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Abstract. The k-dimensional Weisfeiler-Leman procedure (k-WL) has
proven to be immensely fruitful in the algorithmic study of Graph Iso-
morphism. More generally, it is of fundamental importance in under-
standing and exploiting symmetries in graphs in various settings. Two
graphs are k-WL-equivalent if dimention k does not suffice to distinguish
them. 1-WL-equivalence is known as fractional isomorphism of graphs,
and the k-WL-equivalence relation becomes finer as k increases.

We investigate to what extent standard graph parameters are pre-
served by k-WL-equivalence, focusing on fractional graph packing num-
bers. The integral packing numbers are typically NP-hard to compute,
and we discuss applicability of k-WL-invariance for estimating the inte-
grality gap of the LP relaxation provided by their fractional counterparts.

Keywords: Computational complexity · The Weisfeiler-Leman
algorithm · Fractional packing

1 Introduction

The 1-dimensional version of the Weisfeiler-Leman procedure is the classical color
refinement applied to an input graph G. Each vertex of G is initially colored by
its degree. The procedure refines the color of each vertex v ∈ V (G) in rounds,
using the multiset of colors of vertices u in the neighborhood N(v) of the vertex
v. In the 2-dimensional version [25], all vertex pairs xy ∈ V (G) × V (G) are clas-
sified by a similar procedure of coloring them in rounds. The extension of this
procedure to a classification of all k-tuples of G is due to Babai (see historical
overview in [4,5]) and is known as the k-dimensional Weisfeiler-Leman proce-
dure, abbreviated as k-WL. Graphs G and H are said to be k-WL -equivalent
(denoted G ≡k-WL H) if they are indistinguishable by k-WL.

The WL Invariance of Graph Parameters. Let π be a graph parameter. By
definition, π(G) = π(H) whenever G and H are isomorphic (denoted G ∼= H).
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We say that π is a k-WL -invariant graph parameter if the equality π(G) = π(H)
is implied even by the weaker condition G ≡k-WL H. The smallest such k will
be called the Weisfeiler-Leman (WL) dimension of π.

If no such k exists, we say that the WL dimension of π is unbounded. Knowing
that a parameter π has unbounded WL dimension is important because this
implies that π cannot be computed by any algorithm expressible in fixed-point
logic with counting (FPC), a robust framework for study of encoding-invariant
( or “choiceless”) computations; see the survey [7].

The focus of our paper is on graph parameters with bounded WL dimension.
If π is the indicator function of a graph property P, then k-WL-invariance of
π precisely means that P is definable in the infinitary (k + 1)-variable counting
logic Ck+1

∞ω . While minimizing the number of variables is a recurring theme in
descriptive complexity, our interest in the study of k-WL-invariance has an addi-
tional motivation: If we know that a graph parameter π is k-WL-invariant, this
gives us information not only about π but also about k-WL. For example, the
largest eigenvalue of the adjacency matrix has WL dimension 1 (see [24]), and
the whole spectrum of a graph has WL dimension 2 (see [8,13]), which implies
that 2-WL subsumes distinguishing non-isomorphic graphs by spectral methods.

Fractional Graph Parameters. In this paper, we mainly consider frac-
tional graph parameters. Algorithmically, a well-known approach to tackling
intractable optimization problems is to consider an appropriate linear program-
ming (LP) relaxation. Many standard integer-valued graph parameters have frac-
tional real-valued analogues, obtained by LP-relaxation of the corresponding
0–1 linear program; see, e.g., the monograph [24]. The fractional counterpart of
a graph parameter π is denoted by πf . While π is often hard to compute, πf

provides, sometimes quite satisfactory, a polynomial-time computable approxi-
mation of π.

The WL dimension of a natural fractional parameter πf is a priori bounded,
where natural means that πf is determined by an LP which is logically inter-
pretable in terms of an input graph G. A striking result of Anderson, Dawar,
Holm [1] says that the optimum value of an interpretable LP is expressible in
FPC. It follows from the known immersion of FPC into the finite-variable infini-
tary counting logic Cω

∞ω =
⋃∞

k=2 Ck
∞ω (see [21]), that each such πf is k-WL-

invariant for some k. While this general theorem is applicable to many graph
parameters of interest, it is not easy to extract an explicit value of k from this
argument, and in any case such value would hardly be optimal.

