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Naturally Occurring Fc-Dependent 
Antibody From HIV-Seronegative 
Individuals Promotes HIV-Induced 
IFN-α Production
Thomas Lum1,* & Jon A. Green1,2,*

A majority of adults without HIV infection and with a low risk of HIV-exposure have plasma IgG 
antibodies that enhance the rate and magnitude of HIV-induced interferon alpha (IFN-α) production. 
Fc-dependent IgG-HIV complexes induce IFN-α rapidly and in high titers in response to HIV 
concentrations that are too low to otherwise stimulate an effective IFN-α response. IFN-α promoting 
antibody (IPA) counters HIV-specific inhibition of IFN-α production, and compensates for the inherent 
delay in IFN-α production common to HIV infection and other viruses. Naturally occurring IPA has the 
potential to initiate a potent IFN-α response early in the course of HIV mucosal invasion in time to 
terminate infection prior to the creation of a pool of persistently infected cells. The current study adds 
IPA as a mediator of an Fc-dependent antiviral state capable of preventing HIV infection.

Human immunodeficiency virus (HIV) infection is relatively difficult to acquire, and large numbers of unpro-
tected heterosexual exposures are needed to produce a single infection1–3. Successful transmission initiated by 
a single transmitted founder virus occurs most commonly at a mucosal surface4–6. Reports of IFN-α​ resistant 
founder virus suggests that IFN-α​ can be protective in cases where infection is aborted5,7–9. However, there are 
limitations in postulating a definitive role for HIV-induced interferon in preventing infection. Although IFN-α​ 
is the central mediator of the innate antiviral immune response, its efficacy is limited by slow production and low 
initial titers10–12. Typically, multiple cycles of virus replication are needed to create virus concentrations capable 
of inducing IFN-α​ production, but only a few cycles of replication are needed for HIV to establish a pool of per-
manently infected cells13. In addition HIV further delays the onset and magnitude of IFN-α​ production9,14–16. 
In order to terminate HIV replication IFN-α​ would require the participation of as yet unidentified host factors 
capable of augmenting its production.

Previously, we have shown that serum immunoglobulin G (IgG) from individuals with advanced HIV infec-
tion markedly enhanced HIV-induced IFN-α​ production in vitro17. IgG capable of intensifying the IFN-α​ 
response has also been demonstrated for other viruses to which humans and animals have antibodies as a result 
of prior infection, immunization or environmental exposure17–23. However, prior viral exposure is not essen-
tial, and a majority of adults without identifiable vesicular stomatitis virus (VSV) exposure have serum IgG that 
enhances the rate and magnitude of VSV induced IFN-α​ production24. Regardless of its origins antibody that 
enhances virus-induced IFN-α​ production combines the antigenic specificity of Th-2 immune response with the 
multifaceted intensity of innate immunity. The current study examines plasma from people without HIV infec-
tion and with a low risk of HIV exposure for antibody capable of promoting HIV-induced IFN-α​ production to 
a degree that could explain how an otherwise, slow initially weak and virus-compromised IFN-α​ response could 
terminate HIV infection.

Results
Enhancement of HIV-induced IFN-a production by plasma from HIV-seronegative adults in 
geographic areas with high (Thailand) and low (USA) risks of HIV-infection.  Plasma from 41 of 
43 reproducibly HIV-seronegative individuals living in a relatively high risk environment in Thailand promoted 
IFN-α​ production by pDCs exposed to limited numbers of virus particles in the range of an MOI of 0.001–0.01. 
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Low virus concentrations were selected to simulate single transmitted founder viruses known to initiate mucosal 
infection in susceptible individuals6. HIV alone at these concentrations induced minimal IFN-α​ production in 
the range of 10–30 units. While in the presence of Thai seronegative plasma HIV induced IFN-α​ titers ranged 
from 33 to 67,252 units (average 4,585 units) of IFN-α​ (Fig. 1 column A).

Plasma from 24 of 33 individuals residing in a low risk area was also shown to enhance HIV-stimulated IFN-α​ 
production. No measurable IFN-α​ was detected in pDC cultures without virus or plasma, or in pDC cultures 
containing plasma without HIV (data not shown). Plasma from individuals residing in the USA induced IFN-α​ 
titers from 16 to 25,356 units with an average of 1,268 units (Fig. 1 column B). Plasma from 65 of 76 (86%) 
individuals from these two geographically and ethnically distinct populations promoted HIV-induced IFN-α​ 
production. The magnitude of enhancement was significantly greater for the Thai as compared to the USA pop-
ulation (P <​ 0.001).

