γ, perforin,
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Figure 1: The IL-6/IL-12 heterodimeric cytokine family. IL-27 plays pivotal roles as a pro-inflammatory cytokine to promote the early
induction of Th1 differentiation and also as an anti-inflammatory cytokine to limit the T cell hyperactivity and production of pro-
inflammatory cytokines.

and granzyme B, suggesting that this transcription factor
is important in differentiation of naive CD8+ T cells into
effector CTLs [7]. Furthermore, recent studies revealed that
CD8+ T cells deficient in both T-bet and EOMES, but
not either one, fail to differentiate into functional killers
required for defense against lymphocytic choriomeningitis
virus (LCMV) [9]. Thus, T-bet and EOMES redundantly
activate a transcriptional network required for CD8+ T cell
participation in defense against intracellular pathogens.

T-bet expression is induced by IFN-γ through activation
of signal transducer and activator of transcription (STAT)1
[10, 11]. In addition to IFN-γ and type I IFNs, STAT1
phosphorylation and T-bet expression can also be induced
by other cytokines including interleukin (IL)-27, an IL-6/IL-
12 family cytokine [12–14]. Several recent reports suggest
that IL-27 may play an important role in induction of
CD8+ T cell functions and generation of CTLs [15–21].
This review focuses on the critical role for IL-27 in CD8+

T cells.

2. The IL-6/IL-12 Cytokine Family

The IL-6/IL-12 cytokine family has a unique characteristic
that it is a heterodimeric cytokine composed of two different
subunits (Figure 1) [22, 23]. IL-12 is composed of p35 and
p40 subunits; its receptor (R) consists of two subunits IL-
12Rβ1 and β2, and IL-12 activates STAT4, which binds to
cytoplasmic region of IL-12Rβ2 [22]. The p40 subunit is
also covalently bound with an IL-12 p35-related protein
p19 to form IL-23 [24]. Receptor for IL-23 is composed

of one of IL-12R subunits IL-12Rβ1, and an IL-12Rβ2-
like receptor subunit designated IL-23R [25]. IL-23 activates
STAT3 and STAT4, and STAT3 activation is required for IL-
17 production by T cells with IL-23 [26]. IL-27 consists of
an IL-12 p35-related protein p28, and an IL-12 p40-related
protein, Epstein-Barr virus (EBV)-induced gene 3 (EBI3),
which has been previously identified as one of molecules
induced by EBV infection [27–29]. IL-27R is composed
of the IL-27Rα (WSX-1/T-cell cytokine receptor, TCCR),
which has a WSXWS sequence and is homologous to the
IL-12Rβ2 subunit, and gp130, a common receptor subunit
for IL-6 family cytokines [30]. EBI3 was previously reported
to associate with p35 as well to form the heterodimeric
molecule EBI3/p35, whereas its function had remained
unknown [31, 32]. Recently, the EBI3/p35 was demonstrated
to be produced by regulatory T (Treg) cells and contribute to
their suppressive activity [33, 34]. Therefore, it was named
IL-35, while its signaling cascade and its receptor have not
been identified yet.

