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Abstract
Recent biological, structural, and technical advances are converging within the
HIV-1 vaccine field to harness the power of antibodies for prevention and
therapy. Numerous monoclonal antibodies with broad neutralizing activity
against diverse HIV-1 isolates have now been identified, revealing at least five
sites of vulnerability on the envelope (Env) glycoproteins. While there are
practical and technological barriers blocking a clear path from broadly
neutralizing antibodies (bNAb) to a protective vaccine, this is not a dead end.
Scientists are revisiting old approaches with new technology, cutting new trails
through unexplored territory, and paving new roads in the hopes of preventing
HIV-1 infection. Other promising avenues to capitalize on the power of bNAbs
are also being pursued, such as passive antibody immunotherapy and gene
therapy approaches. Moreover, non-neutralizing antibodies have inhibitory
activities that could have protective potential, alone or in combination with
bNAbs. With a new generation of bNAbs, and a clinical trial that associated
antibodies with reduced acquisition, the field is closer than ever to developing
strategies to use antibodies against HIV-1.
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Introduction
Neutralizing antibodies against HIV-1 were first described early in 
the HIV-1 epidemic1, raising hopes that a protective vaccine was 
in the immediate future. Yet 30 years later, only one vaccination 
regimen has shown any efficacy in humans to date2, essentially in 
the absence of functional neutralizing antibody activity3,4. Indeed, 
most vaccine approaches tested so far mainly elicit antibodies that 
can only neutralize T-cell line-adapted strains and the minor frac-
tion of naturally occurring strains that exhibit a highly sensitive tier 
1 neutralization phenotype4–8. This is because most naturally occur-
ring HIV-1 isolates tend to mask vulnerable surfaces, making them 
much more difficult to neutralize, classified as possessing a tier 
2 or 3 phenotype9–11. Stopping these neutralization-resistant, geneti-
cally diverse HIV-1 strains, which constitute the majority of the 
current global pandemic, will require an approach that successfully 
targets one or more regions of the trimeric envelope glycoprotein 
(Env) spike that are vulnerable to neutralization on most tier 2 
viruses. However, all broadly neutralizing antibodies (bNAbs) iden-
tified thus far possess one or more unusual features12, suggesting 
that they will be difficult to generate via vaccination. To overcome 
this and other potential obstacles, the HIV-1 research community is 
now moving forward along two major paths: (1) developing novel 
strategies to elicit antibodies capable of broadly and potently neu-
tralizing clinically relevant, genetically diverse HIV-1 strains and 
(2) combining knowledge of bNAbs with modern technologies to 
create protective alternatives and therapeutic options (Figure 1).

Innovative application of bNAbs for HIV prevention 
and therapy
During natural HIV-1 infection, most individuals develop antibodies 
with some level of heterologous neutralization breadth13,14, although 
only a small fraction of these individuals go on to develop high tit-
ers of the most extraordinary bNAbs15. A focused effort to recover 
monoclonal antibodies from these rare individuals with very potent 

and broad plasma-neutralizing activity has led to a collection of a 
few dozen bNAbs, defined as having the ability to neutralize more 
than 60% of the variants in multi-clade HIV-1 Env panels at a con-
centration of less than 50 μg/ml12,16. In turn, these discoveries have 
led to the identification of five regions on the viral Env trimer that 
are accessible to bNAbs: the CD4-binding site (CD4bs), the gp120 
V1V2 hyper-variable domain, a glycan patch centered on the base 
of the gp120 V3 domain, the gp120 and gp41 interface, and the 
membrane proximal external region (MPER) of gp41. These dis-
coveries have collectively bolstered optimism that bNAbs could 
also be elicited by vaccination.