Effect of plasma on the rate and magnitude of HIV-induced IFN-α production.  Previously, we 
identified increased sensitivity to induction by low viral inoculums, increased rate and quantity of IFN-α​ produc-
tion as defining characteristics of the process by which circulating IgG promotes the efficiency of IFN-α​ produc-
tion17,24. The rate and magnitude of IFN-α​ production by pDC was examined at intervals in cultures containing 
Thai plasma and HIV or HIV alone (Fig. 2A). HIV alone first induced IFN-α​ with a titer of 65 units at 24 hours. 
In comparison IFN was detected as early as 8 hours in cultures containing HIV and Thai plasma, was present in 
4 of 4 cultures with an average of 200 units at twelve hours and a titer of 650 to 3,050 units at 24 hours (Fig. 2A). 
The same pattern although with lower titers was noted for IFN-α​ production induced by HIV in the presence or 
absence of plasma from USA residents (Fig. 2B). Plasma from USA residents produced less striking acceleration 
of IFN-α​ production (Fig. 2B).

Characterization of the plasma component that promotes HIV-induced IFN-α production.  
Plasma derived, protein G purified IgG was examined for the ability to promote HIV-induced IFN-α​ production 
in pDC or PBMC cultures. When added to pDC cultures IgG derived from Thailand and USA plasma promoted 
IFN-α​ production to a variable, but statistically significant degree that ranged from a low of 155 to a high of 1,500 
units while HIV alone induced an average IFN-α​ of 13.5 units (Fig. 3A). Similar results, but with lower IFN-α​ 
titers, were obtained when IgG derived from USA plasma were examined in PBMC cultures (Fig. 3B). Unbound 
column samples had no IFN-α​ promoting activity. IgG that promoted HIV IFN-α​ production was defined as 
IFN-α​ Promoting Antibody or IPA.

Figure 1.  The ability of plasma from persons without HIV infection to promote HIV-induced IFN-α 
production. pDC IFN-α​ production induced by HIV plus plasma from: (column A) 43 HIV-seronegative Thai 
residents and (column B) 33 low risk USA residents (24 confirmed HIV seronegative-open circles; 9 healthy 
clinic personnel-closed circles). Each circle represents HIV-induced IFN-α​ production in the presence of 
plasma from a single individual assayed a minimum of three times. The mean IFN-α​ titer is indicated by the 
horizontal red line for each group (P <​ 0.001). Plasma did not induce IFN-α​ in the absence of HIV (data not 
shown).
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Immunoglobulin G-HIV complex formation and the induction of IFN-α.  Plasma with a demon-
strated ability to promote HIV-induced IFN-α​ production was incubated with HIV to allow antibody-virus 
complex formation. Immunoglobulin G bound to HIV was captured on and eluted from either gravity or spin 

Figure 2.  The time of appearance and titer of IFN-α​ induced by HIV in the presence or absence of HIV-
seronegative plasma from geographic areas of high (A) and low (B) HIV prevalence. IFN-α​ titers were 
measured at 8, 12 and 24 hours. Bars represent the titer of IFN-α​. Each plasma number represents a separate 
donor. Samples with no IFN-α​ titer are indicated with a single line.

Figure 3.  Promotion of HIV-induced IFN-α production by Protein G purified IgG. Protein G purified IgG was 
added at a final concentration of 70 μ​g/ml along with sub-stimulatory HIV concentration to pDC (A) or PBMC 
(B) cultures. Column fractions were assayed in triplicate (Bars). (*) denotes statistical significance (P <​ 0.03) 
between IFN-α​ titers induced by IgG and HIV compared to HIV alone. (A) (1‡) Pooled plasma samples from two 
Thai individuals or (2) from an individual donor. (A,B) USA plasma from individual donors.
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columns containing Protein G, back dialyzed and added to cultures at an average final concentration of 70 μ​g/ml. 
Eluted complexes were identified by their ability to promote IFN-α​ production in PBMC cultures (Fig. 4). HIV 
IIIB, and replication deficient HIV IIIB Δ​TAT/Rev virus were used for antigen-antibody complex formation. 
Antibody-HIVIIIB complexes induced an average IFN-α​ titer of 175 units, and an average of 38 units for HIV  
Δ​TAT/REV (Fig. 4). HIV not bound to IgG present in the incubation mixture passed through the column and 
did not induce IFN-α​.