We are interested in explicit and, possibly, exact bounds for the WL dimen-
sion. A first question here would be to pinpoint which fractional parameters πf

are 1-WL-invariant. This natural question, using the concept of fractional iso-
morphism [24], can be recast as follows: Which fractional graph parameters are
invariant under fractional isomorphism? It appears that this question has not
received adequate attention in the literature. The only earlier result we could
find is the 1-WL-invariance of the fractional domination number γf shown in
the Ph.D. thesis of Rubalcaba [23].
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We show that the fractional matching number νf is also a fractional param-
eter preserved by fractional isomorphism. Indeed, the matching number is an
instance of the F -packing number πF of a graph, corresponding to F = K2.
Here and throughout, we use the standard notation Kn for the complete graphs,
Pn for the path graphs, and Cn for the cycle graph on n vertices. In general,
πF (G) is the maximum number of vertex-disjoint subgraphs F ′ of G that are iso-
morphic to the fixed pattern graph F . While the matching number is computable
in polynomial time, computing πF is NP-hard whenever F has a connected com-
ponent with at least 3 vertices [19], in particular, for F ∈ {P3,K3}. Note that
K3-packing is the optimization version of the archetypal NP-complete problem
Partition Into Triangles [14, GT11]. We show that the fractional P3-packing
number νP3

f , like νf = πK2
f , is 1-WL-invariant, whereas the WL dimension of the

fractional triangle packing is 2.
In fact, we present a general treatment of fractional F -packing numbers πF

f .
We begin in Sect. 2 with introducing a concept of equivalence between two linear
programs L1 and L2 ensuring that equivalent L1 and L2 have equal optimum
values. Next, in Sect. 3, we consider the standard optimization versions of Set
Packing and Hitting Set [14, SP4 and SP8], two of Karp’s 21 NP-complete prob-
lems. These two generic problems generalize F -Packing and Dominating Set
respectively. Their fractional versions have thoroughly been studied in hyper-
graph theory [12,20]. We observe that the LP relaxations of Set Packing (or Hit-
ting Set) are equivalent whenever the incidence graphs of the input set systems
are 1-WL-equivalent. This general fact readily implies Rubalcaba’s result [23] on
the 1-WL-invariance of the fractional domination number and also shows that,
if the pattern graph F has � vertices, then the fractional F -packing number πF

f

is k-WL-invariant for some k < 2 �. This bound for k comes from a logical defi-
nition of the instance of Set Packing corresponding to F -Packing in terms of an
input graph G (see Corollary 6). Though the bound is quite decent, it does not
need to be optimal. We elaborate on a more precise bound, where we need to use
additional combinatorial arguments even in the case of the fractional matching.
We present a detailed treatment of the fractional matching in this exposition
(Theorem 4), while the proof of our general result on the fractional F -packing
numbers (Theorem 5), which includes the aforementioned cases of F = K3, P3,
is postponed to the full version of the paper [2].

The edge-disjoint version of F -Packing is another problem that has inten-
sively been studied in combinatorics and optimization. Since it is known to be
NP-hard for any pattern F containing a connected component with at least 3
edges [10], fractional relaxations have received much attention in the literature
[17,26]. We show that our techniques work well also in this case. In particular,
the WL dimension of the fractional edge-disjoint triangle packing number ρK3

f

is 2 (Theorem 7).

Integrality Gap via Invariance Ratio. Furthermore, we discuss the approx-
imate invariance of integral graph parameters expressible by integer linear
programs. For a first example, recall Lovász’s inequality [12, Theorem 5.21]
νf (G) ≤ 3

2 ν(G). As νf is 1-WL-invariant, it follows that ν(G)/ν(H) ≤ 3/2
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for any pair of nonempty 1-WL-equivalent graphs G and H. This bound is tight,
as seen for the 1-WL-equivalent graphs G = C6s and H = 2sC3. Consequently,
the above relation between ν(G) and νf (G) is also tight. This simple example
demonstrates that knowing, first, the exact value k of the WL dimension of
a fractional parameter πf and, second, the discrepancy of the integral param-
eter π over k-WL-invariant graphs implies a lower bound for the precision of
approximating π by πf .

