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SUMMARY

The epigenome delineates lineage-specific transcriptional programs and restricts cell plasticity 

to prevent non-physiological cell fate transitions. Although cell diversification fosters tumor 

evolution and therapy resistance, upstream mechanisms that regulate the stability and plasticity 

of the cancer epigenome remain elusive. Here we show that 2-hydroxyglutarate (2HG) not only 

suppresses DNA repair but also mediates the high-plasticity chromatin landscape. A combination 

of single-cell epigenomics and multi-omics approaches demonstrates that 2HG disarranges 

otherwise well-preserved stable nucleosome positioning and promotes cell-to-cell variability. 2HG 

induces loss of motif accessibility to the luminal-defining transcriptional factors FOXA1, FOXP1, 

and GATA3 and a shift from luminal to basal-like gene expression. Breast tumors with high 

2HG exhibit enhanced heterogeneity with undifferentiated epigenomic signatures linked to adverse 

prognosis. Further, ascorbate-2-phosphate (A2P) eradicates heterogeneity and impairs growth of 

high 2HG-producing breast cancer cells. These findings suggest 2HG as a key determinant of 

cancer plasticity and provide a rational strategy to counteract tumor cell evolution.
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Kusi et al. show that the oncometabolite 2-hydroxyglutarate (2HG) initiates cell-level epigenome 

fluctuations in the chromatin regulatory landscape, accompanied by loss of lineage fidelity. Breast 

tumors with high 2HG accumulation exhibit enhanced cellular heterogeneity with undifferentiated 

stem-like epigenomic signatures. The findings suggest metabolic derangement as a molecular 

origin of breast cancer heterogeneity.

Graphical Abstract

INTRODUCTION

Breast cancer is characterized by prominent cell-to-cell variations in molecular makeup, 

and enhanced heterogeneity predisposes affected individuals to adverse clinical outcomes 

(Shipitsin et al., 2007; Jackson et al., 2020). Clonal heterogeneity is a universal phenotype 

across a multitude of cancer types and responsible for a breadth of disease manifestations, 

including metastatic dissemination and therapy resistance (McGranahan and Swanton, 2017; 

Dagogo-Jack and Shaw, 2018). Although not overtly tumorigenic, cancer cell plasticity 

fuels tumor heterogeneity, which is an essential step in tumor potentiation, initiation, and 

progression rather than being a secondary or passive phenomenon occurring late in tumor 

cell evolution (Flavahan et al., 2017; Huang, 2021). Because of the dynamic and transient 

nature of cancer cells, tumor development or progression does not typically follow a 

fixed sequence of processes, and systemic approaches are vital for developing conceptual 
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frameworks to integrate the multidimensional tumor cell diversity (Hanahan and Weinberg, 

2011; Marusyk et al., 2020).

Although studies on tumor heterogeneity have focused primarily on genetic alterations, 

non-genetic factors, such as transcriptomic heterogeneity or noise in gene expression, 

could result in substantial neoplastic variability (Hinohara and Polyak, 2019). Non-genetic 

priming in cancer cells also contributes to rapid adaptation to therapeutic stress and 

metastatic progression (Shaffer et al., 2017; Roe et al., 2017). Chromatin architectures 

are instrumental in stabilizing transcriptional programs as well as in preserving cell type 

identities, and physiological cell fate transitions are epigenetically restricted via DNA and 

histone modifications, as depicted in Waddington’s epigenetic landscape (Marusyk et al., 

2012; Allis and Jenuwein, 2016). It has been suggested that deviation from this “epigenetic 

restriction” could confer a fitness advantage to cancer cells, allowing a selection process 

to occur (Flavahan et al., 2017; Pastore et al., 2019). This, in turn, implies that loss 

of epigenetic constraints could potentiate cancer cell plasticity by increasing phenotypic 

flexibility, resulting in enhanced tumor heterogeneity. Epigenomes are being recognized as 

a potential key determinant of oncogenic plasticity (Wainwright and Scaffidi, 2017; Nam et 

al., 2021). Molecular characterization of non-genetic mechanisms that regulate the plasticity 

of cellular states may provide a unique opportunity to advance our understanding of and 

ability to eradicate malignant cell evolution (Dagogo-Jack and Shaw, 2018; Hinohara and 

Polyak, 2019).

Epigenome regulators are highly sensitive to changes in intracellular metabolism, and 

one such example is the oncometabolite 2-hydroxyglutarate (2HG) (Faubert et al., 

2020). 2HG accumulates to millimolar levels in solid and hematologic malignancies, 

including breast, kidney, colon, and pancreatic tumors (Dang et al., 2009; Terunuma et 

al., 2014; Jezek, 2020). 2HG occurs as two enantiomers, and somatic mutations in the 

isocitrate dehydrogenase genes IDH1 and IDH2 result in stereospecific production of 

the D-enantiomer (D2HG) in glioma and acute myeloid leukemia (AML) (Dang et al., 

2009; Figueroa et al., 2010). In contrast, the L-enantiomer (L2HG) is promiscuously 

generated in the absence of IDH1/2 mutations under the hypoxic and acidic conditions 

(Losman et al., 2020) that often coexist in the tumor microenvironment. Both enantiomers 

structurally resemble α-ketoglutarate (αKG), an intermediary metabolite in the Krebs cycle, 

and antagonize αKG-dependent dioxygenases, including ten-eleven translocation (TET) 

DNA hydroxylases and Jumonji domain-containing histone demethylase (JHDM) enzymes, 

which remove methyl groups from DNA and histones, respectively (Losman et al., 2020). 

Extensive studies in gliomas and AML have demonstrated that these oncometabolites 

promote cellular transformation and tumor progression by altering gene expression through 

local chromatin signaling (Losman et al., 2013; Flavahan et al., 2016; Inoue et al., 2016; 

Sulkowski et al., 2020); however, the genome-scale effect of 2HG on the stability and 

plasticity of the cancer epigenome has yet to be explored. This study focuses on the 

molecular origin of non-genetic heterogeneity and aims to investigate the role of 2HG in 

regulating chromatin homeostasis and lineage fidelity to uncover upstream mechanisms that 

promote breast tumor heterogeneity.
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RESULTS

The chromatin-transcriptional landscape is reversibly remodeled by 2HG and restored by 
ascorbate-2-phosphate (A2P)

To determine the regulatory mechanisms involving cellular metabolism that mediate breast 

cancer development, we first analyzed the intracellular levels of D2HG and L2HG using 

enantiomer-selective liquid chromatography-mass spectrometry (LC-MS) (Figures S1A and 

S1B). Relatively higher levels of D2HG were observed in estrogen receptor α (ERα)-

positive and -negative breast cancer cell lines compared with benign and primary mammary 

epithelial cells, whereas elevated L2HG levels were predominant in ERα-negative breast 

cancer cells (Figure S1C). In line with this, ERα-negative cells had higher levels of the 

2HG pool (Figure S1D). We next leveraged the Cancer Cell Line Encyclopedia (CCLE) 

multi-omics repository (https://sites.broadinstitute.org/ccle/) and found that 2HG levels in 

ERα-negative cancer cells were significantly higher relative to ERα-positive cells and 

were comparable with those in IDH-mutated cells, whereas no distinctive differences were 

detected in the levels of other structurally similar metabolites that modulate the catalytic 

activity of αKG-dependent dioxygenases (Figure S1E). Our investigation of somatic 

mutations using multiple independent datasets, including the CCLE and Sanger Catalogue 

of Somatic Mutations in Cancer (COSMIC) panels, showed no evidence of gain-of-function 

mutations in IDH1 or IDH2 among 62 breast cancer cell lines, corroborating the finding of 

infrequent IDH mutations but high accumulation of 2HG in primary breast tumors (Figure 

S1F).

Primary human mammary epithelial cells (HMECs), which exhibited low levels of 

intracellular 2HG (Figures 1C and 1D), were then exposed for 72 h to 100 μM cell-

permeable 2HG. Either of the two enantiomers led to a decrease in 5-hydroxymethylcytosine 

(5hmC) and a reciprocal increase in 5-methylcytosine (5mC) at long interspersed element 

1 (LINE-1) elements, consistent with competitive inhibition of TET-mediated conversion 

of 5mC to 5hmC during the process of active DNA demethylation (Figures 1A and 

S1G). Similarly, immunofluorescence staining with an anti-5hmC antibody showed a dose-

dependent loss of 5hmC in response to D2HG (Figure 1B). In contrast, global levels of 

H3K27me3 histone methylation were elevated in proportion to the increasing concentrations 

of D2HG (Figures 1B and S1H). These results indicate that, compared with previous studies 

(Losman et al., 2013; Intlekofer et al., 2018; McBrayer et al., 2018), short-term exposure at 

a relatively low level of 2HG is sufficient to induce considerable changes in the mammary 

epithelial epigenome.

In contrast to DNA methylation, lysine residues on core histone undergo varying degrees of 

methylation, resulting in mono-, di-, or trimethylated states, and we therefore employed a 

multiplexed LC-MS assay to quantify changes in histone methylation (Figure S1I). Exposure 

to 2HG enantiomers led to elevated methylation levels in repressive (H3K27me3, H3K9me3, 

and H4K20me3) and permissive (H3K4me3, H3K36me3 and H3K79me3) histone marks, 

along with a decrease in the levels of unmethylated (me0) lysine residues (Figures 1C 

and S1J). L2HG led to preferential accumulation of H3K27me3 on the histone variant 

H3.3, which is enriched in actively transcribed regions (Ahmad and Henikoff, 2002). Of 
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note, there was no detectable change in cell cycle phase distribution after adding 2HG 

enantiomers (Figure 1D). Hence, 2HG-mediated chromatin remodeling cannot simply be 

attributed to cell cycle differences.

To characterize transcriptional changes imposed by 2HG, we performed RNA sequencing 

(RNA-seq), comparing HMECs that were treated with vehicle or 2HG enantiomers (Figure 

1E). On the basis of the reported genome-scale distribution of histone modifications 

(Pellacani et al., 2016), more than three-quarters of the downregulated genes (80% and 

76% in D2HG- and L2HG-treated cells, respectively) were found to be enriched with 

permissive H3K4me3 chromatin marks in primary mammary epithelial cells (Figure S1K), 

suggesting that transcriptional repression may be mediated through altered chromatin 

modifications, such as de novo DNA methylation. Gene set enrichment analysis (GSEA) 

revealed significant upregulation of gene signatures involved in hypoxia, IL2-JAK-STAT5, 

and TNF-α signaling, whereas DNA repair-related genes were downregulated, with no 

measurable effects on apoptosis-related gene signatures (Figure 1F; Table S1). Enrichment 

analysis using a previously defined panel of 267 genes associated with DNA damage repair 

(DDR) pathways in The Cancer Genome Atlas (TCGA) pan-cancer cohort (Knijnenburg 

et al., 2018) demonstrated that 2HG led to transcriptional repression of a broad spectrum 

of DDR pathway genes involved in homology-dependent recombination (HR), mismatch 

repair (MMR), nucleotide excision repair (NER), base excision repair (BER), and Fanconi 

anemia (FA) (Figures 1G, 1H, and S1L; Table S1). 2HG-induced downregulation of DDR 

pathway proteins was confirmed by immunoassay (Figure 1I). This result complements 

previous studies showing 2HG-induced impairment of DNA repair mechanisms caused by 

defective recruitment of DNA repair proteins (Sulkowski et al., 2020), direct enzymatic 

inhibition of DNA repair proteins (Wang et al., 2015), or inactivation of ATM-dependent 

DNA damage sensing (Inoue et al., 2016). In addition, pathway-level dysregulation was 

markedly abolished 4 days after removal of 2HG (Figure 1F), suggesting that this is an 

essentially reversible epigenetic process and dependent on continued presence of excess 

2HG.