Interferon characterization and assay selection.  Immune-specific reactivity of IFN-α​ produced in 
pDC and PBMC cultures was examined by bioassay in A549 cells and by an IFN-α​ multi-subtype immunoassay. 
Both methodologies produced concordant results, with the bioassay reporting approximately 10-fold higher 
IFN-α​ titers (Fig. 5). Antiviral activity from pDCs and PBMCs induced by HIV in the presence of IPA from per-
sons residing in the USA or Thailand were neutralized by >​99% with sheep polyclonal antibody (Ab) to human 
IFN-α​. No loss of antiviral activity occurred when IFN-α​ preparations were incubated with anti-IFNγ​ antibody 
(data not shown).

Antibody-Mediated Enhancement of HIV Induced IFN-a Production Requires FcR Binding and 
Endosomal Processing.  IFN-α​ production promoted by Thai plasma (samples 1–3) and USA (samples 
4–6) individuals were inhibited to undetectable levels in the presence of the endosomal alkalinizing agent chlo-
roquine (Fig. 6). Additionally, IPA mediated HIV induced IFN-α​ production was reduced to undetectable levels 
when PBMCs were pre-incubated with an FcR blockade reagent containing a mixture of antibodies that block 
surface Fcγ receptors (Fig. 6). The combination of blocking antibodies had no effect on PBMC to produce the 
FcγR-independent induction of IFN-γ by phytohaemagglutinin (PHA), while chloroquine inhibited interferon 

Figure 4.  Production of IFN-α promoted by IgG-HIV complex. Protein G purified IgG bound to HIV IIIB or 
replication deficient HIV Δ​Tat/Rev promoted IFN-a production in PBMCs. HIV bound to IgG #1, 2, 3 indicates 
an individual USA plasma sample. IFN-α​ titer for HIV IIIB-IgG complex is an average of two experiments. 
Unbound HIV washed from the column and Protein G purified IgG alone is also presented. (*) denotes 
statistical significance (P <​ 0.03) between IFN-α​ titers induced by HIV-IgG complex compared to HIV alone.

Figure 5.  Comparison of IFN-α quantification by biological and immune (ELISA) assays. HIV-induced 
IFN-α​ produced in cultures were measure using a bioassay (red circles) and a human IFN-α​ multi-subtype 
immunoassay (black triangles). The red and black lines are a computer generated best fit curve. Samples 
contained: pDC (#1), a low HIV concentration (#2), and individual plasma (#3–13).
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induction consistent with the known dependency of interferon production on endosomal processing25,26. Figure 6 
is representative of three separate experiments.

Discussion
The current study is to our knowledge the first report of antibody in uninfected humans with the potential to 
protect against HIV infection. We demonstrate that the majority of persons without HIV-infection, and a low pre-
dictability of HIV exposure have IgG that increases the rate and quantity of HIV-induced IFN-α​ production. This 
naturally occurring interferon promoting antibody (IPA) enables pDC and PBMC to rapidly produce high IFN-α​ 
titers in response to HIV concentrations which independently stimulate little or no IFN-α​ production. IFN-α​ 
produced in vitro by a few cells and rapidly diluted in a disproportionately large volume of cell culture media, 
underestimates the intensity of IFN-α​ production in the restricted confines of the mucosa where concentrations 
of IFN-α​ in millions of units can accumulate in the immediate vicinity of HIV exposed pDC27. IFN-α​ concentra-
tions of this magnitude can create an intense focused multifaceted anti-HIV response capable of preventing the 
infection of cells in the vicinity of the initial HIV-pDC interaction27–32. Naturally occurring IPA confers immune 
specificity to a non-specific but powerful innate immune response which affords the potential to extinguish viral 
replication before the creation of cells with permanent latent infection2,5,33,34.

HIV-specific neutralizing and non-neutralizing antibodies (non-Abs) have been derived from plasma in 
selected individuals with long-standing infection17,35–38. Broadly neutralizing antibodies (bnAbs) have been 
demonstrated to inhibit HIV replication in monkeys and humanized mice when administered before or con-
currently with HIV39–43. The Fcγ portion of bnAbs and non-nAbs antibodies are crucial in creating a potent 
host defense mechanism against infection that include ADCC, ADCVI, phagocytosing antibody and immune 
complexes that block CD4+​ T cell recruitment39,44–52. Our current study adds IPA, an antibody with the potential 
of creating robust production of IFN-α​ as a mediator of an Fc-dependent antiviral state capable of prevent-
ing HIV infection. To our knowledge, IPA is the only Fc-dependent antibody that does not require preexisting 
HIV-infection to exert its antiviral effects35–38. The wide range of IPA concentrations present in different individ-
uals raises the possibility that low or absent IPA would not provide a barrier to HIV replication while high IPA 

