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Curcumin is an attractive agent due to its multiple bioactivities. However, the low

oral bioavailability and efficacy profile hinders its clinical application. To improve the

bioavailability, many analogs of curcumin have been developed, among which EF24 is

an excellent representative. EF24 has enhanced bioavailability over curcumin and shows

more potent bioactivity, including anti-cancer, anti-inflammatory, and anti-bacterial. EF24

inhibits tumor growth by inducing cell cycle arrest and apoptosis, mainly through its

inhibitory effect on the nuclear factor kappa B (NF-κB) pathway and by regulating key

genes through microRNA (miRNA) or the proteosomal pathway. Based on the current

structure, more potent EF24 analogs have been designed and synthesized. However,

some roles of EF24 remain unclear, such as whether it induces or inhibits reactive oxygen

species (ROS) production and whether it stimulates or inhibits the mitogen activated

kinase-like protein (MAPK) pathway. This review summarizes the known biological and

pharmacological activities and mechanisms of action of EF24.
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INTRODUCTION

Many natural products have been identified for various medicinal purposes (1–3). Curcumin, a
hydrophobic polyphenol derived from the rhizome of the herb Curcuma longa is a well-defined
example. It has demonstrated wide-spectrum biological and pharmacological activities, such as
antioxidant (4, 5), anti-inflammatory (6) antimicrobial (7–10), and anti-cancer (11) activities.
Potential problems hindering the clinical use of curcumin are its low potency and poor absorption
characteristics (12). The bioactivities and applications of curcumin have been well summarized
elsewhere (13–17). Regardless, curcumin remains an ideal lead compound for the design of more
effective analogs.

A promising curcumin analog, EF24, displays multiple potent bioactivities and increased
bioavailability compared to curcumin. The chemical structures of curcumin and EF24 are shown in
Figure 1. EF24 was first designed and synthesized by Adams et al. (18). The authors reported that
EF24 induced cell cycle arrest and apoptosis via a redox-dependent mechanism in cancer cells (19).
Later, EF24 was shown to have promising bioactivities, especially its anti-cancer activity in various
solid tumors (18) and leukemia (20). Compared to the classical chemotherapy drug cisplatin,
EF24 is more efficacious and less toxic (18). EF24 exerts its anti-cancer activity by inhibiting
cancer cell proliferation or causing apoptosis via multiple pathways, such as inhibiting NF-κB
(21), inhibiting HIF-1α activity (22), and regulating reactive oxygen species (ROS). In addition,
EF24 shows promising anti-inflammatory (23–25) and anti-microbial activities (26). To improve
the potency and bioavailability, new analogs were developed based on the structure of EF24. Here
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FIGURE 1 | Chemical structures of curcumin (A) and EF24 (B).

we will focus on summarizing in detail the known bioactivities
and mechanisms of action of EF24 and briefly touch on the new
derivatives in this review.

BIOLOGICAL ACTIVITIES AND
MECHANISMS OF ACTION OF EF24

Anti-cancer Activities
In 2004, Adams et al. synthesized and screened a series of
curcumin analogs, among which EF24 demonstrated a high
degree of cytotoxicity to cancer cells, showing higher potency
than the commonly used chemotherapeutic drug cisplatin in
inhibiting tumor cell growth (18). Additionally, EF24 was found
to be the most potent anti-angiogenic compound among the
analogs (almost as potent as the anti-angiogenic drug TNP-
470) (18). In vivo studies showed that EF24 can effectively
inhibit breast tumor growth with little toxicity in a mouse
xenograft model (18), demonstrating the promise of EF24 as a
chemotherapeutic agent for the first time. However, this study
only revealed a preliminary and superficial knowledge of the
mechanism for its anti-cancer effect (RNA/DNA antimetabolite)
through a COMPARE analysis (18). In the next year, the authors
reported that EF24 induced cell cycle arrest and apoptosis via
a redox-dependent mechanism in human breast and prostate
cancer cell lines (19). Evidence mainly came from the casepase-3
activation, phosphatidylserine externalization, depolarization of
mitochondrial membrane potential, induction of ROS, and the
inhibition of glutathione (GSH) (19).