Although IL-27 has been reported to activate STATs1–5,
several biological activities are attributed to STAT1 and/or
STAT3, which bind to distinct IL-27R subunits, IL-27Rα and
gp130, respectively (Figure 2) [12–14, 35, 36]. The contribu-
tion of other STATs such as STATs2, 4, and 5 largely remains
unknown. The role of IL-27 in regulating immune response
is complex with its stimulatory and inhibitory effects act-
ing on various kinds of cells including T cells, B cells,
macrophages, and dendritic cell (DC) [37]. IL-27 plays a role
in the early induction of Th1 differentiation [12, 38, 39].
IL-27 up-regulates the expression of intercellular adhesion
molecule (ICAM)-1, T-bet and subsequent IL-12Rβ2, and
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Figure 2: IL-27 is a multifunctional cytokine that mainly activates both STAT1 and STAT3 together with STAT2, STAT4, and STAT5. IL-27
mediates its several biological functions by selectively utilizing these STAT1 and STAT3, which bind to distinct IL-27R subunits, IL-27Rα and
gp130, respectively. IL-27 acts on various types of cells including CD4+ and CD8+ T cells, B cells, NK cells, macrophages, mast cells, and
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synergies with IL-12 in primary IFN-γ production [12, 13,
27, 39–41]. In contrast, IL-27 down-regulates the expression
of a Th2-specific transcriptional factor, GATA3 [14, 42].
In agreement with these in vitro studies, IL-27Rα-deficient
mice have enhanced susceptibility to infection with several
intracellular pathogens [28, 38, 43]. However, IL-27Rα is not
essential to develop the protective Th1 responses [38, 43],
and recent studies revealed that IL-27 regulates not only pro-
inflammatory responses including the early initiation of Th1
responses, but also anti-inflammatory responses including
the suppression of cellular activation and pro-inflammatory
cytokine production in certain infections with Toxoplasma
gondii [44, 45] and Trypanosoma cruzi [46]. Moreover,
several lines of evidence demonstrated that IL-27 suppresses
Th17 differentiation and the development of experimental
autoimmune encephalomyelitis (EAE) [45, 47, 48]. IL-27
also induces the production of one of the immunosuppres-
sive cytokines, IL-10, by activated T lymphocytes, and IL-
10 is considered to be involved in the immunomodulatory
function of IL-27 [49–51]. In addition, it was recently
demonstrated that IL-27 together with transforming growth
factor (TGF)-β plays a dominant function in generating IL-
10-producing anti-inflammatory T regulatory type 1 (Tr1)
cells [52]. IL-27 drives the expansion and differentiation of
Tr1 cells by inducing three key elements, the transcription
factor c-Maf, the cytokine IL-21, and the costimulatory
receptor inducible costimulatory (ICOS) [53]. IL-27-driven
c-Maf expression transactivates IL-21 production, which acts
as an autocrine growth factor for the expansion and/or

maintenance of IL-27-induced Tr1 cells, and IL-27-enhanced
ICOS expression further promotes IL-27-driven Tr1 cells.

3. IL-27 Augments Antigen-Specific
CTL Generation

The effect of IL-27 on CD8+ T cells in vitro was investigated
by us [15]. In a manner similar to CD4+ T cells [12–
14, 35, 36, 40], IL-27 activated STATs1–5, and augmented
the expression of not only T-bet and IL-12Rβ2 but also
effector molecules such as granzyme B, and perforin in
naive CD8+ T cells stimulated with anti-CD3 and anti-
CD28. IL-27 induced synergistic IFN- γ production with
IL-12 and proliferation of naive CD8+ T cells. IL-27 also
enhanced proliferation of CD4+ T cell-depleted spleen cells
stimulated by allogeneic spleen cells and augmented the
generation of CTL. Both T-bet and EOMES are required
to generate functional CTLs and to induce their effector
molecules such as perforin and granzyme B [5–7, 9].
Therefore, the role of STAT1 and T-bet for the IL-27-
mediated functions in CD8+T cells was examined using
deficient mice in STAT1 and T-bet [15]. In STAT1-deficient
naive CD8+ T cells, IL-27-induced proliferation was not
reduced but synergistic IFN-γ production with IL-12 was
diminished with decreased expression of T-bet, IL-12Rβ2,
granzyme B, and perforin. In T-bet-deficient naive CD8+

T cells, IL-27-induced proliferation was hardly reduced but
synergistic IFN-γ production with IL-12 was diminished
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with decreased expression of IL-12Rβ2, granzyme B and
perforin. However, IL-27 still augmented the generation
of CTL from T-bet-deficient CD4+ T cell-depleted spleen
cells stimulated by allogeneic spleen cells with increased
EOMES and granzyme B expression. Thus, IL-27 induces the
generation of functional CTLs by augmenting both T-bet and
EOMES.