Figure 6.  Effects of FcR Blockade and Chloroquine on IFN-α induced by HIV in the Presence of IPA.  
(A) Individual plasma was added along with a minimally stimulatory HIV concentration to either PBMC alone 
or PBMC pretreated with FcR Blocking Reagent or with 10 μ​M Chloroquine. Individual Thai and USA plasma are 
indicated by numbers 1, 2, 3 and 4, 5, 6 respectively. (*) denotes an IFN-α​ stimulatory concentration. (B) IFN-γ 
induced by PHA in either PBMC alone or pretreated with FcR Blocking Reagent or Chloroquine (10 μ​M). Samples 
with no IFN-α​ titer are represented by a single line.
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activity would. Variation in IPA concentrations between individuals shown in the current studies may be explain 
person-to-person differences in IFN-α​ sensitivity reported for founder viruses isolates5,52–54.

The presence of HIV-IPA in a large proportion of the general population in non-endemic areas is supported 
by reports of HIV specific memory CD4+​ T-cells and anti-HIV antibody of unknown function in HIV seroneg-
ative people also residing in the San Francisco Bay Area in the USA55–57. The nearly universal prevalence of IPA 
in our subjects contrasts with their low probability of HIV exposure. Plasma donors in the USA live in a low risk 
environment, while Thai subjects were selected on the basis of low personal risk profiles and documentation of 
persistently HIV-seronegative tests [AP-VaxGen Protocol v1.12, Jan. 18, 2001]. The IPA titers in both populations 
ranged from undetectable levels to tens of thousands of units which as noted above is consistent with broad var-
iations in transmitted founder virus IFN-α​ resistance5,53,58. Possible IPA origins include exposure to unrelated 
viruses, sensitization to cross reacting antigens, auto-antibodies, low affinity polyreactive antibody and naturally 
occurring germ line IgG59–62. Regardless of its origins, IPA offers a potential explanation for the means by which 
IFN-α​ can provide a barrier to primary HIV infection7–9,63. Confirmation of naturally occurring IPA as a corre-
late of protection has the potential to expand an understanding of the pathogenesis of HIV infection and to offer 
alternatives for vaccine development.

Materials and Methods
Blood Donors.  Blood was collected by venipuncture from healthy volunteers living in the San Francisco Bay 
Area of Northern California. Blood was drawn into 4.5 ml tubes containing lithium heparin (Becton Dickenson, 
Franklin Lakes, NJ) and processed the same day for isolation of pDC, PBMC or plasma. All individuals signed 
an informed consent. This study was approved by the Institutional Review Board for the Department of Veterans 
Affairs Northern California Health Care System. All methods were performed in accordance with the relevant 
guidelines and regulations.

Plasma.  Plasma was obtained from 3 sources: (1) Healthy HIV seronegative volunteers as noted above (2) 
Plasma samples from clinic attendees undergoing a Centers for Disease Control and Prevention (CDC) recom-
mended screening for HIV infection using the HIV Ag/Ab Combo assay (Abbott Laboratories, Abbott Park, IL). 
De-identified HIV seronegative plasma specimens were provided by the clinical laboratory immediately prior to 
being discarded. Samples were numbered sequentially and stored at −​80 °C in the research laboratory and (3) 
plasma samples from subjects taken prior to participating in a Phase II HIV vaccine trial (RV135) in Thailand 
kindly provided by Dr. Jerome Kim of the U.S. Military HIV Research Program. Subjects were selected for par-
ticipation based on low personal risk profiles despite residing in a high risk environment. A low risk designation 
was supported by the fact that all RV135 samples were HIV-Serology negative at the time they were obtained and 
when examined intermittently during the next 12 months [AP-VaxGen Protocol v1.12, Jan. 18, 2001].

Peripheral blood mononuclear cell (PBMC) cultures.  Venous blood was obtained from healthy HIV 
seronegative volunteers as noted above. Isolation and preparation of PBMC was performed as described previously64.  
PBMC were isolated on Histopaque (Sigma Aldrich, St. Louis, MO), and suspended at a final concentration of 
2.0 ×​ 106 cells/ml in RPMI-1640 (Sigma Aldrich, St. Louis, MO) with 10% fetal bovine serum (FBS) (Hyclone, 
Logan, UT) and gentamicin (10 μ​l/ml). PBMC suspensions were dispensed in 400 μ​l quantities into loosely 
capped disposable borosilicate glass tubes (16 ×​ 100 mm) and maintained overnight at 37 °C in a humidified 5% 
CO2 atmosphere incubator.