However, genetic and structural characterizations of the most prom-
ising bNAbs have revealed substantial obstacles to eliciting them 
through vaccination. Although HIV-1 bNAbs can arise from several 
immunoglobulin germline precursors, they have unusual features 
such as high levels of somatic hypermutation, uncharacteristically 
long CDR H3 (complementarity determining region H3) domains, 
and in some cases polyreactivity12. This may be because bNAbs 
must recognize complex epitopes that exhibit variation across HIV-1 
strains and are often composed of both glycan and peptide17–21. 
Moreover, HIV-1 Env protein immunogens often do not readily 
bind and activate the germline precursors that have been associated 
with bNAb development, complicating immunogen design22–26. To 
gain more insight into the ontogeny of bNAbs, recent studies identi-
fied individuals who developed neutralizing antibody breadth early 
in infection and tracked co-evolution of the autologous virus and 
antibody lineages27–30. Key features that drive bNAb development 
appear to be the presence of a specific antibody germline precursor, 
a viral Env that can engage it, and temporal exposure of the anti-
body lineage to an array of highly related Env variants presenting 
different versions of the same epitope. The proficiency with which 
an antibody can neutralize autologous escape variants seems to be 
directly correlated with its ability to neutralize genetically diverse 

Figure 1. Three promising avenues for using HIV-1 broadly neutralizing antibodies (bNAbs) for protection and therapy. Each area of 
pursuit is shown, and potential obstacles are listed below. For vaccination, there are two approaches for generating immunogens that will face 
common barriers. Env, envelope glycoprotein; NHP, non-human primate.
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isolates29. Yet even within a successful bNAb lineage, there are anti-
bodies that share the features associated with bNAb activity but do 
not acquire breadth29,31,32. The observation that some antibodies fol-
low an evolutionary path toward acquiring neutralization breadth, 
while others do not, has yet to be explained. Incorporating informa-
tion from these longitudinal studies of bNAb development into the 
design of Env immunogens that mimic this naturally occurring, but 
rare, process will be challenging, since it is likely that other host 
and viral factors also influence bNAb development12,33.

Now that the development of two bNAb lineages has been traced 
in natural infection and the initiating and mutated Env variants 
determined, panels of Env immunogens based on these pathways 
can be developed and tested. Then again, the most important con-
siderations for evaluating these novel Env immunogen panels are 
ambiguous. Should the indication to move forward with a series of 
immunogens be marked by successful stimulation of a particular 
bNAb germline, or a bNAb-related specificity with any germline? 
What level of heterologous tier 2 neutralization should be consid-
ered a success? Should protection from viral challenge also be dem-
onstrated? Although transgenic mice have been used to model bNAb 
induction34,35, the rhesus macaque model remains the most relevant 
for HIV vaccine studies. But this model is not ideal. There is lim-
ited information about the development of neutralization breadth 
in HIV-1 Env-immunized or chimeric simian-human immunodefi-
ciency virus (SHIV)-infected rhesus macaques36–40, and the antibody 
germline repertoire of this species is similar but not identical to that 
of humans39,41. Interestingly, Env-specific antibodies from immu-
nized rhesus macaques that exhibited the highest somatic hyper-
mutation levels arose from a single VH (immunoglobulin variable 
domain heavy-chain segment) gene37. Furthermore, a high level of 
somatic hypermutation in VH was not associated with serum neu-
tralization breadth. Studies of immunized rhesus macaques have 
also demonstrated that CD4bs antibodies can be elicited, but these 
antibodies do not exhibit breadth, possibly because their angle of 
approach differs from that of the VRC01-like CD4bs bNAbs42,43. 
Thus, it will be important to carefully consider similarities and dif-
ferences among non-human primates and humans when evaluating 
strategies to elicit bNAbs.

Another uncertainty regarding testing naturally occurring bNAb-
associated Env immunogens is what form of Env should be admin-
istered. Do immunogens that retain the native trimeric Env structure 
present more relevant epitopes than monomeric gp120 or gp140 pro-
teins for eliciting antibodies with breadth? The best-characterized 
Env trimer to date, BG505 SOSIP.664, is capable of activating 
inferred germlines from bNAbs in vitro26. However, thus far, immu-
nization of rhesus macaques with the BG505 SOSIP.664 trimer has 
not induced cross-reactive tier 2 neutralizing antibody responses8. 
The BG505 trimer immunogen did elicit low titers of antibodies 
that neutralized the tier 2 autologous pseudovirus and higher titers 
of antibodies that neutralized tier 1 Env variants. In addition, rhesus 
macaques immunized with a different trimer produced an antibody 
response that was polyclonal even within those directed against a 
single target42. Additional Env trimers from different HIV-1 genetic 
subtypes (clades) of the virus are being generated and characterized44 
and this will lead to a greater selection of immunogens to build 
upon.