There are a number of evidences showing that CTLs play
a central role in the clearance of pathogenic viruses [54]. In
case of hepatitis C virus (HCV) infection, vigorous HCV-
specific CTL responses exist in the persons resolving acute
HCV infection, and enhancement of HCV-specific CTL
induction in HCV-infected individuals is considered to be
one of the strategies to clear the virus [55]. DNA vaccination
has been proven to be a useful strategy for inducing both
humoral and cellular immune responses, and safely mimics
the effect of live, attenuated virus-based vaccine to generate a
long-lasting CTL response [56]. Therefore, adjuvant effects
of IL-23 and IL-27 were evaluated by the prime-boost
immunization consisting of priming and the first boosting
with the HCV-core expression plasmid, followed by a second
boosting with recombinant adenovirus expressing HCV core
for induction of HCV core-specific CTLs in HLA-A∗0201
transgenic BALB/c mice [16]. To circumvent uneven gene
expression of the two subunits, genetically linked, single-
chain (sc)IL-12, scIL-23, and scIL-27 were used in theses
experiments. Coadministration of either an IL-23 or an IL-27
expression plasmid, as well as an IL-12 expression plasmid,
in a prime-boost immunization enhanced induction of
HCV-specific CTLs and led to dramatic increases in the
numbers of IFN-γ-producing, HCV-specific CD8+ cells
[16]. Furthermore, preinjections of IL-12, IL-23, or IL-27
expression plasmids before immunization resulted in great
increases in the number of IFN-γ-producing, HCV-specific
CD8+ cells in response to immunization with recombinant
adenovirus. These data revealed that both IL-23 and IL-27,
as well as IL-12, have potent adjuvant activity for induction
of epitope-specific CTL.

4. IL-27 Induces Antitumor Activity via
Augmenting Tumor-Specific CTL Generation

IL-12 is considered to be one of the most effective cytokines
against various tumors, because it activates NK cell, pro-
motes Th1 polarization, and, thereby, promotes cellular
immune responses and proliferation of CTL [57, 58]. The
promising data obtained in the preclinical models have raised
much hope that IL-12 could be a powerful therapeutic agent
against cancers [57, 58]. However, excessive clinical toxicity
and modest clinical response in the clinical trials have limited
the IL-12 therapy [59]. Since IL-27 has several similarities to
IL-12, it plays a role in the initiation of Th1 differentiation
[12, 39, 41], and enhances generation of CTL [15, 16] as
described above, we evaluated the antitumor activity of IL-
27 and demonstrated for the first time that IL-27 has a
potent antitumor activity [17]. Since then, IL-27 has been
evaluated in various preclinical tumors, and a number of
reports revealed that IL-27 exerts potent antitumor effects

against various tumor models such as colon carcinoma [17,
20, 21], neuroblastoma [18], melanoma [60–62], head and
neck squamous cell carcinoma [63], and lung cancer [64]
via different mechanisms depending on the characteristic
of each tumor. These include mechanisms through not
only CD8+ T cells [17, 18, 21], but also NK cells [21,
61, 63], antiangiogenic activity [60], direct antiproliferative
activity [62], and suppression of cyclooxygenase-2-mediated
activities [64].