Plasmacytoid dendritic cell (pDC) cultures.  A Plasmacytoid Dendritic Cell Isolation Kit II (Miltenyi 
Biotech, Auburn, CA) was used to magnetically separate unlabeled pDCs from PBMCs. pDC isolation was per-
formed according to the manufacturer’s instructions and yielded a pDC purity >​95%. Purified pDCs were sus-
pended at 2.0 ×​ 104 cells (200 μ​l) in RPMI-1640 with 10% FBS and gentamicin (10 μ​l/ml). pDC suspensions were 
dispensed into a 96-well cell culture plates (Santa Cruz Biotechnology Inc., Dallas, TX) and maintained in a 
humidified 5% CO2 atmosphere incubator at 37 °C for 24–48 hours.

Demographics.  Thailand Plasma Samples.  The total study population consists of 43 healthy HIV-seronegative  
Thai adults, approximately equal number of males and female between the ages of 20–50 years old. Subjects were 
participants in the phase II (RV135) precursor to the phase III RV144 vaccine trial, certified that they avoided 
high risk behavior for HIV acquisition, and had initial and periodic negative HIV-Western Blot tests during the 
12 month study.

USA Plasma, pDC and PBMC Samples.  Both healthy male and female clinic personnel in a 2:1 ratio donated 
blood for pDC and PBMC isolation. All but three experiments used pDC from males. HIV-seronegative plasma 
were obtained from individuals residing in the USA at a clinic for military veterans where the majority of patients 
are male.

Viruses.  HIV-1 (strain IIIB) concentrated 1000 times from infected H9 cell culture supernatant (107 TCID/ml),  
and HIV-1 (strain IIIB) propagated in H9 cells and gradient purified from culture supernatants (106.8 TCID/ml) 
were purchased from Advanced Biotechnologies Inc. (Eldersburg, MD) and used interchangeably in experiments. 
Stock virus was stored in aliquots (60 μ​l) at −​80 °C. Each aliquot was rapidly defrosted at room temperature 
and refrozen a maximum of ten times. HIV-1 MC99IIIBΔ​Tat-Rev and CEM-TART cells were acquired through 
the NIH AIDS Reagent Program, from Drs. Herbert Chen, Terence Boyle, Michael Malim, Bryan Cullen, and  
H. Kim Lyerly (Germantown, MD). HIV-1 MC99IIIBΔ​Tat-Rev was propagated in CEM-TART cells as previously 
described by Chen et al.65. Cell culture media were collected on day 15, centrifuged (3000 rpm) at 4 °C, divided 
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into aliquots (1 ml) and stored at − 80 °C. Encephalomycocarditis (EMC) virus used in the IFN-α​ bioassay was 
prepared as described previously66.

Interferon Alpha Production.  After PBMC or pDC were isolated and dispensed, either 1000x pelleted HIV-1 
IIIB with a TCID50 titer of 107.5 TCID50/ml was added at an MOI of 0.001–0.01 or gradient purified HIV-1 IIIB 
with a TCID50 titer 106.8 TCID50/ml were used interchangeably and were added to cultures at an MOI 0.001–0.05.  
A final dilution of human plasma (1:100) or purified IgG (1:10) were added to sample cultures. MOI for each 
HIV-1 virus type was selected based on its ability to induce minimal (<​100U) IFN-α​ production17,18. HIV and 
plasma or IgG were added to the cultures without pre-incubation and gently agitated.

Interferon Alpha Bio-Assay.  Interferon alpha titer was reported as units (U) and quantified as a reciprocal 
of the dilution producing a 50% photometric CPE reduction produced by EMC virus in the continuous human 
A549 cell line (American Type Culture Collection, Manassas, VA)66. HIV did not directly stimulate development 
of an anti-viral state in A549 cells. When present, HIV-induced IFN-α​ titers in cultures containing virus alone 
were subtracted from IFN-α​ titers produced in the presence of plasma.