Previous studies have shown that vitamin C stimulates the catalytic activity of DNA and 

histone demethylases by donating an electron to Fe3+ to generate Fe2+, which is necessary 

for optimal activity (Wang et al., 2011; Blaschke et al., 2013). Although growing evidence 

supports the therapeutic benefits of high-dose vitamin C infusion, the development of 

more appropriate and rigorous clinical trial designs has been hampered by lack of a clear 

understanding of the mechanism of action (Ngo et al., 2019). To test whether vitamin C can 

reverse 2HG-induced transcriptional remodeling through epigenetic mechanisms, cells were 

treated with L2HG in the presence or absence of A2P, an oxidatively stable form of vitamin 

C, which does not contribute to extracellular hydrogen peroxide formation and is converted 

into vitamin C during transport across the cell membrane (Takamizawa et al., 2004). A2P 

supplementation largely restored DDR signaling pathways in the presence of L2HG (Figure 

S1L; Table S1). Sequence motif analysis of differentially expressed genes revealed that 

promoter regions of downregulated genes were enriched with transcription factor binding 

motifs containing CpG dinucleotides, which are target sites for DNA methylation (Figure 

S1M). In line with this, highly methylated genes in ERα-negative breast cancer cells showed 

reduced expression upon exposure to L2HG, which was restored by A2P supplementation 
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(Figure 1J). These results underscore the potent activity of A2P in antagonizing the 

inhibitory action of the oncometabolites.

2HG dysregulates the lineage-defining chromatin landscape and drives heterogeneity

To delineate the chromatin regulatory landscape imposed by 2HG, we applied a single-cell 

assay for transposase-accessible chromatin with sequencing (scATAC-seq) (Figures S2A–

S2C). scATAC-seq reads exhibited the expected periodicity of ~200-bp insert size fragments 

corresponding to nucleosome occupancies (Figure S2B). Additionally, aggregate scATAC-

seq profiles showed high concordance with the ensemble measurement of the accessibility 

landscape profiled by DNase-seq (Figures 2A and S2C). Principal-component analysis 

(PCA) and model-based clustering of single-cell DNA accessibility profiles identified five 

distinct cell subpopulations that were discernible not only between but also within the 

treatment groups (Figures 2B and 2C). In contrast, replicate samples were distributed 

similarly despite being processed in different experiments (Figure S2D), supporting the 

robustness of the method. The first principal component (PC1) broadly separated L2HG-

treated cells from D2HG-treated cells (Figure 2B), indicating that the two enantiomers 

impose discrete chromatin regulatory landscapes. L2HG-treated cells were divided into 

multiple subpopulations oriented in the opposite direction on the PC2 axis and displayed a 

more diverse distribution compared with D2HG-treated cells. These results show that 2HG 

enantiomers enhance molecular heterogeneity in motif accessibility, with L2HG being more 

potent in modulating chromatin regulatory architectures.

We next examined cell-to-cell variability in chromatin accessibility at transcription factor 

(TF) binding motifs (n = 386) using chromVAR (Schep et al., 2017) (Figures 2D and 

2E). Consistent with the observations that cell-level heterogeneity was most evident upon 

L2HG exposure, motif accessibilities were highly variable in clusters 4 and 5, which were 

largely composed of L2HG-treated cells (Figures 2C and 2D). Although to a lesser extent, 

increased cell-to-cell variability in motif accessibility was also detected in cluster 3. These 

data suggest that 2HG-mediated chromatin remodeling accompanies cell-level fluctuations 

in chromatin accessibility to gene regulatory regions, and we refer to this admixture of 

destabilized epigenetic states as a high-plasticity chromatin landscape. Considering that 

L2HG is produced preferentially in ERα-negative tumor cells, intracellular accumulation of 

L2HG could contribute to the increased degree of heterogeneity or transcriptional plasticity 

reported in basal-like tumors (Wang et al., 2014; Garrido-Castro et al., 2019).

Analysis of motif accessibility to lineage-specific TFs involved in mammary epithelial cell 

differentiation (Pellacani et al., 2016; Dravis et al., 2018; Bi et al., 2020; Kim et al., 2020) 

revealed considerable changes in transcriptional programs that regulate differentiation states. 

Cluster 5 displayed diminished motif accessibility to the luminal-specific TFs FOXA1, 

FOXP1, and GATA3, and this was accompanied by increased motif accessibility to luminal 

progenitor markers such as ELF1 (Figure 2F). Loss of motif accessibility to mature luminal 

factors was also detected in clusters 3 and 4 (Figures 2D and 2F). The results show 

that 2HG dysregulates epigenetic mechanisms that sustain lineage-specific transcriptional 

profiles, suggesting that 2HG-mediated loss of lineage fidelity could facilitate emergence 

of alternate and seemingly more perturbable (i.e., metastable) transcriptional programs, 
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which may result in enhanced heterogeneity in differentiation state. To corroborate the effect 

of 2HG on cell type fidelity, we analyzed expression of lineage markers and found that 

2HG induced a decrease in luminal cytokeratin expression and reciprocal increase in basal 

cytokeratin expression (Figure S2E). Mass cytometry CyTOF analysis confirmed a slight but 

distinct shift toward increased basal (CD49f) and decreased luminal (EpCAM) markers in 

L2HG-treated cells (Figure S2F). These data suggest that 2HG alters lineage fidelity and 

facilitates non-physiological luminal to basal-like reprogramming of mammary epithelial 

cells.

2HG destabilizes the chromatin regulatory landscape to promote cell-to-cell variability

To define the underlying mechanisms that drive clonal heterogeneity in differentiation 

potential, we next investigated the genome-wide occupancy of open, accessible chromatin 

regions by utilizing the 12-state chromatin segmentation defined in HMECs (Ernst and 

Kellis, 2017). As expected, ATAC-seq signals in control cells were enriched in active/

weak gene promoters and strong enhancers but underrepresented in inactive regions such 

as heterochromatin and repetitive regions, both of which are associated with nuclear 

laminae (Ernst et al., 2011; Figure S3A). Following 2HG exposure, chromatin accessibility 

was reduced in genomic regions enriched with permissive chromatin marks (H3K4me3, 

H3K27ac, and H3K9ac) (Ernst et al., 2011), such as active/weak promoters and strong/weak 

enhancers (Figure 3A). In contrast, genomic regions that are largely devoid of permissive 

chromatin marks displayed a substantial increase in chromatin accessibility. These two 

seemingly opposing effects on the mammary epigenome (i.e., loss of accessibility in 

active chromatin and gain of accessibility in repressive chromatin states) may reduce the 

stability of the epigenetic landscape. A recent study proposed a model in which disrupted 

coordination of mutually exclusive activating and repressing histone modifications increases 

cell-to-cell diversity in the epigenome, leading to an admixture of cells with diverging 

cellular identities (Pastore et al., 2019). 2HG-mediated dysregulation of the coordinated 

chromatin accessibility landscape may likewise result in erosion of the epigenetic landscape, 

altering lineage fidelity and, thus, enhancing epithelial cell heterogeneity.

To address the sparse nature of scATAC-seq data, further inspection was carried out using 

the previously defined annotations of genomic regions (Buenrostro et al., 2015; Schep et 

al., 2017). Analysis of mammary epithelial enhancer and super-enhancer regions (Hnisz 

et al., 2013; Jiang et al., 2019) revealed that 2HG rendered accessible enhancer elements 

less open while inducing less closed chromatins at inaccessible elements (Figures 3B and 

3C). Of note, the accessible peaks detected at super-enhancers were found to be diffused 

upon 2HG exposure, which was most evident in L2HG-treated cells (Figure 3C, top right 

panel). Decreased and diffused accessibility was also detected at chromatin domains that 

are bivalently marked by H3K4me3 and H3K27me3 (Figure S3B, top right panel). Given 

the established role of super-enhancers and bivalent genes in regulating cell identity and 

lineage differentiation (Hnisz et al., 2013; Feinberg et al., 2016), the findings corroborate 

that 2HG dysregulates epigenetic mechanisms that maintain lineage fidelity. To further probe 

how 2HG-mediated chromatin remodeling contributes to the development of epithelial cell 

heterogeneity, we next investigated accessibility variation across the genome in single-cell 

measurements. As shown in Figure 3D, where each color represents DNA accessibility 
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in a single cell, chromatin accessibility at transcriptional start sites (TSSs; n = 20,242) 

was highly concordant in control cells; however, open chromatin peaks were found to be 

diffused and heterogeneous in 2HG-treated cells. Notably, cell-level epigenetic fluctuations 

were also evident in enhancer elements, weakly transcribed and heterochromatin regions 

(Figures 3E–3G). These results suggest that 2HG-mediated attenuation of the demethylation 

machinery results in genome-scale displacement of nucleosomes in chromatin regulatory 

modules, disarranging otherwise well-preserved and stable nucleosome positioning.

Because our RNA-seq analysis suggests that 2HG is sufficient to mediate transcriptional 

repression of genes that are highly methylated in breast cancer (Figure 1J), we sought 

to investigate whether 2HG can alter promoter accessibility of genes susceptible to DNA 

methylation in breast cancer. As expected, when a set of highly methylated genes (n = 150) 

in breast tumors (Huang et al., 2015) was examined, a marked reduction in chromatin 

accessibility was detected (Figures S3C and S3D). Similar results were obtained with 

genes that were independently found to be hypermethylated in promoter regions (n = 

150) (Thienpont et al., 2016), indicating that 2HG exposure leads to reduced chromatin 

accessibility in gene promoters displaying DNA hypermethylation in breast cancer. In 

contrast, no significant accessibility changes were observed in sets of genes that are highly 

methylated in other tumor types, including endometrial cancer. These results suggest that 

2HG-induced destabilization of the mammary epigenome could enhance cell fate plasticity 

by disrupting the chromatin regulatory landscape that confers epithelial cell identity.

Chromatin remodeling involves tumor-associated promoter hypermethylation

Given that 2HG imposes a loss of promoter accessibility of genes that are susceptible 

to DNA hypermethylation in breast cancer, we next sought to assess the effect on 

different molecular cancer subtypes. To this end, we analyzed RNA-seq profiles of 521 

primary breast tumors and 112 adjacent uninvolved tissues from the TCGA cohort (Figure 

4A). Upon unsupervised hierarchical clustering, the majority of highly methylated genes 

appeared to be downregulated in all five PAM50 molecular subtypes compared with control 

tissues, although no statistical significance was observed in luminal A tumors (Figure 4B). 

Transcriptional repression was most evident in basal-like breast cancers, 84% of which 

displayed a triple-negative phenotype. These findings are in agreement with earlier results 

showing that 2HG levels were elevated predominantly in ERα-negative breast cancer cells. 

In addition, none of the individuals with breast cancer examined had 2HG-producing 

mutations in the IDH1 or IDH2 gene (Figure 4A). Functional pathway analysis revealed 

enrichment of genes involved in DDR and hereditary breast cancer signaling (Figures 4C 

and S4A).

Next we leveraged the reported ATAC-seq accessibility data from 70 TCGA breast tumors 

(Corces et al., 2018) and found that hypermethylated genes with diminished expression 

showed a prominent decrease in chromatin accessibility in basal-like tumors (Figures 4D 

and 4E). To address whether the tumor-associated chromatin landscape could be attributable 

to 2HG-mediated epigenetic remodeling, we assessed changes in promoter accessibility 

in response to 2HG enantiomers. Compared with unexposed control cells, 2HG-exposed 

cells showed decreased or diffused chromatin accessibility at ChromHMM-defined active 
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promoter regions (Figure 4F). Additionally, whole-genome bisulfite sequencing (WGBS) 

data indicated that accessible promoter regions were essentially devoid of DNA methylation 

in control HMECs. These observations prompted us to explore the possibility that 2HG 

exposure may facilitate tumor-associated promoter hypermethylation.