Later, EF24 was found to have wide-spectrum anti-cancer
activity. It is able to inhibit the proliferation of human cisplatin-
resistant ovarian cancer cells via G2/M phase cell cycle arrest and
increased G2/M checkpoint proteins (p53, p21) (27). In addition,
EF24 can cause apoptosis in cisplatin-resistant cells by activating
phosphorylated PTEN, which subsequently inhibited Akt and
MDM2, enhanced p53 levels and finally induced cell cycle
arrest and apoptosis (27). Another study on ovarian carcinoma
showed that EF24 time- and dose-dependently suppressed the
growth and synergized with cisplatin to induce apoptosis (28).
In 2008, Subramaniam et al. reported that individual use of EF24
induced caspase-mediated apoptosis and inhibited the growth of
colon cancer tumor xenografts (29). Combination of EF24 with
other chemotherapy drugs also showed an impressive role in
suppressing colon cancer growth (30). Accumulating evidence
suggests EF24 to be active in cell and/or tumor models of

numerous cancer types. For example, in in-vitro experiments, it
is effective in inhibiting osteogenic sarcoma cells (31), malignant
pleural mesothelioma cells (32), progressive medullary thyroid
cancer cells (33), human pancreatic cancer cells (34) and
leukemia/lymphoma cells (20, 35). Whether used alone or in
combination with other agents, EF24 displays great potential as
an anti-cancer therapeutic.

Anti-cancer Mechanisms of EF24
Inhibition of NF-κB Signaling
Most studies suggest that EF24 impairs cell growth by inducing
cell cycle arrest followed by induction of apoptosis, which is
accompanied by caspase-3 activation. However, the cell signaling
pathway mediating the EF24 effect was not elucidated until
2008 when Kasinski et al. first revealed that EF24 induced cell
apoptosis via suppressing NF-κB signaling pathway through
direct action on IkB kinase (IKK) (21). NF-κB regulates a wide
variety of genes involved in cell proliferation, differentiation, cell
cycle control (36), oncogenic activation (37) and metastasis (38).
EF24 can inhibit the catalytic activity of IKK protein complex,
which blocks IκB phosphorylation and subsequent degradation,
and finally prevents the nuclear translocation of p65 subunit
of NF-κB. The study provides a molecular explanation for the
superior activity of EF24 over curcumin (with a potency about
10 times higher than that of curcumin). Other groups further
verified the involvement of EF24 in inhibiting NF-κB signaling
pathway in cancer (39–42). EF24 robustly conferred radiation-
induced cell death mainly by inhibiting radiation-induced NF-κB
signaling in breast cancer (43). In the same year, the same group
found that EF24 can suppress the radiation-inducedNF-κB-DNA
binding activity/promoter activation in genetically varied human
neuroblastoma (44). Inhibition of the NF-κB signaling extends
the therapeutic application of EF24 to other NF-κB-dependent
diseases, such as inflammatory diseases (described below).

Regulation of Fanconi Anemia (FA) and MAPK

Pathways
By targeting IKK in the NF-κB pathway, EF24 was also able
to inhibit the Fanconi anemia (FA) pathway, a multigene
DNA damage response network implicated in the repair of
DNA lesions. In HeLa cells, nanomolar concentrations of
EF24 inhibited hydroxyurea (HU)-induced Fanconi anemia
D2 ubiquitination (FANCD2-Ub) and foci in a cell-cycle
independent manner (45). Beside the FA pathway, several other
signaling pathways interplay with NF-κB, one of which is the
mitogen-activated protein kinase (MAPK) pathway (46, 47).
Given the substantial role of EF24 in inhibiting NF-κB, scientists
started to notice its role in regulating MAPK pathway. Thomas
et al. reported that EF24 drastically induced the upregulation
of three major MAPK pathways mediated by ERK, JNK, and
p38 (48). On the contrary, Lin et al. reported that EF24
exerts its anti-tumor activity in oral squamous cell carcinoma
via deactivation of the MAPK/ERK signaling pathway (49).
Therefore, the effect of EF24 on the MAPK pathway is still under
debate and needs to be verified in more cancer types in the
future.
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Regulation of HIF-1α Expression
Another important role of EF24 is to regulate HIF-1α expression
which is closely associated with the outcome of chemotherapy
in cancer treatment. For example, Liang et al. reported that
sorafenib therapy could induce drug resistance in the treatment
of hepatocellular carcinoma, in which HIF-1α plays an important
role (50). Anti-angiogenic effects of sustained sorafenib therapy
caused intratumor hypoxia, which inducedHIF-1α and protected
cancer cells from sorafenib treatment. EF24 can inhibit HIF-1α
by sequestering it in cytoplasm and can promote its degradation
by upregulating Von Hippel-Lindau tumor suppressor (VHL).
Combination of EF24 and sorafenib showed synergistic effects
against metastasis both in vivo and in vitro (50), providing
compelling evidence for the potential of clinical application of
EF24. Similar to EF24, the parent compound curcumin can
also regulate HIF-1α expression (51), albeit through distinct
mechanisms. Curcumin inhibited HIF-1α gene transcription,
while EF24 exerted the activity by inhibiting HIF-1α post-
transcriptionally (22).