Another matter to consider is that a precursor B cell that is capa-
ble of initiating a bNAb lineage may be relatively rare within 
the immune repertoire. To highlight the low chance of activating 
a particular heavy chain (VH) germline, there are approximately 
76 to 84 functional VH possibilities in the human genome. The 
VH3-30 family, which is found in the V1V2-targeted bNAb line-
age CAP256-VRC26 described by Doria-Rose et al.27 and Bhiman 
et al.29, contains 19 different alleles45. Furthermore, there are inher-
ent biases for and against heavy chain families and even individual 
alleles within families. Stimulating a specific B cell out of so many 
possibilities, in a genetically diverse population, is a daunting task. 
Compounding the rarity of the initial B cell, even the unmutated 
common ancestor, may need to have acquired unique features, such 
as a long CDR H3, or unusual insertions/deletions. The CAP256-
VRC26 bNAb lineage was initiated by an unmutated precursor that 
had an extraordinarily long CDR H3 region27,29. At 35 to 37 amino 
acids, the CAP256-VRC26 CDR H3 regions are more than twice 
the average length for human antibodies, approximately 15 amino 
acids46. These inherent obstacles will need to be taken into consid-
eration when designing a vaccine strategy. Finally, a specific Env 
variant that is capable of activating this unique germline must be 
present. It seems unlikely that a randomly selected Env immuno-
gen will elicit a bNAb lineage. In the case of CAP256-VRC26, a 
variant that evolved from a superinfecting virus, but not the primary 
infecting virus quasispecies, initiated the bNAb lineage29. The site 
of recognition on the antigen(s) by that initial antibody precursor 
also seems to be important, as different pathways to neutralization 
breadth were described for V1V2- and CD4bs-targeted bNAbs, the 
latter of which required a second helped antibody lineage27,28.

Even with more knowledge about bNAbs and how they develop, 
the barriers standing in the way of an HIV vaccine are formidable. 
Avenues that are being explored independently of a vaccine are pas-
sive administration of bNAbs for immunotherapy and prevention. 
With a newer generation of bNAbs, an older idea such as passive 
immunotherapy might be more effective. The process of selecting 
bNAbs to advance into the clinical pipeline will require a careful 
assessment of multiple antibody properties, including their stabili-
ties, pharmacokinetic profiles, and safety. One phase I trial of bNAb 
VRC01, which targets the CD4bs, has been conducted evaluating 
both intravenous and subcutaneous administration. This study indi-
cated that both delivery routes were safe; however, subcutaneous 
delivery may be limited by the dosing required for adults and may 
be more suitable for infants47. Caskey et al. infused variable doses 
of 3BNC117, which also targets the CD4bs, into healthy controls 
and HIV+ patients48. This monoclonal antibody therapy was well 
tolerated, and all of the HIV+ patients who received the highest 
dose experienced significant decreases in viral load. Predictably, in 
some patients, a familiar specter emerged: mutations present within 
the patients’ viral quasispecies facilitated escape from 3BNC117 
neutralization. Thus, like the scenario that successful antiretroviral 
drug therapy requires the use of several different inhibitors, passive 
immunotherapy will likely require the use of a cocktail of bNAbs 
that target distinct regions of Env. An additional consideration is 
that bNAbs do not always exhibit complete neutralization in vitro. 
In some cases, a subfraction of virions exists that is refractory to 
inhibition. This “incomplete neutralization” phenomenon has been 
attributed to heterogeneity in virion-associated Env glycosylation, 
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or conformation within the genetically clonal virus population, 
or both49,50. bNAbs that are more tolerant of this type of variation 
are more likely to achieve complete neutralization, but this is also 
dependent upon the properties of the Env variant itself49. Recently, 
for bNAbs that are capable of complete viral neutralization, it 
was shown that the slope of the neutralization curve could be an 
important determinant of the therapeutic potential of a particular 
bNAb and should be considered along with breadth and potency50. 
This study also revealed that CD4bs and V3 base/glycan-targeted 
bNAbs, because of their high inhibitory potential, could be 
especially beneficial for immunotherapy.