Specifically, recall that the maximum maxG
πf (G)
π(G) , (respectively maxG

π(G)
πf (G)

for minimization problems) is known as the integrality gap of πf . The integrality
gap is important for a computationally hard graph parameter π, as it bounds
how well the polynomial-time computable parameter πf approximates π.

On the other hand, we define the k-WL-invariance ratio for the parameter π

as maxG,H
π(G)
π(H) , where the quotient is maximized over all k-WL-equivalent graph

pairs (G,H). If π is k-WL-invariant, then the k-WL-invariance ratio bounds the
integrality gap from below. The following question suggests itself: How tight is
this lower bound? In this context, we now consider the fractional domination
number γf .

A general bound by Lovász [20] on the integrality gap of the fractional cover-
ing number for hypergraphs implies that the integrality gap for the domination
number is at most logarithmic, specifically, γ(G)

γf (G) ≤ 1 + lnn for a non-empty
graph G with n vertices. This results in an LP-based algorithm for approxima-
tion of γ(G) within a logarithmic factor, which is essentially optimal as γ(G) is
hard to approximate within a sublogarithmic factor assuming NP �= P [22]. As
shown by Rubalcaba [23], γf is 1-WL-invariant. Along with the Lovász bound,
this implies that the 1-WL-invariance ratio of γ is at most logarithmic. On the
other hand, Chappell et al. [6] have shown that the logarithmic upper bound
for the integrality gap of γf is tight up to a constant factor. In Sect. 6 we prove
an Ω(log n) lower bound even for the 1-WL-invariance ratio of γ over n-vertex
graphs. This implies the integrality gap lower bound [6], reproving it from a dif-
ferent perspective. In Sect. 6 we also discuss the additive integrality gap of the
fractional edge-disjoint triangle packing.

Related Work. Atserias and Dawar [3] have shown that the 1-WL-invariance
ratio for the vertex cover number τ is at most 2. Alternatively, this bound also
follows from the 1-WL-invariance of νf (which implies the 1-WL-invariance of
τf as τf = νf by LP duality) combined with a standard rounding argument.
The approach of [3] uses a different argument, which alone does not yield 1-WL-
invariance of the fractional vertex cover τf .

The bound of 2 for the 1-WL-invariance ratio of τ is optimal. Atserias and
Dawar [3] also show that the k-WL-invariance ratio for τ is at least 7/6 for each
k. This implies an unconditional inapproximability result for Vertex Cover in
the model of encoding-invariant computations expressible in FPC.

Notation and Formal Definitions. For x̄ = (x1, . . . , xk) in V (G)k, let
WL0

k(G, x̄) be the k × k matrix (mi,j) with mi,j = 1 if xixj ∈ E(G),
mi,j = 2 if xi = xj and mi,j = 0 otherwise. We also augment WL0

k(G, x̄)
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by the vector of the colors of x1, . . . , xk if the graph G is vertex-colored.
WL0

k(G, x̄) encodes the ordered isomorphism type of x̄ in G and serves as
an initial coloring of V (G)k for k-WL. In each refinement round, 1-WL com-
putes WLr+1

1 (G, x) = (WLr
1(G, x), {{WLr

1(G, y) : y ∈ N(x)}}), where N(x) is the
neighborhood of x and {{ }} denotes a multiset. If k ≥ 2, k-WL refines the coloring
by WLr+1

k (G, x) = (WLr
k(G, x̄), {{(WLr

k(G, x̄u
1 ), . . . ,WLr

k(G, x̄u
k) : u ∈ V (G)}}),

where x̄u
i is the tuple (x1, . . . , xi−1, u, xi+1, . . . , xk). If G has n vertices, the color

partition stabilizes in at most nk rounds. We define WLk(G, x̄) = WLnk

k (G, x̄)
and WLk(G) = {{WLk(G, x̄) : x̄ ∈ V (G)k}}. Now, G ≡k-WL H if WLk(G) =
WLk(H).