Regulation of ROS Production
The oncogenic factor HIF-1α is implicated in regulating aerobic
glycolysis and the expression of Glut1 (52). Since, EF24
was able to inhibit HIF-1α activity, it likely affects glucose
metabolism, thereby regulating cancer cell survival. Actually,
unlike normal cells which produce energy throughmitochondrial
oxidative phosphorylation, most cancer cells produce their
energy predominantly through a high rate of glycolysis followed
by lactic acid fermentation, even in the presence of abundant
oxygen, which is termed the Warburg effect (53). Although
less efficient than oxidative phosphorylation in terms of ATP
production, aerobic glycolysis generates additional metabolites
that may help cancer cells to proliferate and growth. EF24 has
been reported to block glucose uptake and the rate of glycolysis,
and thereby inhibits cell migration and invasion in ovarian cancer
cells (54). Another notable anti-tumor mechanism of EF24 is
regulation of ROS production. Elevated oxidative status has
been found in many types of cancer cells, which contributes to
carcinogenesis (55–57). In 2014, Roy et al. reported that EF24
could protect protein disulfide isomerase (PDI), an important
endoplasmic reticulum-resident oxidoreductase chaperone, from
ROS-induced damage (58). In human ovarian cancer cells, EF24
suppressed ROS generation and activated antioxidant response
element (ARE)-dependent gene transcription (28). Similarly,
EF24 suppressed the level of superoxide in combination with
SN38 in cancerous tissue (30). On the contrary, some other
studies found that EF24 induces ROS production. The authors
who first designed and synthesized EF24 observed that it was
able to induce ROS production in MDA-MB-231 human breast
cancer cells and DU-145 human prostate cancer cells (19).
Similarly, EF24 was reported to induce ROS production in gastric
cancer cells (59), and show synergistic anti-tumor activity with
rapamycin (60) or Akt inhibitor (61). The same group reported
a similar effect of EF24 on inducing ROS in human colon
cancer lines (HCT-116 and SW-620 cells), but moderate effects
in HT-29 cells (62). Therefore, it seems that the role of EF24 in
ROS induction may be cell type-dependent, and more evidence

is needed to clarify these contradictory results. Interestingly,
Skoupa et al. recently concluded that apoptosis induced by the
EF-24 is not mediated by oxidative stress-related in human
leukemia cells (20). A redox-dependent-mediated mechanism
only marginally contributes to the EF24-induced apoptosis in
K562 cells. Therefore, the effects of EF24 on ROS and ROS-
mediated apoptosis in cancer cells remains to be confirmed in the
further studies.

Regulation of miRNA and miRNA Target Genes
EF24 was also found to target microRNAs to regulate the tumor
progress. MicroRNAs (miRNAs) are short non-coding RNAs that
post-transcriptionally regulate gene expression. Dysregulation
of miRNA expression in cancer has been well-established (63).
Yang et al. reported that EF24 was able to downregulate miR-
21 and thereby enhance the expression of its target genes
PTEN and PDCD4, which inhibit tumor growth and metastasis
(64). Another group reported that EF24 suppressed melanoma
metastasis by upregulating miR-33b and concomitantly reducing
HMGA2 expression (65). The role of EF24 in regulating
miRNAs provides a novel mechanism for its anti-cancer
function.

Comparison of EF24 to Curcumin in Anti-cancer

Activity and Bioavailability
Since the development of EF24, scientists have compared its
activity with its parent compound curcumin. Most of the studies
were focused on the anti-cancer activity. Adams et al. synthesized
a series of curcumin analogs including EF24, and submitted
them to the NCI anti-cancer cell line screen. The results showed
that EF24 was effective against all of the cell lines. The mean
panel GI50 (concentration at which the drug inhibits tumor
cell growth by 50%) was 10-fold better than curcumin and
cisplatin (18). The authors also submitted the analogs to an in
vitro anti-angiogenesis screen and revealed that EF24 was more
active than curcumin in the assay. Their in vivo experiment
suggested that EF24 was well tolerated by mice and much safer
than the chemotherapy drug cisplatin (18). Later, Subramaniam
et al. further compared the potency of EF24 to curcumin in
gastrointestinal cancer cells and demonstrated that EF24 was
more potent than curcumin. For example, 1 µmol/L of EF24
significantly suppressed proliferation and colony formation of
the colon and gastric cancer cell lines while at the same dose of
curcumin had no effect (29). Consistently, EF24 exhibited IC50

values 10 to 20 times lower than that of curcumin in multiple
cancer cell lines, including lung, ovarian, cervical, breast, prostate
cancer cells and cholangiocarcinoma cells (21, 22, 28, 40, 48).
Similarly, in human osteogenic sarcoma cells (Saos2), EF24
was 3-fold more potent than curcumin (31). This evidence
collectively suggests that EF24 displays much more potent anti-
cancer activity than its parent compound in vitro. Although EF24
shared many anti-cancer mechanisms with its parent compound
curcumin, such as inhibiting NF-κB and HIF-1α, it exerts its
effects in different ways, for example, in how it regulates HIF-
1α activity (described above). In addition, curcumin efficiently
inhibited proteasome activity. By contrast, EF24 was 20-fold less
active than curcumin for proteasome inhibition (45). Likewise,
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curcumin can regulate the STAT3, while EF24 has no effect on
STAT activation (64).