To differentiate DNA methylation (5mC) from DNA hydroxymethylation (5hmC), we 

utilized oxidative bisulfite (oxBS) conversion followed by pyrosequencing. As expected, 

a marked gain in promoter methylation was shown in the majority of genes examined, 

including the BRCA1, MSH2, and MLH1 genes involved in DDR pathways (Figure 

S4B). Promoter hypermethylation in response to 2HG was confirmed by methylated 

DNA immunoprecipitation followed by qPCR (MeDIP-qPCR) (Figure S4C). Similar but 

less pronounced increased DNA methylation was seen in immortalized, non-transformed 

mammary epithelial cells (hTERT-HME1) following 2HG exposure (Figure S4D). To 

validate the disease relevance of 2HG-mediated promoter hypermethylation, we analyzed 

the breast cancer methylomes profiled by methyl-CpG binding domain-based capture 

sequencing (MBDCap-seq) using our breast cancer cohort, which consisted of 77 primary 

tumors and 10 uninvolved tissues (Jadhav et al., 2015). A considerable increase in DNA 

methylation was detected at promoter regions in tumor samples in comparison with their 

normal counterparts (Figure S4E). These results complement the finding that a methylator 

phenotype is established in immortalized astrocytes when mutant IDH is ectopically 

expressed (Turcan et al., 2012). Collectively, the findings suggest that two prominent 

hallmarks of the cancer epigenome, promoter hypermethylation of tumor suppressor genes 

and genome-wide depletion of 5hmC, may be driven, at least in part, by defective metabolic 

fluxes in breast tumors.

2HG induces expression and epigenetic discordancy and enhances phenotypic diversity

To disentangle epigenetically heterogeneous responses to 2HG enantiomers, we performed 

high-dimensional mass cytometry on viably cryopreserved cell suspensions. The panel of 

metal-conjugated antibodies designed in this study was able to detect changes in DNA 

modifications as well as intracellular proteins (Figures S5A–S5C; Table S3). Consistent 

with our prior mass spectrometry measurements (Figures 1C and S1J), chromatin CyTOF 

analysis showed that 2HG led to a substantial increase in histone methylation, and the 

biaxial gating of live single cells indicated a concurrent increase in multiple distinct classes 

of histone modifications, which was reverted upon 2HG removal (Figures S5D and S5E). 

The two-dimensional projection using t-distributed stochastic neighbor embedding (t-SNE) 

revealed that control and withdrawal groups had similar multidimensional phenotypes and 

cell population distributions that were clearly distinguishable from those of 2HG-perturbed 

cells (Figure 5A), corroborating that the chromatin remodeling is essentially reversible and 

dependent on the presence of 2HG oncometabolites.

Self-organizing maps generated by FlowSOM identified six discrete clusters, and a large 

population of HMECs (cluster 1) displayed a concurrent increase in all histone markers 

examined following 2HG exposure (Figures 5B and 5C). We next wanted to determine 

whether 2HG-mediated chromatin remodeling could alter expression of DDR genes, whose 

promoter regions exhibited increased DNA methylation in response to 2HG. As expected, 
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2HG led to diminished expression of BRCA1, MSH2, and MLH1 (Figure 5D). BRCA1 

expression was found to be inversely correlated with repressive histone marks on H4K20 

residues (Figure S5F), and, to our surprise, we observed a significant association between 

the expression of BRCA1 and MSH2 genes (Figure S5G). The positive association between 

BRCA1 and MSH2 expression was also evident in CCLE cancer cell lines as well as in 

TCGA primary breast tumors (Figures S5H and S5I). Although the precise mechanism is 

currently unknown, the findings suggest that the DDR genes are controlled by a shared 

set of transcriptional regulators, possibly via αKG-dependent epigenetic mechanisms. 

Importantly, all three DDR genes exhibited increased variance in expression levels following 

2HG exposure, as indicated by the wider distribution of data points, and these cell-level 

fluctuations were substantially restored after 2HG withdrawal (Figures 5D and S5G).

Noting that 2HG initiates genome-scale fluctuations in the chromatin regulatory landscape, 

we sought to determine the effect of 2HG on coordination of gene expression programs 

at single-cell resolution. Pairwise correlation measures between individual markers in 

untreated control cells revealed a highly concordant expression of DDR genes, all of 

which displayed a negative or low association with histone modification levels (Figure 

5E). As indicated by reduced correlation between two variables, the coordinated levels 

of gene expression or histone modifications in single cells were impaired following 

2HG exposure and restored upon removal of 2HG. This corrupted coordination of gene 

regulation supports cell-level epigenome fluctuations imposed by 2HG oncometabolites. 

Spanning tree progression of density normalized events (SPADE) analysis was performed 

to investigate changes in cell population structures, and we found that the distribution 

of cell subpopulations was more even in 2HG-treated groups, representing a relatively 

heterogeneous structure (Figure 5F). In agreement with this, compared with control and 

withdrawal groups, 2HG-perturbed cells displayed greater complexity, as indicated by 

higher values of Simpson and Shannon diversity indices (Risom et al., 2018; Almendro et 

al., 2014; Figure 5G). Additionally, downregulation of DDR and KRT8/18 luminal markers 

were particularly evident in cell populations displaying a higher variance in H3K9me3 

marks, which are essentially involved in long-term transcriptional repression (Figure 5H). 

These data suggest that 2HG may undermine molecular mechanisms that mediate the 

coordinated control of epigenetic programs, thereby decreasing lineage fidelity.

2HG-high tumors display enhanced heterogeneity and an undifferentiated stem-like 
signature

Because our single-cell profiling using scATAC-seq and CyTOF suggests that 2HG increases 

cell-level variability in chromatin accessibility to gene regulatory regions and subverts 

lineage fidelity enhancing epithelial cell heterogeneity, we next set out to assess the 

effect of 2HG on varying heterogeneity in breast cancer cell lines as well as in primary 

tumors. Pairwise correlation of DNA methylation levels in CpG islands across the genome 

revealed that cell lines with high levels of intracellular 2HG had a higher degree of 

inter-sample variability in the DNA methylation landscape (Figures 6A and S6A). No 

association was detected between methylation variability and intracellular levels of αKG 

(Figure S6B). 2HG accumulation was seen in relation to increasing levels of histone 

methylation (Figure S6C), and DNA methylation heterogeneity inversely correlated with 
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elevated histone methylation on H3K27 and H3K36 residues (Figure S6D). In addition to 

DNA methylation heterogeneity, inter-sample variability in transcriptomic and proteomic 

landscapes was significantly correlated with intracellular 2HG levels (Figures 6A, S6E, and 

S6F). These results suggest that defective αKG-dependent demethylation could contribute 

to inter-sample diversity in breast cancer cell lines. To investigate the relationship between 

differentiation-state heterogeneity and 2HG accumulation, we examined the expression of 

mammary epithelial lineage markers (Risom et al., 2018), and high expression of luminal 

and basal/myoepithelial genes was found to be enriched in 2HG-high cell lines, suggesting 

that 2HG accumulation is one of the key variables (Figure 6B). In agreement with this, 

variance in gene expression between luminal and myoepithelial gene sets was reduced in 

2HG-high cell lines (Figure 6C). To our surprise, 2HG levels had no association with 

genomic intratumor heterogeneity (gITH) scores (Carter et al., 2012; Figure 6D). These data 

suggest that 2HG could potentiate differentiation-state plasticity independent of genomic 

heterogeneity.

Genome-wide pairwise comparison further revealed that 2HG-high primary tumors had 

elevated levels of inter-sample variability in DNA methylation as well as transcriptomic 

landscapes (Figures 6E, 6F, S6G, and S6H). Quantitative characterization of cellular 

variability in transcriptomic landscapes based on the distribution of alternative splice-site 

usage (Kim et al., 2019) indicated that increasing levels of 2HG correlated with enhanced 

transcriptomic intratumor heterogeneity (tITH) scores, which predicted shorter survival 

(Figures 6G and S6I). Consistent with the results from cell lines, 2HG levels showed no 

direct correlation with gITH scores (Carter et al., 2012; Thorsson et al., 2018; Figure 

6H). These data suggest that 2HG-mediated phenotypic heterogeneity could arise through 

epigenetic mechanisms at least partly independent of genomic alterations. Expression 

analysis of lineage-specific markers (Risom et al., 2018) demonstrated loss of luminal 

gene signatures in 2HG-high breast tumors (Figure S6J). Of note, although expression of 

individual luminal genes was concordantly regulated in 2HG-low tumors, as indicated by 

lower dispersion scores, 2HG-high tumors showed more variable, discordant expression of 

luminal genes, corroborating dysregulation of coordinated gene expression in 2HG-high 

tumors. Similar results were observed in 2HG-high versus 2HG-low breast cancer cell 

lines as well as in tITH-high versus tITH-low TNBC tumors (Figures S6K and S6L). To 

extend this observation, we analyzed expression of gene sets representing mature luminal 

and embryonic stem cell lineages (Lim et al., 2009; Ben-Porath et al., 2008) and found 

that loss of mature luminal gene expression in 2HG-high or tITH-high TNBC tumors was 

accompanied by a gain of undifferentiated stem-like transcriptional signatures (Figures 6I 

and 6J). Progression-free survival analysis demonstrated that loss of mature luminal and 

concurrent gain of undifferentiated stem-like transcriptional signatures were associated with 

a poor clinical outcome (Figure 6K). Furthermore, individuals with high DNA methylation 

in mature luminal and low methylation in stem-like genes had a steeper and prolonged 

drop in survival (Figure 6L), suggesting a contribution of epigenetic mechanisms to the 

underlying molecular pathology. These data support a model in which intratumoral 2HG 

enhances cellular heterogeneity by potentiating differentiation-state plasticity.

Kusi et al. Page 11

Cell Rep. Author manuscript; available in PMC 2022 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2HG induces DNA damage accumulation, and A2P eradicates cancer cell heterogeneity

To further elucidate the mechanisms that could contribute to breast tumorigenesis, we 

assessed the effect of 2HG on homologous recombination deficiency (HRD), which is 

enriched in breast tumors (Alexandrov et al., 2013; Ma et al., 2018). In addition to 

HMECs, low 2HG-producing MCF-7 cells were treated with 2HG, and double-strand 

breaks (DSBs) were detected by phosphorylation of histone H2AX (γH2AX). As shown 

in Figures 7A and 7B, 2HG caused an increase in formation of γH2AX foci in HMECs 

as well as in MCF-7 cells. Following 2HG withdrawal, there was a substantial decrease 

in H2AX phosphorylation (Figure 7C). These data indicate that 2HG impairs DNA repair 

mechanisms, leading to accumulation of DNA damage, and are in accordance with the 

observation that breast tumors with high 2HG accumulation exhibited increased rates of 

HRD (Thorsson et al., 2018; Figure 7D). Although epigenetic repression of DDR pathway 

genes has been reported to confer an HRD phenotype, the cause of this epigenetic alteration 

remains obsecure (Turner, 2017). Our findings thus underscore a potential contribution 

of oncometabolite accumulation to DDR gene silencing and HRD-associated genome 

instability in breast tumors.