The color partition of V (G) according to WL1(G, x) is equitable: for any
color classes C and C ′, each vertex in C has the same number of neighbors in
C ′. Moreover, if G is vertex-colored, then the original colors of all vertices in
each C are the same. If V (G) = V (H), then G ≡k-WL 1H exactly when G and
H have a common equitable partition [24, Theorem 6.5.1].

Let G and H be graphs with vertex set {1, . . . , n}, and let A and B be the
adjacency matrices of G and H, respectively. Then G and H are isomorphic
if and only if AX = XB for some n × n permutation matrix X. The linear
programming relaxation allows X to be a doubly stochastic matrix. If such an
X exists, G and H are said to be fractionally isomorphic. If G and H are colored
graphs with the same partition of the vertex set into color classes, then it is
additionally required that Xu,v = 0 whenever u and v are of different colors. It
turns out that two graphs are indistinguishable by color refinement if and only
if they are fractionally isomorphic [24, Theorem 6.5.1].

2 Reductions Between Linear Programs

A linear program (LP) is an optimization problem of the form “maximize (or
minimize) atx subject to Mx ≤ b”, where a ∈ R

n, b ∈ R
m, M is an m×n matrix

M ∈ R
m×n, and x varies over all vectors in R

n with nonnegative entries (which
we denote by x ≥ 0). Any vector x satisfying the constraints Mx ≤ b, x ≥ 0 is
called a feasible solution and the function x �→ atx is called the objective function.
We denote an LP with parameters a,M, b by LP (a,M, b, opt), where opt = min,
if the goal is to minimize the value of the objective function, and opt = max,
if this value has to be maximized. The optimum of the objective function over
all feasible solutions is called the value of the program L = LP (a,M, b, opt) and
denoted by val(L). Our goal now is to introduce an equivalence relation between
LPs ensuring equality of their values.

Equivalence of LPs. Let L1 = LP (a,M, b, opt) and L2 = LP (c,N, d, opt) be
linear programs (in general form), where a, c ∈ R

n, b, d ∈ R
m, M,N ∈ R

m×n

and opt ∈ {min,max}. We say that L1 reduces to L2 (L1 ≤ L2 for short), if
there are matrices Y ∈ R

m×m and Z ∈ R
n×n such that

– Y,Z ≥ 0
– atZ ♦ ct, where ♦ =

{
≤, opt = min
≥, opt = max
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– MZ ≤ Y N
– Y d ≤ b

L1 and L2 are said to be equivalent (L1 ≡ L2 for short) if L1 ≤ L2 and L2 ≤ L1.

Theorem 1. If L1 ≡ L2, then val(L1) = val(L2).

Proof. Let L1 = LP (a,M, b, opt) and L2 = LP (c,N, d, opt) and assume L1 ≤ L2

via (Y,Z). We show that for any feasible solution x of L2 we get a feasible solution
x′ = Zx of L1 with atx′ ♦ ctx, where ♦ is as in the definition:

Mx′ = MZ︸︷︷︸
≤Y N

x ≤ Y Nx︸︷︷︸
≤d

≤ Y d ≤ b and atx′ = atZ︸︷︷︸
♦ ct

x ♦ ctx.

Thus, L1 ≤ L2 implies val(L1) ♦ val(L2) and the theorem follows. ��
LPs with Fractionally Isomorphic Matrices. Recall that a square matrix
X ≥ 0 is doubly stochastic if its entries in each row and column sum up to 1. We
call two m × n matrices M and N fractionally isomorphic if there are doubly
stochastic matrices Y ∈ R

m×m and Z ∈ R
n×n such that

MZ = Y N and NZt = Y tM. (1)

Grohe et al. [16, Eqs. (5.1)–(5.2) in arXiv version] discuss similar definitions.
They use fractional isomorphism fractional isomorphism to reduce the dimension
of linear equations and LPs. The meaning of (1) will be clear from the proof of
Theorem 3 below.

Lemma 2. If M and N are fractionally isomorphic m × n matrices, then

LP (1n,M,1m, opt) ≡ LP (1n, N,1m, opt),

where 1n denotes the n-dimensional all-ones vector.