Hisada et al. have first evaluated the antitumor activity
of IL-27 against a murine tumor model of colon carcinoma
colon 26 (C26) [17]. C26 tumor cells, which were transduced
with the linked scIL-27 cDNA and became secreting IL-27
(C26-IL-27), exhibited a minimal tumor growth in vivo,
and all mice inoculated with these tumor cells survived
with a complete tumor remission. Inoculation of mice with
C26-IL-27 tumors induced enhanced IFN-γ production and
CTL activity against C26 tumors in spleen cells. Recovered
mice from the inoculation showed a tumor-specific pro-
tective immunity to the following challenge with parental
C26 tumors. The antitumor activity of IL-27 was almost
diminished in nude mice, and depletion of CD8+ T cells and
neutralization of IFN-γ in immunocompetent mice reduced
the antitumor activity. These results suggest that IL-27 has
potent abilities to induce tumor-specific antitumor activity
and protective immunity, which is mediated through mainly
CD8+ T cells. Moreover, the antitumor activity was greatly
reduced in T-bet-deficient mice, but not in STAT4-deficient
mice [17]. Since STAT4 is essential for IL-12 to show its bio-
logical activities [65, 66], this result implies that IL-27 exerts
the antitumor activity even in the absence of endogenous
IL-12. This is consistent with the fact that IL-27 induces
Th1 differentiation even in the absence of IL-12 in vitro
[39, 41]. Of note, during the IL-27 treatment, any apparent
adverse effects such as, splenomegaly and liver injury with
elevated serum glutamic-oxaloacetic transaminase (GOT)
and glutamic-pyruvic transaminase (GPT) activities and
intensive mononuclear cell infiltration into liver were not
observed, which were seen with IL-12 treatment [67–69].
Similar CD8+ T cell-mediated antitumor effects were also
reported by Chiyo et al. using C26 transduced with the
heterodimeric IL-27 cDNA (p28-IRES-EBI3) [20, 21]. Taken
together, these studies suggest that IL-27 exerts CD8+ T cell-
mediated antitumor effects.

Salcedo et al. have also reported that IL-27 exerts
CD8+ T cell-mediated potent antitumor activity using other
tumor model, TBJ neuroblastoma, which was engineered
to overexpress scIL-27 (TBJ-IL-27) [18]. TBJ-IL-27 tumors
showed markedly delayed growth compared with control
mice, and complete durable tumor regression was observed
in almost all of mice bearing either subcutaneous or
orthotopic intraadrenal tumors, and in half of mice bear-
ing induced metastatic disease. Consistent with the above
other reports [17, 20, 21], the majority of mice cured
of TBJ-IL-27 tumors were resistant to tumor rechallenge.
Moreover, TBJ-IL-27 tumors were heavily infiltrated by
CD8+ T cells. Draining lymph node-derived lymphocytes
from mice bearing subcutaneous TBJ-IL-27 tumors were
primed to proliferate more readily when cultured ex vivo
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with anti-CD3/anti-CD28 compared with lymphocytes from
mice bearing control tumors, and to secrete higher levels
of IFN-γ. In addition, marked enhancement of local IFN-
γ gene expression and potent up-regulation of cell surface
major histocompatibility complex (MHC) class I expression
were noted within TBJ-IL-27 tumors compared with control
tumors. Similar direct effects of IL-27 on tumors to up-
regulate MHC class I molecule were reported [62]. Moreover,
depletion experiments using specific antibodies revealed that
the induction of TBJ tumor regression by IL-27 is mediated
via mechanisms that are critically dependent on CD8+, but
not CD4+T cells or NK cells. Thus, CD8+ T cells are critically
involved in the exertion of antitumor activity by IL-27.