To gain more relevant insight into treatment of breast tumors with high levels of 2HG 

accumulation, we evaluated the antitumor effect of A2P supplementation. High 2HG-

producing MDA-MB-231 cells were treated with 1 mM A2P for 72 h, and the expression of 

DDR pathway genes and cancer stem cell (CSC) markers was analyzed using CyTOF. As 

seen in Figures 7E and S7A, A2P-treated MDA-MB-231 cells exhibited elevated expression 

of HR repair genes, including BRCA1, RAD51C, MRE11, and XRCC2. In contrast, 

A2P suppressed expression of CSC-associated genes such as SOX2, NANOG, and CD44 

(Figures 7E and S7B). Similar results were obtained when cells were treated with 100 μM 

αKG for 72 h. Analysis of cell population structures using single-cell CyTOF profiling 

revealed that the distribution of cell subpopulations was less even in the A2P-treated 

group, representing a relatively homogeneous cell population (Figure 7F). Quantification 

of cellular diversity also demonstrated that A2P caused a significant reduction in the extent 

of cancer cell heterogeneity, and the results were again similar to αKG-treated cells (Figure 

7G). Pairwise correlation analysis of expression levels in single cells indicated that A2P 

supplementation partially restored coordinated gene regulation (Figure 7H). Further, A2P 

inhibited cancer cell proliferation in the presence or absence of conventional treatment with 

tamoxifen (Figure S7C). These observations underscore the effect of A2P in eradicating 

tumor cell heterogeneity as well as in promoting drug sensitization and suggest that 

antagonizing 2HG may be a rational strategy to restrict cancer cell plasticity and counteract 

adaptive evolution of breast tumors.

DISCUSSION

In-depth multiregional tissue sampling and single-cell genome sequencing have revealed 

that intratumor heterogeneity occurs through evolution of genetically distinct subpopulations 

during malignant progression (Turajlic et al., 2019), which is potentially challenging to 

modulate using current technologies (DagogoJack and Shaw, 2018). In contrast, only a 

few studies have utilized single-cell epigenomic approaches to characterize the intricate 
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epigenetic makeup of cancer cells (Grosselin et al., 2019; Marjanovic et al., 2020; LaFave 

et al., 2020), highlighting the role of local chromatin signaling in gene regulation involved 

in treatment resistance and metastatic potential. In the present study, a combination of 

two single-cell epigenomic approaches has enabled us to demonstrate that global stability 

and plasticity of the epigenome are involved in enhancement of cell-to-cell variability, 

suggesting that breast cancer heterogeneity is mediated at least in part by metabolic 

reprogramming through epigenetic mechanisms.

In more general terms, our results show that defects in epigenetic machinery could promote 

cancer cell plasticity, potentially leading to generation of effectively neutral, metastable 

cell population, allowing non-physiological cell fate transitions. This, in turn, implies that 

αKG-dependent demethylation machinery is required for stable maintenance of cell identity 

as a safeguard of the epigenome. Considering the role of αKG-dependent demethylation 

in chromatin restriction, 2HG may expand cell fate plasticity by blurring the ridge line 

rather than by lowering the barrier heights of the basins in Waddington’s epigenetic 

landscape. It is of interest in this context that constant active turnover of DNA modifications 

could contribute to development of cell-level epigenetic variability (Rulands et al., 2018; 

Parry et al., 2021). The histone H3K4 demethylase KDM5B is also linked with cell-level 

transcriptional heterogeneity (Hinohara et al., 2018), corroborating the role of chromatin 

homeostasis in preserving lineage fidelity. These findings suggest that altered metabolic 

fluxes could fuel the number of possible cellular states with higher adaptive potential via 

epigenetic mechanisms, which may enable drug-resistant tumor cells to emerge and expand. 

Although future well-controlled studies will be required to evaluate the quantitative effect of 

A2P on cancer cell plasticity, upfront or combinatorial treatment targeting αKG-dependent 

demethylation machinery, which can render tumor cells more homogeneous, may boost the 

efficacy of the existing high-cost interventions by suppressing the epigenetic mechanisms 

driving tumor cell evolution involved in therapy resistance (Dagogo-Jack and Shaw, 2018).

The present study suggests that 2HG-mediated inhibition of αKG-dependent demethylation 

induces high-plasticity chromatin landscape and lineage infidelity to promote epithelial 

cell heterogeneity. Epigenetic liabilities imposed upon 2HG exposure are found to be 

dynamic and essentially reversible, substantiating the inherent plasticity of the epigenome 

that is sensitive to cell-intrinsic and -extrinsic cues, such as metabolic intermediates, 

cofactors, environmental disruptors, and chromatin modifying compounds. Future studies 

that use single-cell epigenomic approaches enabling integrated assessment of cancer cell 

heterogeneity or plasticity, including chromatin mass cytometry as described here, may 

identify additional regulatory molecules involved in maintaining, disrupting, or restoring 

chromatin homeostasis, which is required for stable preservation of cell identity.

Limitations of the study

Our study highlights the role of 2HG in regulating epithelial lineage fidelity and DNA repair 

responses and suggests that altered metabolic fluxes in breast tumors could influence cellular 

plasticity through epigenetic as well as genetic mechanisms. A limitation of this study is that 

these experiments do not establish how epigenetic and genetic plasticity are linked. Of note, 

DNA damage induced by BRCA gene inactivation has been reported to induce luminal-to-
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basal/mesenchymal transdifferentiation and result in basal-like tumorigenesis (Wang et al., 

2016, 2019). Our findings thus raise the possibility that 2HG-induced DNA damage may 

likewise facilitate lineage reprogramming in non-BRCA-mutated breast tumors. Additional 

in-depth characterization of defects in DNA repair signaling is necessary to understand 

the underlying mechanisms. Another limitation is the lack of the study to evaluate the 

long-term effect of 2HG accumulation. Although the current study focuses on the role 

of 2HG in regulating the mammary epithelial epigenome to dissect upstream mechanisms 

that promote lineage infidelity and cancer cell heterogeneity, it is currently uncertain how 

enhanced plasticity imposed by the high-plasticity chromatin landscape confers a selective 

advantage or drug resistance during breast tumor evolution. Future studies in preclinical 

models will expand our mechanistic and translational understanding of the in vivo effect of 

oncometabolite accumulation and vitamin C supplementation.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Kohzoh Mitsuya 

(mitsuya@uthscsa.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• Raw sequencing files of scATAC-seq and bulk RNA-seq data have been 

deposited at NCBI GEO (GSE161628) and are publicly available as of the 

date of publication. This paper also analyzes existing, publicly available data. 

Accession numbers are listed in the in Key Resources Table.

• There are no original codes generated in this paper.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture—Human breast cancer cell lines BT20, BT474, MCF-7, MDA-MB-157, 

MDA-MB-231 and MDA-MB-361, and non-malignant immortalized epithelial cells hTERT-

HME1, 184B5 and MCF12A were acquired from the American Type Culture Collection 

(ATCC). Unless otherwise stated, cancer cell lines were maintained in DMEM (Gibco) 

supplemented with 10% fetal bovine serum (Sigma-Aldrich) and 100 U/ml penicillin 

plus 100 μg/mL streptomycin (Gibco) as previously reported (Hsu et al., 2013). Primary 

HMECs were obtained from Invitrogen and maintained at low passage number (below 5). 

HMECs, hTERT-HME1, 184B5 and MCF12A cells were cultured in mammary epithelial 

growth medium according to the manufacturer’s instructions. Authentication of cell line 

genomic DNA was performed at ATCC using DNA fingerprint analysis of polymorphic, 

short tandem repeat sequences. Exposure to cell-permeable 2HG analogues was carried out 

by supplementing octyl esters of R-2-hydroxyglutarate or S-2-hydroxyglutarate (Cayman 
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Chemical) to the culture medium at a final concentration 72 h before harvesting. Vitamin C 

supplementation was carried out by adding ascorbate-2-phosphate (A2P, Sigma-Aldrich) to 

the culture medium at the pharmacological concentration of 5 mM. Dimethyloxalylglycine 

(DMOG) and tamoxifen (4-hydroxytamoxifen) were obtained from Sigma-Aldrich. For the 

withdrawal study, cells were initially exposed to L2HG for 72 h and then cultured in regular 

medium for additional 4 days.

METHOD DETAILS

Metabolite extraction and quantification by LC-MS—Following dissociation, cells 

were washed twice with ice-cold phosphate-buffered saline (PBS) and cell pellets 

were flash-frozen on dry ice. For αKG analysis, metabolites were extracted with 

80:20 methanol: water (−80°C) containing stable isotope-labeled internal standard 

[1,2,3,4-13C4]α-ketoglutaric acid (Cambridge Isotope Laboratories) and incubated at −80°C 

for 1 h as described previously (Lin et al., 2015). Extracts were then centrifuged at 

13,800g for 10 min and supernatants were transferred to glass autosampler vials for high-

performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-

MS) measurements. For 2HG analysis, cells were processed as mentioned above except 

that [1,2,3,4-13C4]L-malic acid (Cambridge Isotope Laboratories) was added as an internal 

standard and dried extracts were derivatized with diacetyl-L-tartaric anhydride (DATAN, 

Sigma-Aldrich). HPLC-ESI-MS detection was conducted on a ThermoFisher Q Exactive 

mass spectrometer with on-line separation by a ThermoFisher Dionex Ultimate 3000 HPLC. 

HPLC conditions for αKG analysis were: column, Synergi Polar-RP, 4 μm, 2 × 150 mm 

(Phenomenex); mobile phase A, 0.1% formic acid in water; mobile phase B, 0.1% formic 

acid in acetonitrile; flow rate, 250 μL/min; gradient, 1% B to 5% B over 5 min, 5% B to 

95% B over 1 min and held at 95% B for 2 min. HPLC conditions for 2HG analysis were: 

column, Luna NH2, 3 μm, 2 × 150 mm (Phenomenex); mobile phase A, 5% acetonitrile in 

water containing 20 mM ammonium acetate and 20 mM ammonium hydroxide, pH 9.45; 

mobile phase B, acetonitrile; flow rate, 300 μL/min; gradient, 85% B to 1% B over 10 

min and held at 1% B for 10 min. The conditions used to selectively quantify D2HG and 

L2HG were: column, Kinetex C18, 2.6 μm, 2.1 × 100 mm (Phenomenex); mobile phase, 

1% acetonitrile with 125 mg/L ammonium formate, pH 3.6; flow rate, 400 μL/min. Full 

scan mass spectra were acquired in the orbitrap using negative ion detection over a range 

of m/z 100–800 at 70,000 resolution (m/z 300). Metabolite identification was based on 

accurate mass match to the library ± 5 ppm and agreement with the HPLC retention time of 

authentic standards. Quantification of metabolites was carried out by integration of extracted 

ion chromatograms with the corresponding standard curves.

Immunofluorescence staining—Cells were plated in 8-well chamber slides (Falcon) 

at a density of 1–2 × 104 cells/well at least 24 h prior to 2HG exposure. Cell were then 

fixed with 4% paraformaldehyde (PFA) in PBS for 10 min at room temperature (RT) and 

permeabilized with 0.2% Triton X-100 in PBS for 10 min at RT. For 5hmC staining, 

permeabilized cells were treated with 2N HCl for 30 min at RT and neutralized with 100 

mM Tris-HCl (pH 8.5). Nonspecific binding was blocked with 10% goat serum in 0.2% 

Triton X-100 and PBS for 1 h at RT and stained with primary antibodies in PBS with 

5% goat serum and 0.2% Triton X-100 overnight at 4° C. After incubation with Alexa 
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Fluor-conjugated secondary antibodies (Molecular Probes) for 1 h at RT, nuclei were stained 

for 5 min with DAPI (ThermoFisher). Single optical sections were acquired using a Zeiss 

LSM710 confocal microscope and image quantification was performed with NIH ImageJ 

software (version 1.52n). Primary antibodies included rabbit polyclonal anti-5hmC (Active 

Motif, 39769, 1:500), rabbit monoclonal anti-H3K27me3 (Cell Signaling Technologies, 

9733, 1:800) and mouse monoclonal anti-phospho-histone H2A.X (Ser139) (Millipore, 05–

636, 1:200).

Tet-assisted bisulfite (TAB) pyrosequencing—TAB pyrosequencing was used to 

differentiate 5hmC from 5mC (Yu et al., 2012). High molecular weight genomic DNA 

was extracted using Gentra Puregene reagents (QIAGEN), followed by an additional ethanol 

precipitation and resuspension in low-EDTA TE buffer (10 mM Tris-HCl, 0.1 mM EDTA, 

pH 8.0). RNase A and proteinase K digestion were included in the isolation procedure. 