Proof. Since the matrices Y and Z in (1) are doubly stochastic, Y 1m = 1m

and 1t
nZ = 1t

n. Along with the first equality in (1), these equalities imply that
L1 ≤ L2. The reduction L2 ≤ L1 follows similarly from the second equality in
(1) as Y t and Zt are doubly stochastic. ��

3 Fractional Set Packing

The Set Packing problem is, given a family of sets S = {S1, . . . , Sn}, where
Sj ⊂ {1, . . . ,m}, to maximize the number of pairwise disjoint sets in this fam-
ily. The maximum is called in combinatorics the matching number of hyper-
graph S and denoted by ν(S). The fractional version is given by LP (S) =
LP (1n,M,1m,max) where M is the m × n incidence matrix of S, namely

max
n∑

i=1

xi under

xi ≥ 0 for every i ≤ n,
∑

i :Si�j

xi ≤ 1 for every j ≤ m.
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The optimum value νf (S) = val(LP (S)) is called the fractional matching number
of S.

Let I(S) denote the incidence graph of S. Specifically, this is the vertex-
colored bipartite graph with biadjacency matrix M on two classes of vertices;
m vertices are colored red, n vertices are colored blue, and a red vertex j is
adjacent to a blue vertex i if j ∈ Si.

Theorem 3. Let S1 and S2 be two families each consisting of n subsets of the
set {1, . . . , m}. If I(S1) ≡1-WL I(S2), then νf (S1) = νf (S2).

Proof. Denote the incidence matrices of S1 and S2 by M and N respectively.
Let

A1 =
(

0 M
M t 0

)

and A1 =
(

0 N
N t 0

)

be the adjacency matrices of I(S1) and I(S2) respectively. Since I(S1) and I(S2)
are indistinguishable by color refinement, by [24, Theorem 6.5.1] we conclude
that these graphs are fractionally isomorphic, that is, there is a doubly stochastic
matrix X such that

A1X = XA2 (2)

and Xuv = 0 whenever u and v are from different vertex color classes. The latter
condition means that X is the direct sum of an n × n doubly stochastic matrix
Y and an n × n doubly stochastic matrix Z, that is, Equality (2) reads

(
0 M

M t 0

) (
Y 0
0 Z

)

=
(

Y 0
0 Z

)(
0 N

N t 0

)

,

yielding MZ = Y N and M tY = ZN t. Thus, M and N are fractionally isomor-
phic. Lemma 2 implies that LP (S1) ≡ LP (S2). Therefore, these LPs have equal
values by Theorem 1. ��

4 1-WL-invariance of the Fractional Matching Number

Recall that a set of edges M ⊆ E(G) is a matching in a graph G if every vertex
of G is incident to at most one edge from M . The matching number ν(G) is
the maximum size of a matching in G. Note that this terminology and notation
agrees with Sect. 3 when graphs are considered hypergraphs with hyperedges of
size 2. Fractional Matching is defined by the LP

max
∑

uv∈E(G)

xuv under

xuv ≥ 0 for every uv ∈ E(G),
∑

v∈N(u)

xuv ≤ 1 for every u ∈ V (G),

whose value is the fractional matching number νf (G). The above LP is exactly
the linear program LP (SG) for the instance SG = E(G) of Fractional Set Packing
formed by the edges of G as 2-element subsets of V (G), that is, νf (G) = νf (SG).
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Theorem 4. The fractional matching number is 1-WL-invariant.

Proof. Given G ≡1-WL H, we have to prove that νf (G) = νf (H) or, equivalently,
νf (SG) = νf (SH) where SG is as defined above. By Theorem 3, it suffices to
show that I(SG) ≡1-WL I(SH). To this end, we construct a common equitable
partition of I(SG) and I(SH), appropriately identifying their vertex sets. Recall
that V (I(SG)) = V (G) ∪ E(G) and a red vertex x ∈ V (G) is adjacent to a blue
vertex e ∈ E(G) if x ∈ e.