Interferon Alpha Enzyme Linked Immunosorbent Assay (ELISA).  Interferon alpha from stored cul-
ture samples used in bioassays were measured using an ELISA kit (PBL Interferon Source, Piscataway, NY) and 
performed according to the manufacturer’s protocol. The assay is specific for detecting IFN-α​ in human culture 
media with an extended sensitivity range of 156–5000 pg/ml, and does not recognize IFN-β​ or IFN-γ​. ELISA 
generated IFN-α titers were converted from picograms to units using the conversion formula of 3 pg/ml to 1 unit of 
IFN-α.

Interferon Alpha Neutralization Assay.  Neutralization of IFN by mono-specific antisera was performed 
as previously described64. In brief, 10 μ​l volumes of human IFN-α​ or IFN-γ​ antisera were diluted to a concentra-
tion of 500–1000 neutralizing units and incubated for 1 hour at 37 °C with diluted specimen (90 μ​l) containing 
approximately 30U of IFN-α​. Serial 2-fold dilutions were made of the antiserum IFN mixtures and assayed for 
antiviral activity.

Inactivation of IFN-α Production by Chloroquine or FcR Blocking Reagent.  PBMC cultures with 
HIV or HIV and serum contained either.  Chloroquine (Sigma Aldrich, St. Louis, MO) was added at a final con-
centration of 10 μ​M. This concentration was shown by others to maximally inhibit endosomal acidification while 
maintaining PBMC viability67. Chloroquine remained in PBMC cultures for the duration of the assay.

FcR Blocking Reagent used in accordance with the manufacturer’s protocol (Miltenyi Biotech, Auburn, CA). 
PBMC and FcR blocking reagent were co-incubated at 4 °C for 15 minutes, unattached blocking reagent was 
removed by sequential centrifugation prior to resuspending PBMC in culture medium.

Control cultures containing 5 μ​g/ml phytohaemagglutinin (PHA) (Sigma Aldrich, St. Louis, MO) or PHA and 
serum were incubated for 48 hours.

Streptococcus Protein G Isolation and Recovery of Purified IgG.  Immunoglobulin G was purified 
on a Protein G column from individual plasma from USA and Thailand. Thai plasma available in limited quan-
tities was conserved by combining two samples to have sufficient volume for purification while preserving the 
remaining plasma for future studies. Human plasma was diluted 1:1 with PBS (1 M) at pH 7.25 and clarified by 
micro-centrifugation. One milliliter was added to a 3 ml column containing Protein G-Agarose Fast Flow beads 
(1 ml) (Sigma Aldrich, St. Louis, MO) equilibrated with PBS (1 M) pH 7.25 buffer, washed with PBS (30 ml, 1 M) 
pH 7.25 and eluted with trimethylamine (10 ml, 100 mM) at pH 10.5 into NaH2PO4 (60 μ​l, 1 M) at pH 4.5 (final 
pH 7.0), back dialyzed against RPMI-1640 and immediately added to either PBMC or pDC cultures.

HIV Bound Human IgG Immune Complex Preparation.  Human plasma was clarified by 
micro-centrifugation prior to complex formation. Buffers and elution procedures were the same as those used in 
IgG recovery described above.

Gravity columns.  To reduce the risk of laboratory acquired infection, replication deficient HIV-1 MC99IIIBΔ​Tat- 
Rev (50 μ​l) was used. HIV IIIB Δ​Tat-Rev was added to individual human plasma (0.5 ml), incubated for 1 hour at 
4 °C, and diluted 1:1 with PBS (1 M) at pH 7.25. Replication deficient HIV-1 bound to IgG was isolated on Protein 
G-Agarose Fast Flow columns, collected in 0.5 ml volumes and eluted as described above.

Spin columns were used to isolate IgG-bound replication competent virus while reducing the infectious poten-
tial of gravity columns. HIV-1 IIIB (2.5 μ​l) in RPMI-1640 (400 μ​l) was incubated with plasma (400 μ​l) at 4 °C 
for 30 mins and added to Multipurpose Mini Spin Columns (BioVison Inc., Milpitas, CA) containing Protein 
G-Agarose Fast Flow beads (400 μ​l). Beads were washed 5 times with PBS (1 M) at pH 7.25 and 2–5 second pulse 
spins. HIV-1 bound IgG was eluted into tubes containing NaH2PO4 (50 μ​l, 1 M) at pH 4.5, and dialyzed overnight 
at 4 °C in RPMI-1640.

Approval of experimental protocols.  Experimental protocols were approved by the Institutional Review 
Board for the Department of Veterans Affairs Northern California Health Care System and all experimental pro-
tocols were performed in accordance with relevant guidelines and regulations.
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