5. Endogenouse IL-27 in CD8+ T Cells Is
Important for CTL Generation

IL-27 thus facilitates tumor-specific CTL induction against
various tumors. However, IL-27 also suppresses cytokine
production of lymphocytes and Ag-presenting function of
DCs [70]. Therefore, to examine the role of endogenous IL-
27 in generation of CTL and antitumor immunity, IL-27-
mediated antitumor effects were examined using IL-27Rα
(WSX-1)-deficient mice [38]. In IL-27Rα-deficient mice, in
which host cells cannot receive IL-27-mediated signaling,
inoculated with B16F10 melanoma cells, tumor growth was
higher than in wild-type (WT) mice [19]. These results are
consistent with the fact that IL-27 favors establishment of
antitumor immunity as described above [17, 18, 20, 21].
Failure of successful inhibition of tumor growth in IL-27Rα-
deficient mice could be attributable to impaired generation
of CTL or impaired function of other types of cells, such as
Ag-presenting cells (APCs). To address this issue, tumor Ag
TRP2 peptide-pulsed WT DCs were adoptively transferred
into WT or IL-27Rα-deficient mice and examined the effects
on tumor growth [19]. In WT mice, transfer of peptide-
pulsed DCs induced further protective immunity against
B16F10 tumor as compared with the PBS-treated control
WT mice. Even in IL-27Rα-deficient mice, transfer of WT
DCs pulsed with Ag peptide conferred protective immunity.
However, IL-27Rα-deficient mice transferred with DCs still
showed excessive growth of tumors as compared with DC-
transferred WT mice. These data indicate that the impaired
generation of antitumor immunity in IL-27Rα-deficient
mice may be attributable to effector populations but not
APCs. Consistent with this idea, IL-27Rα-deficient mice
with WT DC transfer generated still lower killing activity
than WT mice with DC transfer, although DC transfer
induced tumor-specific killing activity over PBS control
[19]. Perforin expression in generated CTLs from IL-27Rα-
deficient mice was also lower than in those from WT mice,
which is consistent with the previous report [15]. Moreover,
DC transfer augmented expression of perforin by generated
CTLs from WT mice, while there was little augmentation
by DC transfer in CTLs from IL-27Rα-deficient mice. These
results demonstrate that endogenous IL-27, through IL-27Rα
signaling, favors generation of CTL with enhanced perforin
expression. Of note, when transferred into tumor-bearing

mice, IL-27Rα-deficient DCs pulsed with Ag peptide was
more potent than WT DCs in tumor growth inhibition
and generation of CTLs [19]. This indicates that IL-27Rα
signaling has suppressive effects on DC function, as reported
previously [70]. Thus, endogenous IL-27 promotes tumor
specific CTL generation in CD8+ T cells, while suppressing
APC function in DCs, during generation of tumor immunity.

6. IL-27R Signaling Is Indispensable for
T-bet-Dependent IFN-γ Production in
CD8+ T Cells

CD8+ T cells are one of the major sources of IFN-γ, a
key effector cytokine in immune responses against many
viruses and protozoa [71]. The diverse effects of IFN-γ on
numerous immune cells are mediated through the widely
expressed IFN-γ R and the activation of STAT1 [71]. In CD4+

T cells, STAT1 appears to be critical for the activation of T-bet
and IFN-γ, suggesting an IFN-γ-dependent positive feedback
loop, that is, IFN-γ-dependent STAT1-mediated induction
of IFN-γ [10, 11]. However, STAT1 can also be activated by
other cytokines, including IL-27. To examine the expression
of IFN-γ by CD8+ T cells directly in vivo, Yeti IFN-γ reporter
mice were used to bypass the need for in vitro restimulation
[72, 73]. In Yeti mice, the IFN-γ-YFP reporter is faithfully
expressed only under conditions known to induce IFN-γ,
and the reporter fluorescence intensity correlates directly
with both the abundance of IFN-γ transcripts and the
production of IFN-γ upon restimulation [72, 73]. Using the
Yeti IFN-γ reporter mice, the CD8+ T cell-intrinsic roles of
IFN-γ R, IL-27R, and T-bet for IFN-γ expression in response
to viral and protozoan infection were examined by direct
in vivo staining [74]. To directly compare T-bet-deficient
or IFN-γ R-deficient T cells with WT T cells in the same
animal in a T-bet- or IFN-γ R-sufficient environment, mixed
bone marrow (BM) chimeras in which lethally irradiated
C57BL/6 mice (CD45.1 or CD45.2) were reconstituted with
BM from WT Yeti mice (CD45.1) mixed 1 : 1 with either T-
bet-deficient Yeti or IFN-γ R-deficient Yeti CD45.2 donors.
Mixed T- bet-deficient/WT BM chimeras were then infected
with influenza virus, Sendai virus, or Toxoplasma gondii, and
various organs were analyzed for IFN-γ response within the
population of Ag-specific cells generated by the respective
donor BM using MHC class I tetramers specific for each
Ag. Very few Ag-specific T-bet-deficient CD8+ T cells in
respectively infected mixed BM chimeras expressed IFN-
γ, while the vast majority of Ag-specific WT cells were
YFP+ [74]. Importantly, the defective IFN-γ response was
not due to a failure of the T-bet-deficient compartment
to prime, expand, or disseminate a population of Ag-
specific CD8+ T cells, because the frequency of Ag-specific
cells was comparable to that of the internal WT control
[74]. Although T-bet is reportedly induced by the IFN-γ
R/STAT1 pathway [10, 11], IFN-γ expression in IFN-γ R-
deficient CD8+ T cells was not impaired in mixed IFN-γ
R-deficient/WT BM chimeras infected with influenza virus
or Sendai virus as compared with the internal WT control
cells. These observations demonstrate that direct IFN-γ
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R signaling is dispensable for the priming, expansion, or
dissemination of Ag-specific CD8+ T cells. However, these
results are in striking contrast to a recent adoptive transfer
study suggesting that direct IFN-γ R signaling is critical for
the expansion of a CD8+ T cell response during acute viral
infection [75].