For x ∈ V (G), let cG(x) = WL1(G, x) and define cH on V (H) similarly. First,
we identify V (G) and V (H) (i.e., the red parts of the two incidence graphs) so
that cG(x) = cH(x) for every x in V (G) = V (H), which is possible because
1-WL-equivalent graphs have the same color palette after color refinement. The
color classes of cG now form a common equitable partition of G and H.

Next, extend the coloring cG to E(G) (the blue part of I(SG)) by cG({x, y}) =
{cG(x), cG(y)}, and similarly extend cH to E(H). Denote the color class of cG

containing {x, y} by CG({x, y}), the color class containing x by CG(x) etc. Note
that |CG({x, y})| is equal to the number of edges in G between CG(x) and CG(y)
(or the number of edges within CG(x) if cG(x) = cG(y)). Since {CG(x)}x∈V (G) is
a common equitable partition of G and H, we have |CG({x, y})| = |CH({x′, y′})|
whenever cG({x, y}) = cH({x′, y′}) (note that {x, y} does not need to be an edge
in H, nor {x′, y′} needs to be an edge in G). This allows us to identify E(G)
and E(H) so that cG(e) = cH(e) for every e in E(G) = E(H).

Now, consider the partition of V (G) ∪ E(G) into the color classes of cG (or
the same in terms of H) and verify that this is an equitable partition for both
I(SG) and I(SH). Indeed, let C ⊆ V (G) and D ⊆ E(G) be color classes of cG

such that there are x ∈ C and e ∈ D adjacent in I(SG), that is, e = {x, y}
for some vertex y of G. Note that, if considered on V (H) ∪ E(H), the classes
C and D also must contain x′ ∈ C and e′ = {x′, y′} ∈ D adjacent in I(SH)
(take x′ = x and any y′ adjacent to x in H such that cH(y′) = cG(y)). Denote
C ′ = CG(y) (it is not excluded that C ′ = C). The vertex x has exactly as many
D-neighbors in I(SG) as it has C ′-neighbors in G. This number depends only
on C and C ′ or, equivalently, only on C and D. The same number is obtained
also while counting the D-neighbors of x′ in I(SH).

On the other hand, e has exactly one neighbor x in C if C ′ �= C and exactly
two C-neighbors x and y if C ′ = C. What is the case depends only on D and
C, and is the same in I(SG) and I(SH). Thus, we do have a common equitable
partition of I(SG) and I(SH). ��

As was discussed in Sect. 1, we are able to generalize Theorem 4 to any frac-
tional F -packing number πF

f . For a graph G, let SF,G be the family of subsets
of V (G) consisting of the vertex sets V (F ′) of all subgraphs F ′ of G isomor-
phic to the pattern graph F . Now, πF

f (G) = νf (SF,G). Dell et al. [9] establish a
close connection between homomorphism counts and k-WL equivalence, which
motivates the following definition. The homomorphism-hereditary treewidth of a
graph F , denoted by htw(F ), is the maximum treewidth tw(F ′) over all homo-
morphic images F ′ of F . The proof of the following result can be found in the
full version of the paper [2].



On the Weisfeiler-Leman Dimension of Fractional Packing 365

Theorem 5. If htw(F ) ≤ k, then πF
f is k-WL-invariant.

First-Order Interpretability. Our approach to proving Theorem 4 was, given
an instance graph G of Fractional Matching Problem, to define an instance SG

of Fractional Set Packing Problem having the same LP value. The following
definition concerns many similar situations. Given a correspondence G �→ SG,
we say that an istance SG of Fractional Set Packing is definable over a graph G
with excess e if G ≡(1+e)-WL H implies I(SG) ≡1-WL I(SH).

This definition includes a particular situation when I(SG) is first-order inter-
pretable in G in the sense of [11, Chapter 12.3], which means that for the color
predicates (to be red or blue respectively) as well as for the adjacency relation of
I(SG) we have first order formulas defining them on V (G)k for some k in terms
of the adjacency relation of G. The number k is called width of the interpreta-
tion. In this case, if there is a first-order sentence over s variables that is true on
I(SG) but false on I(SH), then there is a first-order sentence over sk variables
that is true on G but false on H. Cai, Fürer, and Immerman [5] showed that two
structures are ≡k-WL-equivalent iff they are equivalent in the (k + 1)-variable
counting logic Ck+1. Therefore, Theorem 3 has the following consequence.