UV absorbance was measured on a NanoDrop 2000 (ThermoFisher) and each DNA sample 

was routinely examined by agarose gel electrophoresis with GelRed staining to ensure the 

absence of contaminating RNA and degradation of genomic DNA. Isolated genomic DNA 

was then subjected to Tet-assisted bisulfite (TAB) treatment as we previously described 

(Mitsuya et al., 2017). After bisulfite conversion using EpiTect Fast Bisulfite Conversion 

kit (QIAGEN), pyrosequencing was conducted on a PyroMark Q96 MD instrument using 

CpG LINE-1 assay (QIAGEN, 973043). To monitor bisulfite conversion efficiency, a C 

outside a CpG site was added within dispensation order for the sequence to be analyzed as 

a built-in control. The quantitative levels of 5mC and 5hmC for each CpG dinucleotide were 

determined using PyroMark CpG software (version 1.0, QIAGEN).

Multiplexed chromatin profiling by mass spectrometry—Nuclei were isolated from 

2 × 106 cells using Nuclear Isolation Buffer (NIB) composed of 15 mM Tris-HCl (pH 7.5), 

60 mM KCl, 15 mM NaCl, 5 mM MgCl2, 1 mM CaCl2, 250 mM sucrose, 0.3% NP-40, 

1 mM DTT plus 10 mM sodium butyrate added immediately prior to use, for 30 min on 

ice. Nuclei were pelleted at 600 g for 5 min at 4°C and detergent was removed by washing 

twice with NIB without NP-40. Histones from isolated nuclei were acid extracted with 5 

volumes of 0.2 M H2SO4 for 1 h at RT. Cellular debris was removed by centrifugation at 

4,000 g for 5 min. Trichloroacetic acid was added to the supernatant at a final concentration 

of 20% (v/v) and incubated for 1 h to precipitate histone proteins. Histones were pelleted 

at 10,000g for 5 min, washed once with 0.1% HCl in acetone, twice with 100% acetone 

followed by centrifugation at 15,000g for 5 min, and then briefly air-dried. Histones were 

derivatized, digested and analyzed by targeted LC-MS/MS as described previously (Diebold 

et al., 2019).

Flow cytometry—Cell cycle phase distribution was analyzed by flow cytometry. Cells 

were fixed with ice-cold 70% methanol for 1 h on ice. Following centrifugation, cells were 

washed with PBS and stained with 10 μg/mL propidium iodide (Sigma-Aldrich) solution in 

PBS containing 1 μg/mL DNase-free RNase A (ThermoFisher) and incubated in the dark on 

ice for 1 h. Samples were then processed on a BD FACS-Calibur flow cytometer equipped 

with CellQuest Pro software (version 5.2.1, Becton Dickinson) and data were analyzed using 

FlowJo software (version 7.6.5, Tree Star).
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Capillary-based Western immunoassay—Cells were washed with ice-cold PBS and 

lysed on ice for 30 min with lysis buffer containing 20 mM Tris-HCl, 1% NP-40, 150 

mM NaCl, 10% glycerol, and protease inhibitor cocktail (Thermo Fisher Scientific). After 

clearing by centrifugation, protein concentration was determined by Bradford protein assay 

kit (Pierce). Protein separation and detection were performed using an automated capillary 

electrophoresis system and 12–230 kDa separation module (ProteinSimple). Anti-rabbit 

or anti-mouse detection module according to the manufacturer’s instructions. Primary 

antibodies used were as follows: PNCA (Cell Signaling Technologies, 13110), BRCA1 (Cell 

Signaling Technologies, 9010), RAD51C (Novus Biologicals, NB100–177), BRIP1 (Novus 

Biologicals, NBP1–31883), MSH2 (Novus Biologicals, NBP3–07211), FANCD2 (Novus 

Biologicals, NB100–182), FEN1 (Novus Biologicals, NB100–150), XRCC2 (Abcam, 

ab180752), and β-actin (R&D Systems, MAB8929). Data were analyzed and displayed in 

Compass for SW (Version 3.1.7).

Live cell proliferation assay—Cell growth was evaluated using the IncuCyte ZOOM 

live-cell analysis system (Essen Bioscience). Cells were seeded in 96-well plates at a density 

of 1,000–2,000 cells per well. Approximately 24 h later, 96-well plates were placed in 

IncuCyte instrument and images were taken every 12 h over the course of five days. 

Growth curves were generated with quadruplicate replicates. The real-time kinetic data of 

proliferation was calculated as phase object confluence and analyzed by IncuCyte software 

(version 2016B).

RNA isolation and library preparation—Cells were collected, lysed and homogenized 

in TRI reagent (Zymo Research). Total RNA was extracted in triplicates from each condition 

according to Direct-zol RNA miniprep plus (Zymo Research) protocol. The quantity and 

quality of isolated RNA were assessed by NanoDrop (2000) (ThermoFisher) and Agilent 

5200 Fragment Analyzer system (Agilent). RNA quality scores ranged from 9.2 to 10.0. 

Sequencing libraries were prepared with 500 ng of total RNA using Zymo RiboFree 

Total RNA Library Kit (Zymo Research). Following first strand cDNA synthesis, rRNA 

depletion was carried out to enrich mRNA as per the protocol. A second strand of DNA 

was synthesized and adapter ligation was completed to obtain dual-indexed sequencing 

libraries. ERCC RNA spike-in control mix (Ambion) was also added to each sample (1:10 

dilution). The concentration and quality of libraries were evaluated using Qubit dsDNA 

assay on Qubit 2.0 fluorometer (Invitrogen) and High Sensitivity DNA Kit on Agilent 2100 

Bioanalyzer system (Agilent).

RNA sequencing and data analysis—RNA-seq libraries were sequenced on HiSeq 

3000 platform using 50-bp, single-read Illumina chemistry with a coverage depth of 25–30 

million reads per sample. Raw sequence reads were checked for initial quality control 

using FastQC tools (version 0.11.9) and summarized using MultiQC tool (version 0.8). 

Adapter sequences were trimmed using Cutadapt (version 1.18). The trimmed reads were 

then aligned to the human reference genome (GRCh38/hg38) using STAR (Dobin et al., 

2013) alignment tool (version 2.7.5a) with standard input parameters. Transcript counts were 

normalized and differentially expressed genes were estimated by using DESeq2 package 
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(version 1.26.0). A log2 fold change of 1 and p value < 0.05 were considered for differential 

gene expression analysis.

Gene set enrichment analysis (GSEA)—Gene set enrichment analysis (GSEA) was 

evaluated using the GSEA (Liberzon et al., 2015) software (version 4.1.0). The normalized 

read matrix generated using DESeq2 was used as input. A catalog of annotated genesets 

from Molecular Signature Database (MSigDB, version 7.2) was used for enrichment 

analysis. For enrichment of DNA repair genes, the geneset was created based on published 

signature genes (Knijnenburg et al., 2018). False discovery rate (FDR) was assessed using 

1,000 random permutations of the geneset with a signal-to-noise ratio for ranking genes. A 

FDR-corrected value of q < 0.1 was considered to be statistically significant.

Single-cell ATAC-seq library preparation—Single-cell ATAC-seq libraries were 

prepared on a Fluidigm C1 workstation using ‘ATAC SeqCell Load and Stain Rev C’ script 

as previously described (Buenrostro et al., 2015) with modifications. Briefly, cells were 

passed through a 20 μm cell strainer (CellTrics, Sysmex) to remove debris and remaining 

cell aggregates, and mixed at a ratio of 7:3 with C1 suspension reagent. The resulting 

single-cell suspension was loaded on C1 Single-Cell Open App IFC chip (1862x, 10–17 μm, 

Fluidigm) at a concentration of 350 cells/μl. Captured cells were stained with 2 μM green-

fluorescent calcein-AM and 4 μM red-fluorescent ethidium homodimer-1 (Invitrogen) and 

visualized under an EVOS FL cell imaging station (Life Technologies) to ensure successful 

capture and to determine cell viability. The single-cell capture rates were typically >80%, 

and >90% of captured single cells were alive. After cell lysis and Tn5 transposition, 

8 cycles of pre-amplification were run on IFC chip. Pre-amplified PCR products were 

transferred to 96-well plates and further amplified for an additional 13 cycles using custom 

Nextera dual-index primers and NEBNext High-Fidelity 2X PCR master mix (New England 

Biolabs). Individually barcoded libraries were pooled and purified on a single MinElute 

column (QIAGEN). The quality and size distribution of pooled libraries were evaluated on 

an Agilent 2100 Bioanalyzer using High Sensitivity DNA reagents (Agilent).

Single-cell ATAC-seq data analysis—scATAC-seq libraries were sequenced on a 

NextSeq 500 platform with High Output reagents (Illumina) using paired-end 75-bp reads. 

All scATAC-seq data were preprocessed as essentially described (Buenrostro et al., 2015). 

In short, adapter and primer sequences were trimmed and initial quality control checks 

were performed using FastQC tools (version 0.11.9). Sequencing reads were aligned to the 

GRCh37/hg19 assembly of the human genome using Bowtie2 with the parameter ‘-X2000’ 

to ensure paired reads were within 2 kb of one another. PCR duplicates were eliminated 

using Picard tools (version 2.9.2, http://broadinstitute.github.io/picard/) and alignments with 

mapping quality less than 30 were subsequently removed by samtools. Reads mapped to the 

mitochondria and unmapped contigs were filtered out and excluded from further analysis. 

PCA projections of scATAC-seq profiles were performed using SCRAT (Ji et al., 2017), and 

gene feature was applied to aggregate sequencing reads from each cell, in which 3,000 bp 

upstream to 1,000 bp downstream of TSS is regarded as the region of interest for each gene. 

After aggregation, the signals for each feature were normalized to adjust for library size and 

model-based clustering (mclust) module was utilized to identify cell subpopulations. Peak 
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calling was performed using MACS2 with the following settings: –nomodel –nolambda 

–keep-dup all –call-summits. Artifact signals were excluded using ENCODE blacklist. Bias-

corrected accessibility deviations at transcriptional factor (TF) motifs were assessed using 

chromVAR (Schep et al., 2017) (version 3.12) with JASPAR’s motif set.

Breast cancer cohorts, resources and data analysis—Level 3 TCGA Breast 

Invasive Carcinoma (BRCA) data of tumor and normal samples were accessed from the 

Broad GDAC Firehose (http://gdac.broadinstitute.org) and RSEM-normalized RNA-seq 

values were log2 transformed before analysis. Unsupervised hierarchical clustering was 

utilized to distinguish mRNA expression profiles among different genes and heatmaps 

were generated using heatmap.2 function implemented in gplots package of R statistical 

program. Clinical data including PAM50 intrinsic subtypes, ER/PR/HER2 expression 

and IDH mutation status were retrieved using the Cancer Genomics cBioPortal (https://

www.cbioportal.org/) and were integrated into RNA-seq heatmap. TCGA DNA methylation 

data generated using Infinium Human Methylation 450K (HM450K) BeadChip array were 

retrieved from the cBioPortal repository. Normalized methylation scores at each CpG 

dinucleotide are expressed as β values, representing a continuous measurement from 0 

(completely unmethylated) to 1 (completely methylated). In the event of multiple CpG 

probes per gene, the most negatively correlated with mRNA expression was selected. 

Chromatin accessibility data of TCGA primary tumor tissue samples were extracted from 

the UCSC Xena browser (https://xenabrowser.net/). After Z-scale normalization of ATAC-

seq signals, open chromatin occupancies at promoter regions were correlated with PAM50 

gene signature to evaluate DNA accessibility profiles across breast cancer subtypes. Our 

breast cancer methylome data generated using MBDCap-seq are available at The Cancer 

Methylome System (http://cbbiweb.uthscsa.edu/KMethylomes/). Global chromatin profiling, 

metabolomics and high-throughput sequencing datasets for breast cancer cell lines were 

retrieved from the Broad Institute CCLE repository (https://portals.broadinstitute.org/ccle). 