Since T-bet reportedly functions downstream of STAT1
[10, 11, 13, 76] and the IFN-γ R is dispensable for T-bet-
dependent IFN-γ expression, it was then explored whether
the STAT1-activating IL-27R signaling regulates T-bet-
dependent IFN-γ expression by CD8+ T cells in vivo [74].
Mixed BM chimeras were generated from IL-27Rα (TCCR)-
deficient Yeti (CD45.2) and WT Yeti (CD45.1) donors
(IL-27Rα-deficient/WT) and infected with influenza virus
or Toxoplasma gondii. The frequency of IFN-γ-expressing
cells was profoundly reduced within Ag-specific IL-27Rα-
deficient CD8+ T cells as compared with the internal WT
control [74]. The IFN- γ response of activated CD8+ T cells
was similarly impaired in the IL-27Rα-deficient population
of IL-27Rα-deficient/WT mixed BM chimeras, while the
frequency of activated cells was not reduced. Taken together,
these studies suggest that T-bet is critical for the in vivo IFN-
γ production by CD8+ T cells upon infection of mice with
diverse pathogens. Whereas IFN-γ R signaling is dispensable
for the T-bet-dependent IFN-γ production, direct IL-27R
signaling is critical for the IFN-γ response in CD8+ T cells.

7. CD8+ T Cell Proliferation Is Regulated
by SOCS3 through Inhibition of IL-27R
Signaling

Suppressor of cytokine signaling (SOCS) proteins regulates
the intensity and duration of cytokine responses [77]. SOCS3
is expressed in peripheral T cells, and recent reports have sug-
gested that overexpression of SOCS3 modulates Ag- and/or
costimulation-induced T-cell activation [78]. Other studies
in which SOCS3 was deleted in the liver or macrophages have
also shown SOCS3 to be a critical regulator of IL-6 signals
[79–81]. On a molecular level, this has been attributed to
the binding of SOCS3 to phosphorylated Tyr757 (Y757)
of the gp130 receptor chain, thereby bringing SOCS3 into
proximity to and then inhibiting receptor-associated JAKs
[82]. The association of SOCS3 with gp130, the common
receptor subunit for the IL-6 family of cytokines, suggests
that SOCS3 may regulate activities of other members of this
family. IL-27, one of these gp130 ligands, induces SOCS3
expression [36, 83, 84], and it was shown previously that
IL-27 suppresses IL-2 production and the development of
Th17 cells [36, 45, 47, 83–85]. Therefore, it was proposed that
SOCS3 mediates these inhibitory effects of IL-27 [47, 83].
However, studies with SOCS3-deficient T cells have shown
that SOCS3 is not essential for IL-27-induced suppression of
Th17 differentiation [45, 86].
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To investigate the role of SOCS3 in T-cell function
and homeostasis in vivo, conditional SOCS3-deficient mice,
in which the SOCS3 gene was deleted specifically within
T and NKT cells, were used [86, 87]. SOCS3-deficient T
cells were revealed to be hyperproliferative in response to
a TCR stimulus [88]. This effect was seen in both CD4+