Corollary 6. Let πf be a fractional graph parameter such that πf (G) = νf (SG),
where SG admits a first-order interpretation of width k in G (even possibly with
counting quantifiers). Under these conditions, SG is definable over G with excess
2(k − 1) and, hence, πf is (2k − 1)-WL-invariant.

To obtain 1-WL-invariance via Corollary 6, we would need an interpretation
of width 1. This is hardly possible in the case of the fractional matching number,
and an interpretation of width 2 could only give us 3-WL-invariance of νf . Thus,
our purely combinatorial argument for Theorem 4 is preferable here.

5 Fractional Edge-Disjoint Triangle Packing

We now show that the approach we used in the proof of Theorem 4 works as
well for edge-disjoint packing. Given a graph G, let T (G) denote the family
of all sets {e1, e2, e3} consisting of the edges of a triangle subgraph in G. We
regard T (G) as a family SG of subsets of the edge set E(G). The optimum value
of Set Packing Problem on SG, which we denote by ρK3(G), is equal to the
maximum number of edge-disjoint triangles in G. Let ρK3

f (G) = νf (SG) be the
corresponding fractional parameter.

Theorem 7. The fractional packing number ρK3
f is 2-WL-invariant.

Proof. Given a graph G, we consider the coloring cG of E(G) ∪ T (G) defined
by cG({x, y}) = {WL2(G, x, y),WL2(G, y, x)} on E(G) and cG({e1, e2, e3}) =
{{cG(e1), cG(e2), cG(e3)}} on T (G). Like in the proof of Theorem 4, the upper
case notation CG(w) will be used to denote the color class of w ∈ E(G) ∪ T (G).

Suppose that G ≡2-WL H. This condition means that we can identify the
sets E(G) and E(H) so that cG(e) = cH(e) for every e in E(G) = E(H).
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Moreover, the 2-WL-equivalence of G and H implies that |CG(t)| = |CH(t′)| for
any t ∈ T (G) and t′ ∈ T (H) with cG(t) = cH(t′). This allows us to identify T (G)
and T (H) so that cG(t) = cH(t) for every t in T (G) = T (H). As in the proof of
Theorem 4, it suffices to argue that {CG(w)}w∈E(G)∪T (G) is a common equitable
partition of the incidence graphs I(SG) and I(SH). The equality ρK3

f (G) =
ρK3

f (H) will then follow by Theorem 3.
Let C ⊆ E(G) and D ⊆ T (G) be color classes of cG such that there is an

edge between them in I(SG), that is, there are e ∈ C and t ∈ D such that
t = {e, e2, e3}. If considered on E(H) ∪ T (H), the classes C and D also must
contain e′ ∈ C and t′ = {e′, e′

2, e
′
3} ∈ D adjacent in I(SH) (take, for example,

the edge e′ = e of H and extend it to a triangle with other two edges e′
2 and e′

3

such that cH(e′
2) = cG(e2) and cH(e′

3) = cG(e3), which must exist in H because
H and G are 2-WL-equivalent). Denote C ′ = CG(e2) and C ′′ = CG(e3) (it is
not excluded that some of the classes C, C ′, and C ′′ coincide).

Let x, y, and z be the vertices of the triangle t in G, and suppose that
e = {x, y}. The number of D-neighbors that e has in I(SG) is equal to the number
of vertices z′ such that (WL2(G, x, z′),WL2(G, z′, y)) is one of the 8 pairs in
(cG({x, z})×cG({y, z}))∪(cG({y, z})×cG({x, z})), like (WL2(G, z, y),WL2(G, x,
z)) (some of these pairs can coincide). Since the partition of V (G)2 by the
coloring WL2(G, ·, ·) is not further refined by 2-WL, this number depends only
on C and D. We obtain the same number also while counting the D-neighbors
of e′ in I(SH).