Homologous recombination deficiency (HRD) scores for TCGA patients were obtained from 

Thorsson et al. (Thorsson et al., 2018). Briefly, HRD score was quantitatively assessed by 

taking a sum of 3 separate metrics of genomic scarring: loss of heterozygosity (LOH), 

large-scale state transitions, and subtelomeric regions with allelic imbalance.

Oxidative bisulfite (oxBS) pyrosequencing—To selectively detect 5mC modification, 

genomic DNA was subjected to oxBS conversion (Booth et al., 2012) using TrueMethyl 

oxBS module (NuGEN Technologies) as per the manufacturer’s recommendations. In 

short, genomic DNA was affinity-purified using 80% acetonitrile (Fisher Scientific) and 

TrueMethyl magnetic beads to eliminate potential contaminating compounds. After the 

denaturation step, genomic DNA was oxidized to convert 5-hydroxymethylcytosine to 

5-formylcytosine. Bisulfite treatment was then carried out to convert 5-formylcytosine to 

uracil, leaving 5-methylcytosine intact. Following desulfonation and purification, converted 

DNA was quantified using Qubit ssDNA assay (Invitrogen). PCR amplification of oxBS 

converted DNA was carried out with biotin-labeled primers. Primer design was carried 

out using PyroMark Assay Design software (version 2.0, QIAGEN). Pyrosequencing 

of biotinylated PCR products was performed using PyroMark Q48 Advanced CpG 

reagents (QIAGEN) on a PyroMark Q48 Autoprep apparatus (-QIAGEN) following the 
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manufacturer’s protocol. 5mC levels at CpG sites were determined using PyroMark Q48 

Autoprep software (version 2.4.2, QIAGEN) in CpG Assay mode. All samples were 

prepared, amplified and sequenced in triplicates. PCR and pyrosequencing primers are listed 

in Table S2.

Methylated DNA immunoprecipitation qPCR (MeDIP-qPCR)—Prior to the 5mC 

immune-capture procedure, genomic DNA was fragmented to an average length of 200–

600 bp using a Covaris S220 system (Covaris). MeDIP was performed using MeDIP 

reagents (Active Motif) as per the manufacturer’s instructions. In brief, fragmented 

DNA was heat-denatured and immunoprecipitated with anti-5mC antibody (39649, Active 

Motif). An additional quantity of fragmented DNA equivalent to 10% of DNA being 

used in the immunoprecipitation reaction was also denatured and saved as input DNA. 

Immunoprecipitated DNA and input DNA were then purified with phenol/chloroform 

extraction and amplified using GenoMatrix Whole Genome Amplification kit (Active 

Motif). Quantitative PCR was performed using PowerUP SYBR Green master mix on an 

ABI StepOnePlus real-time PCR instrument (Applied Biosystems). All PCR reactions were 

run in triplicates. The relative enrichment of target sequences after MeDIP was evaluated by 

calculating the ratios of the signals in immunoprecipitated DNA versus input DNA. Locus-

specific primers were designed with NCBI Primer-BLAST and synthesized by Integrated 

DNA Technologies. Primer sequences are provided in Table S2.

Panel design and heavy-metal labeling of antibodies—Prior to antibody 

conjugation, the antibody panel was designed by allocating targets to specific heavy-metal 

isotopes depending on the sensitivity of the mass cytometer, e.g., assigning low abundance 

targets to high sensitivity channels in order to minimize potential spectral overlap (Takahashi 

et al., 2017). Subsequently, in-house conjugation of antibodies was performed using Maxpar 

X8 antibody labeling reagents (Fluidigm) with some modifications. Briefly, up to 100 μg of 

carrier-free IgG antibody was subjected to buffer exchange by washing with R-buffer using 

a 50 kDa Amicon filter (Millipore) that was pre-soaked with R-buffer. Antibodies were then 

partially reduced with 4mM TCEP (ThermoFisher) for 30 min at RT followed by washing 

with C-buffer. In parallel, metal chelation was carried out by adding lanthanide metal 

solutions (Fluidigm) to chelating polymers (Fluidigm) in L-buffer. Metal-loaded polymers 

were then washed with L-buffer and concentrated on a 3 kDa Amicon filter (Millipore). 

Partially reduced antibodies were incubated with metal-loaded polymers for 90 min at 

RT followed by washing with W-buffer. Following conjugation, antibody concentration 

was determined by spectrometry with a NanoDrop 2000 (ThermoFisher). Metal-conjugated 

antibodies were stored in antibody stabilization solution (Candor Bioscience) supplemented 

with 0.05% sodium azide at 4°C. The panel of metal-conjugated antibodies is provided in 

Table S3.

Multidimensional chromatin profiling by mass cytometry—Cell suspensions were 

prepared at a concentration of 1 × 107 cells/ml in serum-free, protein-free medium 

and stained with 1 μM cisplatin (195Pt) for 5 min at RT to determine cell viability. 

After quenching with CyTOF buffer composed of PBS with 1% BSA (Invitrogen), 2mM 

EDTA (Ambion) and 0.05% sodium azide (Teknova), staining with lanthanide-conjugated 
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antibodies was performed as previously described (Cheung et al., 2018), but with the 

following modifications. In brief, following extracellular marker staining, cells were fixed 

with 1.6% PFA (Electron Microscopy Sciences) for 15 min at RT and permeabilized with 

ice-cold methanol (Fisher Scientific) for 30 min at 4°C. For 5hmC and 5mC staining, 

cells were treated with 2N HCl for 30 min at RT followed by neutralization with 100 

mM Tris-HCl buffer (pH 8.5). After adding Fc receptor blocker (BioLegend), cells were 

labeled overnight at 4°C with a cocktail of antibodies recognizing chromatin modifications 

or intracellular components. On the next day, excess of antibodies was washed off with 

CyTOF buffer and cells were stained with 250 nM 191/193Ir-containing DNA intercalator 

(Fluidigm) in PBS with 1.6% PFA for 30 min at RT. After resuspending in double-deionized 

water, samples were kept on ice. Immediately prior to acquisition, cells were prepared at a 

concentration of 0.2–1.0 × 106 cells/ml in 0.1X EQ bead solution containing four element 

calibration beads (Fluidigm) and filtered through a 20 μm cell strainer (CellTrics, Sysmex) 

to remove any potential aggregates. Cells were then acquired at a rate of 300–500 events/s 

using a Helios mass cytometer (Fluidigm) and CyTOF software (version 6.7) with noise 

reduction, a lower convolution threshold of 400, event length limits of 10–150 pushes, a 

sigma value of 3 and a flow rate of 0.030 mL/min.

Mass cytometry data analysis—Data analysis was conducted using the cloud-

based platform Cytobank (https://www.cytobank.org/) and the statistical programming 

environment R. Following data acquisition, mass cytometry data were normalized using 

EQ calibration beads. Bead-normalized data were then uploaded onto Cytobank platform 

to carry out initial gating and population identification using the indicated gating schemes 

(Figure S5B). For downstream analysis, live single cells were identified based on 140Ce 

bead, event length, DNA content (191Ir) and live/dead (195Pt) channels. Histograms and 

two-dimensional contour plots were generated to assess the global levels of chromatin 

modifications across the samples. Using an equal number of randomly selected live singlets 

from each sample, dimensionality reduction was implemented by t-SNE analysis with the 

following settings: perplexity = 60, theta = 0.5, iteration = 1,000. FlowSOM clustering 

was carried out on the same data using the standard parameters to quantify changes in 

cell subsets in an unbiased manner. The 2D coordinates of the t-SNE map were fed to 

FlowSOM analysis for population identification based on hierarchical consensus clustering. 

Comparisons of chromatin modifications among the samples in each cluster were performed 

by generating heatmaps in R using gplots package and median signal intensities extracted 

from Cytobank. Spanning-tree Progression Analysis of Density-normalized Events (SPADE) 

analysis was performed to construct minimum spanning trees (MST) using live singlets from 

each treatment conditions as described in Qiu et al. (Qiu et al., 2011). SPADE clustering 

was conducted to generate unified trees based on the expression of 16 markers using the 

following main parameters: percent downsampling = 10% and number of clusters = 40. 

Cellular abundance of each node, and intensity and co-efficient of variation of each marker 

in every node were exported for further analysis.

Calculating heterogeneity—Shannon and Simpson diversity indices (Risom et al., 2018; 

Almendro et al., 2014) were used as metrices of phenotypic heterogeneity. The frequency 

distribution of events/cells across the clusters were calculated from SPADE analysis as 
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described above. The mean diversity indices for each condition were used to compare the 

degree of heterogeneity induced by oncometabolite exposure.

Single sample gene set scoring—Single sample gene set scoring was performed 

using the R-package Singscore (version 3.12) as described previously (Foroutan et al., 

2018). This method utilizes rank-based statistics and generates scores for expression 

activities of genesets at a single-sample level. A high geneset score indicates that the 

gene expression pattern in a sample is concordant with the pattern exhibited by the 

gene-expression signature. Genesets were extracted and compiled from a study examining 

cell-state heterogeneity in basal-like breast cancer (Risom et al., 2018), a study analyzing 

expression profiles of tumor cells with regards to embryonic stem cell identity (Ben-Porath 

et al., 2008), and a study examining preneoplastic and normal mammary tissue in breast 

tumor development (Lim et al., 2009).

QUANTIFICATION AND STATISTICAL ANALYSIS

Pairwise comparisons were carried out with a two-tailed unpaired Student’s t test and 

multiple comparisons were assessed using a one-way ANOVA followed by Dunnett’s 

multiple comparison post-hoc test unless otherwise indicated in the figure legends. 

Correlation analyses were performed using Spearman’s rank-based coefficient. For Kaplan-

Meier survival analysis, expression or methylation values were classified as high or low by 

using the median as a cutoff value and progression-free survival data was used to measure 

prognosis. Log-rank (Mantel-Cox) test was used to evaluate statistical differences and 

hazard ratio was reported with 95% confidence interval. Statistical analyses were performed 

using GraphPad Prism program (version 8.1). For all statistical analyses, differences of p < 

0.05 were considered statistically significant. All quantitative data are presented as mean ± 

SEM unless specified otherwise.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Inhibition of αKG-dependent demethylation destabilizes chromatin 

regulatory landscape

• 2HG subverts lineage fidelity and increases cell-level variability in motif 

accessibility

• 2HG-high breast tumors display enhanced cellular heterogeneity

• A2P eradicates heterogeneity in high 2HG-producing basal-like cancer cells
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Figure 1. 2HG-mediated remodeling of the chromatin-transcriptional landscape is restored by 
A2P in the presence of 2HG
(A) 5hmC and 5mC levels at long interspersed element-1 (LINE-1) sequences. HMECs 

were treated for 72 h with 1 mM of D2HG, L2HG, or dimethyloxalylglycine (DMOG) and 

subjected to TET-assisted bisulfite (TAB) pyrosequencing to differentiate 5hmC from 5mC 

(see STAR Methods for further details). DMOG is an analog of αKG and competes for 

binding at the active center of the enzyme.

(B) Global levels of 5hmC and H3K27me3 detected by immunostaining. ***p < 0.001 

versus control by one-way ANOVA with Dunnett’s multiple comparison test (n = 8 images 

per condition). ns, not significant. At least 60 nuclei were examined, and signal intensities 

were normalized to DAPI nuclear counterstain. Mean ± SEM is presented.

(C) Fold change in different types of histone methylation. *p < 0.05, **p < 0.01, ***p < 

0.001 versus control (n = 3 independent replicates).
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(D) Cell cycle analysis of HMECs exposed for 72 h to 100 μM of D2HG or L2HG. 

No statistical significance was observed using one-way ANOVA. Results are from three 

independent experiments.