and CD8+ T cells but was most pronounced in SOCS3-
deficient CD8+ T cells. Hyperproliferation in the absence of
SOCS3 is consistent with previous studies that showed that
overexpression of SOCS3 in T cells results in reduced pro-
liferation in response to TCR [89] and antigenic stimulation
[90]. However, SOCS3-deficient T cells responded normally
to TCR stimulation in combination with costimulation (anti-
CD3 plus anti-CD28), which suggests that costimulatory
pathways are unaffected by the absence of SOCS3 [88].
In addition, signaling pathways downstream of the TCR
including calcium-signaling pathways were activated to a
normal intensity and duration in the absence of SOCS3,
although responses to TCR ligation were enhanced [88].
Thus, T-cell defects are most probably caused by enhanced
cytokine signaling in the absence of SOCS3. Previous studies
have shown that SOCS3 regulates gp130 cytokines [79–
81, 91]. Indeed, CD8+T cells from gp130Y757F/Y757F mice,
which lack the SOCS3-binding site on gp130 [92], also
proliferated strongly in response to TCR ligation despite
the TCR-signaling pathways being unaffected in these cells
[88]. This result suggests that hypersensitivity to a gp130
cytokine drives the hyperproliferative phenotype of SOCS3-
deficient T cells. Consistent with the idea, SOCS3-deficient T
cells had prolonged STAT activation in response to both IL-
6 and IL-27, the main gp130 cytokines that act on T cells
[88]. While the absence of IL-6 had no effect, inhibition
of IL-27 limited anti-CD3-induced proliferation in CD8+

T cells. Taken together, these data suggest that enhanced
proliferation to TCR ligation by SOCS3-deficient CD8+T
cells is not caused by aberrant TCR-mediated signaling,
but, rather, by increased IL-27R-mediated signaling in the
absence of SOCS3 [88].

8. Concluding Remarks

Collectively, by directly acting on naive CD8+ T cells, IL-27
activates STAT1 and induces two related T-box transcription
factors, T-bet and EOMES, critical for induction of effector
molecules such as perforin and granzyme B to generate
functional CTLs (Figure 3). Consistent with the in vitro
results, DNA vaccination with IL-27 increases the numbers
of IFN-γ-producing Ag-specific CD8+ T cells in vivo, and
IL-27-transduced tumor cells show CD8+ T cell-mediated
antitumor activity via augmentation of IFN-γ production
and tumor-specific CTL generation. Moreover, endogenous
IL-27 promotes CTL generation with enhanced perforin
expression, while it suppresses APC function in DCs due
to its anti-inflammatory functions, during generation of
antitumor immunity. Endogenous IL-27R signaling, but
not IFN-γR signaling, is also required for T-bet-dependent
IFN-γ production by CD8+ T cells upon infection with
various pathogens. Moreover, IL-27 together with TCR

stimulation induces not only proliferation but also SOCS3
expression to control excessive proliferation in CD8+ T
cells. Thus, the recent studies as described in the present
review clearly indicate that IL-27 may have a nonredundant
role in induction of CD8+ T cell functions and generation
of functional CTLs against various tumors and infectious
pathogens. Since IL-27 plays pivotal roles in not only the
early induction of Th1 differentiation but also the generation
of CTL, leading to augmentation of type 1 cell-mediated
immunity, IL-27 could be an attractive candidate as an
agent applicable to the immunotherapy against cancers and
pathogens.
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