On the other hand, t has exactly one neighbor e in C if C differs from both
C ′ and C ′′, exactly two C-neighbors if C coincides with exactly one of C ′ and
C ′′, and exactly three C-neighbors e, e2, and e3 if C = C ′ = C ′′. Which of the
three possibilities occurs depends only on D and C, and is the same in I(SG) and
I(SH). This completes our verification that we really have a common equitable
partition. ��

6 Invariance Ratio and Integrality Gap

Recall the discussion in the introduction about the domination number γ(G).

Theorem 8. For infinitely many n, there are n-vertex 1-WL-equivalent graphs
G and H such that γ(G)/γ(H) > 1

20 ln n − 1.

Proof. It suffices to show that the variation of the domination number among
n-vertex d-regular graphs is logarithmic for an appropriate choice of the degree
function d = d(n).

Assuming that dn is even, let R(n, d) denote a random d-regular graph on n
vertices. Given p ∈ (0, 1), let G(n, p) denote the Erdős–Rényi random graph with
edge probability p. Kim and Vu [18] proved for certain degree functions d = d(n)
that the distribution R(n, d) can be approximated from below and above, with
respect to the subgraph relation, by distributions G(n, p1) and G(n, p2) with
p1 = (1 − o(1)) d

n and p2 = (1 + o(1)) d
n . We need the part of this sandwiching

result about the approximation from above.
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For our purposes, we consider pairs n, d such that n = (2d)4 and, thus,
d = n1/4/2. Applied to this case, the Kim-Vu theorem says that there is a joint
distribution of R(n, d) and G(n, p) with p = (1 + o(1)) d

n = (12 + o(1))n−3/4 such
that Δ(R(n, d) \G(n, p)) ≤ 4 with probability 1 − o(1) as n increases. It follows
that

γ(G(n, p)) ≤ 5 γ(R(n, d))

with probability 1 − o(1). Glebov et al. [15] proved that γ(G(n, p)) = ln(np)
p (1 +

o(1)) with probability 1−o(1) whenever p → 0 and pn → ∞. Hence γ(R(n, d)) ≥
1
5

n
d ln d with probability 1−o(1). As a consequence, there is an n-vertex d-regular

graph G with γ(G) ≥ 1
5

n
d ln d.

On the other hand, consider H = n
2d Kd,d, where Ks,t stands for the complete

bipartite graph with vertex classes of size s and t, and note that γ(H) = n
d .

Therefore, γ(G)/γ(H) ≥ 1
5 ln d, which readily gives us the desired bound. ��

We conclude with a discussion of Edge-Disjoint Triangle Packing. Haxell
and Rödl [17] proved that ρK3 is well approximated by ρK3

f on dense graphs as
ρK3

f (G)−ρK3(G) = o(n2) for n-vertex G. On the other hand, Yuster [26] showed
that ρK3

f (G) − ρK3(G) = Ω(n1.5) for infinitely many G, and it is open whether
this lower bound is tight. Define the invariance discrepancy of ρK3 as the function
DK3(n) = max |ρK3(G) − ρK3(H)| where the maximum is taken over 2-WL-
equivalent n-vertex graphs G and H. As follows from Theorem 7, this function
provides a lower bound for the maximum integrality gap ρK3

f (G) − ρK3(G) over
n-vertex graphs. In this respect, it is reasonable to ask what the asymptotics of
DK3(n) is. The following fact is a step towards this goal.

Proposition 9. DK3(n) = Ω(n).

Proof. Consider G = tS and H = tR, where S and R are the Shrikhande and
4 × 4 rook’s graphs respectively. Both have vertex set Z4 × Z4, and (i, j) and
(i′, j′) are adjacent in S if (i = i′ and j′ = j + 1) or (j = j′ and i′ = i + 1) or
(i′ = i+1 and j′ = j +1), where equality is in Z4, while they are adjacent in R if
i = i′ (row 4-clique) or j = j′ (column 4-clique). S is completely decomposable
into edge-triangles {(i, j), (i + 1, j), (i + 1, j + 1)} and, hence, ρK3(S) = 16. On
the other hand, in R the edges of each K3 all belong to the same row or column
4-clique. Since a packing can take at most one K3 from each row/column K4,
we have ρK3(R) = 8. This yields ρK3(G) − ρK3(H) = 8t as desired. ��
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