(E) Hierarchical clustering of RNA-seq profiles. Cells were treated for 72 h with 100 μM of 

D2HG (D), L2HG (L), D2HG plus L2HG (D + L) or L2HG in the presence of 1 mM A2P 

(L + A2P), or received no treatment (C). L2HG treatment was followed by 4-day withdrawal 

(LW).

(F) Dot plot of GSEA hallmark pathways. Color indicates normalized enrichment scores 

(NESs) of positively and negatively enriched gene sets relative to control, and circle size 

corresponds to false discovery rate (FDR).

(G) Heatmap depicting changes in expression of DDR genes. The corresponding DNA repair 

pathways are shown on the right.

(H) Pie chart representing the proportion of DDR pathway genes. Shaded fractions 

correspond to genes that are downregulated by 2HG.

(I) Expression levels of DDR proteins detected by capillary-based immunoassay.

(J) GSEA plots evaluating enrichment for methylated genes in breast cancer cells.

See also Figure S1 and Table S1.
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Figure 2. 2HG enhances molecular heterogeneity in gene regulatory dynamics
(A) Genome tracks showing open chromatin regions detected by scATAC-seq. scATAC-seq 

profiling is highly consistent with DNase hypersensitive sites (DHSs) detected by bulk 

DNaseI-seq (GSE29692).

(B) PCA projection showing distinct cell subpopulations based on the single-cell chromatin 

accessibility landscape.

(C) Proportions of cell subpopulations identified by model-based clustering.

(D) PCA plots of five distinct cell clusters identified by model-based clustering (top). 

Bottom plots indicate variability in chromatin accessibility at consensus TF binding motifs 

(n = 386) across single cells in each cluster.

(E) Representative DNA accessibility at TF binding motifs.

(F) Chromatin accessibility at lineage-specific TF binding motifs. *p < 0.05, **p < 0.01, 

***p < 0.001 versus cluster 1.

See also Figure S2.
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Figure 3. 2HG initiates cell-level fluctuations in the mammary epithelial epigenome
(A) ATAC-seq signal enrichment across ChromHMM-annotated genomic regions. Txn, 

transcription; CNV, copy number variation. *p < 0.05, **p < 0.01, ***p < 0.001 versus 

control. (B and C) Heatmaps showing enrichment of scATAC-seq signals at typical 

enhancers (B) and super-enhancers (C). Each row represents one individual element, and 

color represents the intensity of chromatin accessibility in the left panels. The corresponding 

density plots are shown on the right.

(D–G) Single-cell accessibility landscape across the genome centered on TSSs (D), 

enhancers (E), and weakly transcribed (F) and heterochromatin regions (G). Colors represent 

individual cells. Solid lines indicate mean values, and semi-transparent shade around the 

mean curve shows SEM across the region.

See also Figure S3.
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Figure 4. Chromatin remodeling involves tumor-associated promoter hypermethylation
(A) Heatmap depicting mRNA expression of highly methylated genes (n = 150) whose 

promoter regions showed diminished chromatin accessibility following 2HG exposure. The 

rectangle outlined in white represents genes that are downregulated in basal-like tumors.

(B) Box-and-whisker plot showing mRNA expression of genes that are indicated with white 

outline in (A). ***p < 0.001 versus adjacent normal tissue.

(C) Gene Ontology (GO) biological processes identified by DAVID pathway enrichment 

analysis of 150 genes that are hypermethylated in breast tumors.

(D) Heatmap showing chromatin accessibility of hypermethylated genes (n = 150) in breast 

tumors. The rectangle outlined in white represents genes exhibiting decreased expression in 

(A).

(E) Box-and-whisker plot showing chromatin accessibility of genes that are indicated with 

white outline in (D). ***p < 0.001 versus basal-like tumors.
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(F) Genome tracks showing diminished chromatin accessibility at gene promoters following 

2HG exposure. ChromHMM chromatin states (GSE38163), DNaseI-seq (GSE29692), 

H2AFZ chromatin immunoprecipitation sequencing (ChIP-seq) (GSE29611), and WGBS 

profiles (GSE86732) from HMECs are shown.

See also Figure S4 and Table S2.
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Figure 5. 2HG induces epigenetic discordancy and enhances phenotypic diversity
(A) Heatmaps of selected markers used for chromatin CyTOF, which simultaneously detects 

epigenetic modification levels as well as marker expression in single cells. HMECs were 

treated for 72 h with 100 μM of D2HG (D) or L2HG (L), or received no treatment (C). 

L2HG treatment was followed by 4-day withdrawal (LW). Each data point on the t-SNE 

maps represents an individual cell, and color corresponds to cellular levels of each marker.

(B) t-SNE projection of epigenetically distinct cell subsets defined by consensus hierarchical 

clustering.

(C) Heatmaps depicting changes in histone modifications. Normalized median values of 

signal intensities are shown for each cluster (right). Pie charts (left) indicate the proportion 

of cells from different experimental groups in each cluster.
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(D) Expression levels of DDR genes in cluster 1. **p < 0.01, ***p < 0.001 versus control.

(E) Heatmaps of pairwise Spearman correlations between marker levels in single cells. 

Black and blue arrowheads indicate reduced concordancy in gene expression and epigenetic 

modifications, respectively.

(F) Projection of minimum spanning trees (MSTs) obtained by SPADE analysis. The size 

and color of nodes represent the number of cells in each cluster, allowing visualization of the 

extent of cellular heterogeneity in treatment groups.

(G) Quantification of cellular heterogeneity using Simpson and Shannon entropy indices. 

***p < 0.001 versus control.

(H) Correlation between cell-to-cell variance in H3K9me3 and marker expression levels in 

each node identified by SPADE analysis.

See also Figure S5 and Table S3.
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Figure 6. Enhanced cellular diversity and undifferentiated stem-like signatures correlate with 
2HG production
(A) Pairwise correlation matrix of breast cancer cell lines. Spearman’s correlation 

coefficients between samples were assessed based on DNA methylation profiles of 3,000 

CpG islands (left), RNA-seq profiles of 18,319 protein-coding transcripts (center), and 

reverse-phase protein microarray (RPPA) profiles of 213 proteins (right). Green area plots 

indicate intracellular levels of 2HG.

(B) Heatmap depicting expression of luminal (n = 25) and myoepithelial (n = 25) genes in 

breast cancer cell lines (n = 47).

(C) Variance in mean expression levels between luminal and myoepithelial gene sets in 

2HG-low (n = 12) and 2HG-high (n = 12) cell lines. ***p < 0.001 by unpaired Student’s t 

test.

(D) Scatterplot showing the relationship between 2HG accumulation and genomic 

intratumor heterogeneity (gITH) in breast cancer cell lines (n = 47). ns, not significant.
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(E and F) Pairwise correlation matrix of TCGA primary tumors.

(G and H) Scatterplots showing the relationship of 2HG accumulation with transcriptomic 

intratumor heterogeneity (tITH) and genomic intratumor heterogeneity (gITH) in primary 

breast tumors (n = 20).

(I and J) Mature luminal and undifferentiated stem cell-like scores obtained by single-

sample scoring analysis using luminal mature (n = 50) and embryonic stem (n = 40) gene 

sets. Hexagonal density plots represent all breast tumor samples available in the TCGA 

cohort (n = 1,100). *p < 0.05, **p < 0.01, ***p < 0.001 by unpaired Student’s t test.

(K and L) Prognostic significance of undifferentiated stem-like signatures in individuals 

listed in the TCGA. Progression-free survival was evaluated using Kaplan-Meier analysis 

based on mRNA expression (K) and DNA methylation (L) of embryonic stem (n = 40) and 

luminal mature (n = 50) gene sets.

See also Figure S6.
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Figure 7. 2HG induces DNA damage accumulation, and A2P eradicates cancer cell heterogeneity
(A) Immunofluorescence staining of γH2AX. MCF-7 cells were treated with 2HG under 

the same conditions (100 μM for 72 h) as those used in the RNA-seq and ATAC-seq 

experiments. Scale bar, 10 μm.

(B) Quantification of cells with γH2AX focus-positive nuclei. For each treatment, 200–300 

cells were examined, and cells with at least four γH2AX foci in nuclei were counted as 

positive. ***p < 0.001 versus control.

(C) CyTOF analysis of γH2AX levels. HMECs were treated for 72 h with 100 μM of D2HG 

(D) or L2HG (L) or received no treatment (C). L2HG treatment was followed by 4-day 

withdrawal (LW).

(D) HRD scores in TCGA breast tumors. *p < 0.05 by unpaired Student’s t test.

(E) t-SNE visualization of CyTOF profiling. MDA-MB-231 cells were treated with 1 mM 

A2P or 100 μM αKG for 72 h or received no treatment.

(F) Projection of SPADE trees. The size and color of nodes represent the number of cells 

in each cluster, allowing visualization of the extent of cellular heterogeneity in treatment 

groups.

(G) Quantification of cellular heterogeneity using Simpson and Shannon diversity indices. 

*p < 0.05, **p < 0.01, ***p < 0.001 versus control.

(H) Heatmaps of pairwise Spearman correlations between marker levels in single cells. 

Arrowheads indicate reduced concordancy in gene expression.
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See also Figure S7 and Table S3.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-5hmC Active Motif Cat# 39769

Rabbit monoclonal anti-trimethyl-Histone H3 (Lys27) (Clone C36B11) Cell Signaling Technology Cat# 9733

Mouse monoclonal anti-phospho-Histone H2A.X (Ser139) (Clone 
JBW301) MilliporeSigma Cat# 05-636

Goat anti-rabbit IgG (H+L), Alexa Fluor 488 Invitrogen Cat# A-11008

Goat anti-mouse IgG (H+L), Alexa Fluor 488 Invitrogen Cat# A-11001

Mouse monoclonal anti-PCNA (Clone D3H8P) Cell Signaling Technology Cat# 13110

Rabbit polyclonal anti-BRCA1 Cell Signaling Technology Cat# 9010

Rabbit polyclonal anti-XRCC2 Abcam Cat# ab180752

Mouse monoclonal anti-RAD51C (Clone 2H11/6) Novus Biologicals Cat# NB100-177

Mouse monoclonal anti-MSH2 (Clone MSH2/2622) Novus Biologicals Cat# NBP3-07211

Rabbit polyclonal anti-FANCD2 Novus Biologicals Cat# NB100-182

Mouse monoclonal anti-FEN-1 (Clone 4E7) Novus Biologicals Cat# NB100-150

Rabbit polyclonal anti-BRIP1 Novus Biologicals Cat# NBP1-31883

Mouse monoclonal anti-beta-actin (Clone 937215) R&D Systems Cat# MAB8929

Rat monoclonal anti-phospho-Histone H3 (Ser28) (Clone HTA28) Fluidigm Cat# 3175012A

Mouse monoclonal anti-pH2AX [S139] (Clone N1-431) Fluidigm Cat# 3165036D

Mouse monoclonal anti-Ki67 (Clone B56) Fluidigm Cat# 3168007B

Mouse monoclonal anti-EpCAM (Clone 9C4) Fluidigm Cat# 3141006B

Mouse monoclonal anti-KRT8/18 (Clone C51) Fluidigm Cat# 3174014A

Rat monoclonal anti-CD49F (Clone GoH3) Fluidigm Cat# 3164006B

Mouse monoclonal anti-SOX2 (Clone O30-678) Fluidigm Cat# 3150019B

Mouse monoclonal anti-NANOG (Clone N31-355) Fluidigm Cat# 3169014A

Rat monoclonal anti-CD44 (Clone IM7) Fluidigm Cat# 3171003B

Mouse monoclonal anti-ALDH (Clone 44/ALDH) Fluidigm Cat# 3147015B

Mouse monoclonal anti-5mC (Clone 33D3) Active Motif Cat# 39649

Rat monoclonal anti-5hmC (Clone AB3/63.3) Novus Biologicals Cat# NBP2-50099

Mouse monoclonal anti-trimethyl-Histone H3 (Lys27) (Clone MABI 
0323)