Besides viral escape, other roadblocks to the successful and wide-
spread implementation of passive immunotherapy are the cost and 
logistics associated with the mass production of a sufficient amount 
of bNAbs. Researchers are now using tobacco plants to produce an 
arsenal of HIV-1 bNAbs51,52. The tobacco plants have been geneti-
cally modified to modulate antibody glycosylation and sulfation and 
allow antibody production to be ramped up to an industrial scale. A 
cocktail of monoclonal antibodies produced in this manner was used 
as an emergency treatment for Ebola during the 2014 epidemic53,54. 
With the recovery of so many different HIV-1 bNAbs, some with 
extraordinary potency and breadth, immunotherapy could also have 
an important role to play in treating HIV-1 infection.

Given the uncertainty of whether bNAbs can be induced via a vac-
cine, researchers are also venturing into the uncharted territories of 
gene therapy, which combined with the new generation of bNAbs 
has opened up new options. Gene therapy protocols are being 
developed to potentially deliver bNAb over long periods of time; 
the idea is that a sufficient amount of bNAbs present at the time 
of exposure might be able to prevent HIV-1 infection altogether. 
This concept is supported by numerous observations that passive 
administration of bNAbs to rhesus macaques at high concentrations 
can prevent mucosal SHIV infection55. One question that remains is 
whether bNAbs generated by passive administration, gene therapy, 
and immunization will all have the same protective potential56–59. As 
proof of concept, adeno-associated virus (AAV) has recently been 
used as a vector to deliver the genetic material that encodes VRC07, 
a CD4bs bNAb, into humanized mice and rhesus macaques. Both 
animal models showed that this mode of antibody delivery could 
protect from a mucosal challenge60,61. Gardner et al. took this 
concept a step further, creating a novel chimeric antibody that is 
more potent and broad than even the best bNAbs62. This construct, 
eCD4-Ig, combines the broad recognition ability of CD4 (a receptor 
essential for all HIV-1, HIV-2, and simian immunodeficiency virus 
[SIV] variants) with a sulfated peptide that mimics the co-receptor 
CCR5. When AAV was used to deliver eCD4-Ig to rhesus macaques, 
the animals showed no sign of infection for the duration of the study 
(40 weeks post-therapy), despite escalating intravenous challenges. 
This represents a stellar example of how a strong basic research 
program can lead to innovative and promising approaches63–67.

Given the difficulties in delivering bNAbs discussed above or in 
eliciting them by vaccination, some researchers are staying the 

course to a vaccine by developing approaches to protect against 
HIV-1 without bNAb. One alternative is to generate antibodies capa-
ble of mediating antibody-dependent cellular cytotoxicity (ADCC). 
Although the RV144 vaccine trial generated antibody responses 
with minimal neutralization capabilities, these same antibodies 
were capable of mediating ADCC68. Thus, it is worth revisiting the 
protective potential of non-neutralizing antibodies, which could be 
more amenable to elicitation by a vaccine57,69–71. Another option is to 
delve into the antibody ontogeny of more HIV-1-infected patients, 
looking for more attainable antibody goals as well as identifying 
viral and immunological roadblocks that prevent the development 
of neutralization breadth. Rather than trying to coax the immune 
system into making rare antibodies, one could focus on strategies to 
elicit antibodies with moderate breadth, limited somatic hypermu-
tation, typical CDR H3 lengths, and commonly used VH germline 
precursors72. Perhaps eliciting combinations of these more com-
mon types of antibodies would provide some level of protection 
in the end.

Summary
The past several years have seen major advances in terms of 
antibody-mediated protection and therapy against HIV-1. bNAbs, 
though rare, are generated in multiple HIV-1-infected individuals. 
Insight into bNAb ontogeny during natural infection has revealed 
novel strategies for vaccination, but at the same time these stud-
ies have highlighted the difficulties that will need to be overcome. 
Other avenues for passive therapy and protection have become 
possible because of the new generation of bNAbs, some of which 
can neutralize up to 90% of genetically diverse isolates tested 
and could be even more effective when combined optimally73. 
Innovative design of Env immunogens, chimeric antibodies, and 
enhanced bNAbs may also yield protective or therapeutic benefits. 
Finally, bNAb-independent approaches that involve more moderate 
neutralization breadth or non-neutralizing effector functions may 
also hold promise.
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