Active Motif Cat# 61017

Mouse monoclonal anti-di, trimethyl-Histone H3 (Lys27)
(Clone mAbcam 6147)

Abcam Cat# ab6147

Mouse monoclonal anti-trimethyl-Histone H3 (Lys9) (Clone MABI 
0319) Active Motif Cat# 61013

Rabbit polyclonal anti-dimethyl-Histone H3 (Lys9) Invitrogen Cat# PA5-24987

Mouse monoclonal anti-di, trimethyl-Histone H4 (Lys20) (Clone 6F8-
D9)

Abcam Cat# ab78517

Mouse monoclonal anti-trimethyl-Histone H3 (Lys4) (Clone 
mAbcam12209)

Abcam Cat# ab12209

Mouse monoclonal anti-trimethyl-Histone H3 (Lys36) (Clone MABI 
0333) Active Motif Cat# 61021
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REAGENT or RESOURCE SOURCE IDENTIFIER

Rabbit polyclonal anti-monomethyl-Histone H3 (Lys36) Boster Biological Technology Cat# CI1064

Rabbit polyclonal anti-trimethyl-Histone H3 (Lys79) Boster Biological Technology Cat# CI1055

Rabbit polyclonal anti-dimethyl-Histone H3 (Lys79) Boster Biological Technology Cat# CI1046

Mouse monoclonal anti-BRCA1 (Clone MS110) Abcam Cat# ab16780

Mouse monoclonal anti-MSH2 (Clone 3A2B8C) Abcam Cat# ab52266

Mouse monoclonal anti-XRCC2 (Clone EPR5149) Abcam Cat# ab248049

Mouse monoclonal anti-PCNA (Clone PC10) Abcam Cat# ab264494

Mouse monoclonal anti-RAD51C (Clone 2H11/6) Novus Biologicals Cat# NB100-177

Mouse monoclonal anti-MRE11 (Clone 12D7) Novus Biologicals Cat# NB100-473

Mouse monoclonal anti-MLH1 (Clone 4C9C7) Cell Signaling Technology Cat# 3515S

Chemicals, peptides, and recombinant proteins

(2R)-Octyl-α-hydroxyglutarate Cayman Chemical Cat# 16366; CAS# 1391194-67-4

(2S)-Octyl-α-hydroxyglutarate Cayman Chemical Cat# 16367; CAS# 1391194-64-1

Dimethyloxalylglycine (DMOG) Sigma-Aldrich Cat# D3695; CAS# 89464-63-1

Ascorbate-2-phosphate (A2P) Sigma-Aldrich Ca# A8960; CAS# 113170-55-1

4-hydroxytamoxifen (4-OHT) Sigma-Aldrich Ca# H7904; CAS# 68047-06-3

[1,2,3,4–13C4]α-Ketoglutaric acid Cambridge Isotope Laboratories Cat# CLM-4442; CAS# 305-72-6

[1,2,3,4-13C4]L-Malic acid Cambridge Isotope Laboratories Cat# CLM-8065; CAS# 97-67-6

Diacetyl-L-tartaric anhydride (DATAN) Sigma-Aldrich Cat# 358924; CAS# 6283-74-5

Triton-X-100 ThermoFisher Cat# BP151-500

Hydrochloric acid ThermoFisher Cat# SA56-500

DAPI ThermoFisher Cat# 62248

RNase A ThermoFisher Cat# AM2269

Proteinase K QIAGEN Cat# 158920

GelRed Biotium Cat# 41003

Methanol Fisher Scientific Cat# A412-500

Propium idodide Sigma-Aldrich Cat# P4864; CAS# 25535-16-4

TRI Reagent Zymo Research Cat# R2050-1-200

ERCC RNA spike-in control mixes Ambion Ca# 4456740

Ethidium homodimer-1 Life Technologies Cat# L-3224

Calcein AM Life Technologies Cat# L-3224

NP40 Life Technologies Cat# 28324

Tn5 Transposase Illumina Cat# FC-121-1030

TD Illumina Cat# FC-121-1030

Nuclease-Free Water Life Technologies Cat# AM9937

EDTA Life Technologies Cat# AM9260G

Tris-HCl, pH 8.0 Life Technologies Cat# AM9855G

MgCl2 Life Technologies Cat# AM9530G

C1 Blocking Reagent Fluidigm Cat# 100-5316
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REAGENT or RESOURCE SOURCE IDENTIFIER

C1 Harvest Reagent Fluidigm Cat# 100-6248

C1 Preloading Reagent Fluidigm Cat# 100-5311

Suspension Reagent Fluidigm Cat# 100-5315

Cell Wash Buffer Fluidigm Cat# 100-5314

C1 No Salt Loading Reagent Fluidigm Cat# 101-0133

Bond-Breaker TCEP Solution, Neutral pH ThermoFisher Cat# 77720

Antibody Stabilizer CANDOR Bioscience Cat# 131050

Sodium azide Teknova Cat# S0209

Cell-ID Cisplatin Fluidigm Cat# 201064

Cell-ID Intercalator-Ir Fluidigm Cat# 201192A

Maxpar PBS Fluidigm Cat# 201058

Maxpar Water Fluidigm Cat# 201069

EQ Four Element Calibration Beads Fluidigm Cat# 201078

Paraformaldehyde Electron Microscopy Sciences Cat# 15710

Fc Receptor Blocking Solution BioLegend Cat# 422302

Critical commercial assays

Gentra Puregene Tissue Kit QIAGEN Cat# 158667

EpiTect Fast Bisulfite Conversion Kit QIAGEN Cat# 59826

PyroMark Q96 CpG LINE-1 QIAGEN Cat# 973043

NEBNext High-Fidelity 2X PCR Master Mix New England Biolabs Cat# M0541

MinElute PCR Purification Kit QIAGEN Cat# 28006

High Sensitivity DNA Kit Agilent Cat# 5067-4626

NextSeq 500/550 High Output Kit Illumina Cat# TG-160-2005

TrueMethyl oxBS Module NuGEN Technologies Cat# 0414-32

Qubit ssDNA Assay Kit Invitrogen Cat# Q10212

PyroMark Q48 Advanced CpG reagents QIAGEN Cat# 974022

GenoMatrix Whole Genome Amplification kit Active Motif Cat# 58001

PowerUP SYBR Green Master Mix ThermoFisher Cat# A25743

RiboFree Total RNA Library Kit Zymo Research Ca# R3003

Maxpar X8 Multimetal Labeling Kit Fluidigm Cat# 201300

Maxpar Nuclear Antigen Staining Buffer Set Fluidigm Cat# 201063

12-230 kDa Wes Separation Module, capillary cartridges ProteinSimple Cat# SM-W004

Deposited data

Raw single-cell ATAC-seq data This paper SRA: SRP217510 SuperSeries: 
GSE161628

Processed single-cell ATAC-seq data This paper SuperSeries: GSE161628

Raw RNA-seq data This paper SRA: SRP292912 SuperSeries: 
GSE161628

ChromHMM-defined chromatin state ENCODE GEO: GSE38163

DNaseI-seq data ENCODE GEO: GSE29692
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REAGENT or RESOURCE SOURCE IDENTIFIER

H2AFZ/H2A.Z ChIP-seq data ENCODE GEO: GSE29611

Whole-genome bisulfite sequencing (WGBS) data ENCODE GEO: GSE86732

The Cancer Methylome University of Texas Health 
Science Center at San Antonio

http://cbbiweb.uthscsa.edu/
KMethylomes

Cancer Cell Line Encyclopedia (CCLE) Broad Institute
https://portals.broadinstitute.org/
ccle

Encyclopedia of DNA Elements (ENCODE) Davis et al. (2018) https://www.encodeproject.org

Roadmap Epigenomics Ernst et al. (2011)
http://
www.roadmapepigenomics.org

The Cancer Genome Atlas (TCGA) Cancer Genome Atlas Network https://www.cancer.gov/tcga

Experimental models: Cell lines

Human: BT20 ATCC HTB-19

Human: BT474 ATCC HTB-20

Human: MCF7 ATCC HTB-22

Human: MDA-MB-157 ATCC HTB-24

Human: MDA-MB-231 ATCC HTB-26

Human: MDA-MB-361 ATCC HTB-27

Human: 184B5 ATCC CRL-8799

Human: MCF12A ATCC CRL-10782

Human: hTERT-HME1 ATCC CRL-4010

Human: Human Mammary Epithelial Cell (HMEC) Invitrogen A10565

Oligonucleotides

Nextera dual-index primers Buenrostro et al. (2015) N/A

CpG assays for oxBS pyrosequencing, see Table S2 This paper N/A

Primers for pyrosequencing, see Table S2 This paper N/A

Primers for MeDIP validation, see Table S2 This paper N/A

Software and algorithms

NIH ImageJ software NIH https://imagej.nih.gov/ij/

PyroMark CpG software QIAGEN N/A

CellQuest Pro software Becton Dickinson N/A

FlowJo software Tree Star N/A

FastQC tools Babraham Institute https://
www.bioinformatics.babraham.ac
.uk/projects/fastqc/

MultiQC tools Ewels et al. (2016) https://multiqc.info/

Cutadapt Martin (2011)

https://
cutadapt.readthedocs.io/en/
stable/

STAR Dobin et al. (2013)
https://github.com/alexdobin/
STAR/

DESeq2 Love et al. (2014)
https://github.com/mikelove/
DESeq2/blob/master/vignettes/
DESeq2.Rmd

GSEA software Broad Institute N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bowtie2 Langmead and Salzberg (2012) http://bowtie-bio.sourceforge.net/
bowtie2/index.shtml

Picard tools Broad Institute
http://broadinstitute.github.io/
picard/

SAMtools Sanger Institute Broad Institute http://samtools.sourceforge.net/

BEDtools University of Utah
https://
bedtools.readthedocs.io/en/latest/

MACS2 Dana-Farber Cancer Institute
http://liulab.dfci.harvard.edu/
MACS/

SCRAT Jietal. (2017) https://zhiji.shinyapps.io/scrat/

Integrative Genomics Viewer (IGV) Broad Institute and the Regents 
of the University of California

https://
software.broadinstitute.org/
software/igv/

Circos tools Canada’s Michael Smith 
Genome Sciences Centre http://circos.ca

Broad GDAC Firehose Broad Institute http://gdac.broadinstitute.org

R-statistical program R Foundation https://www.r-project.org/

cBioPortal Gao et al. (2013) https://www.cbioportal.org/

UCSC Xena browser
University of California, Santa 
Cruz https://xenabrowser.net/

Xcalibur software ThermoFisher N/A

ZEN software ZEISS N/A

StepOne software ThermoFisher N/A

PyroMark Assay Design software QIAGEN N/A

PyroMark Q48 Autoprep software QIAGEN N/A

CyTOF software Fluidigm N/A

Cytobank Cytobank Inc https://cytobank.org

Singscore Foroutan et al. (2018) https://davislaboratory.github.io/
singscore/articles/singscore.html

Compass software ProteinSimple https://www.proteinsimple.com/
compass/downloads/

GraphPad Prism GraphPad Software N/A

Other

8-well culture slide Corning Cat# 354118

ProLong Gold Antifade Mountant Invitrogen Cat# P36934

Slip-Rite cover glass ThermoFisher Cat# 152455

CellTrics filters, 20 mm Sysmex Cat# 04-004-2325

C1 Single-Cell Open App IFC, 10-17 mm Fluidigm Cat# 100-8134

Amicon Ultra-0.5 Centrifugal Filter Unit, 3 kDa Millipore Cat# UFC500396

Amicon Ultra-0.5 Centrifugal Filter Unit, 50 kDa Millipore Cat# UFC505096
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