The in vivo activity of a compound relies on the bioavailability
of the compound at the site of the tumor. Dietary curcumin is
poorly absorbed through the intestinal tract, therefore curcumin
does not have a therapeutic effect at low doses (29). By
contrast, EF-24 has higher oral bioavailability (60%) in mice (66),
explaining to some extent the improved in vivo activity of EF24
compared to curcumin.

In addition to the improvement of anti-cancer activity, EF24
shows low toxicity to normal cells. EF24 has been shown
to induce apoptosis in cancer cells and inhibit the growth
of human breast tumors in a mouse xenograft model but
showed low toxicity (18). Subramaniam et al. reported that EF24
inhibited intestinal cancer cell proliferation, but did not affect
the proliferation of normal mouse embryonic fibroblasts cells,
suggesting that EF24 is not toxic to normal cells (29). Similarly,
EF24 inhibits tumor growth in human cholangiocarcinoma while
displaying low toxicity levels. As a sensitizer, co-treatment of
EF24 and rapamycin selectively enhances the cytotoxicity in
gastric cancer cells but not in normal cells (60). Above all,
multiple molecular targets, wide-spectrum potency, enhanced
bioavailability as well as low toxicity to normal cells confer EF24 a
series of advantages in clinical applications.

Anti-inflammation Activity
Inflammation serves as a commonmechanism of various diseases
including cancer (67), cardiovascular and neurodegenerative
diseases (68, 69), diabetes (70), and certain neuropsychiatric
disorders (71). The NF-κB pathway has been identified to
mediate inflammation and therefore is considered as a critical
target for development and discovery of drugs for these diseases
(72, 73). Curcumin has been discovered as a blocker of NF-κB
(74, 75). As the curcumin analog, EF24 was shown to inhibit
LPS-induced pro-inflammatory cytokine mRNA expression and
impair LPS-induced NF-κB nuclear translocation (23). Vilekar
et al. reported that EF24 can reduce the expression of LPS-
induced MHC class II, CD80 and CD86 molecules, as well
as reduce NF-kB activity and TNF-α secretion (24). Similarly,
EF24 was shown to suppress the LPS-induced TLR4 and IL-
1R1 expression in dendritic cells (25), which initiate pro-
inflammatory signaling upon ligand binding.

EF24 was also shown to reduce the expression of aquaporin-1,
a gene thatmay be involved in the regulation of immune response
in sepsis (76). Stimulation of polymorphonuclear granulocytes
by LPS led to increased expression of aquaporin-1 in vitro,
which could be abrogated by EF-24. Tissue inflammation led
by hemorrhage and aggravated by reperfusion often causes
irreversible organ damage. Given the significant inhibitory effect
on NF-κB, EF24 may play a positive role in reducing the
hemorrhage-induced inflammation and symptoms. Yadav et al.
revealed that EF24 can prevent the inflammatory status in rats
subjected to 50% hemorrhage, preserve the pulmonary histology,
and improve the survival of hemorrhaged rats (77, 78). These
effects were associated with the inhibition of NF-κB and IL-6R
signaling, suggesting EF24 as a promising protective agent in
hemorrhage-induced inflammation. The same group found that

EF24 treatment suppressed pro-inflammatory signaling in liver
tissue and improved liver functional markers in hemorrhagic
shock (79). They also evaluated the effect of EF24 on intestinal
barrier dysfunction in hypovolemic shock, and showed EF24
to attenuate hypovolemic gut pathology and protect barrier
function by restoring the status of tight junction proteins
(80). Because most chronic diseases are mediated through
dysregulated inflammation, EF24 has potential use in the
prevention of these diseases.

Antibacterial Activity
Curcumin is well known for its antimicrobial properties, which
has been summarized (81). However, as mentioned above,
it has very poor bioavailability due to poor absorption in
the intestinal tract and in vivo metabolism by the non-
cytochrome P450 pathway. EF24 and its derived compounds
are of considerable interest because of enhanced bioavailability
and potency compared to that of curcumin (described above).
In 2013, Vilekar et al. evaluated the antibacterial activity of
EF24 and revealed it to suppress bacterial growth without
affecting the bacterial uptake or localization in the dendritic cells
(26). Even though the antibacterial potency of EF24 is much
lower than the traditionally used antibiotics, it can potentially
be applied as adjunct or chemopreventive agents in critical
scenarios. With an aim of investigating cellular and molecular
targets, Cocorocchio et al. employed Dictyostelium discoideum
mutants and successfully identified the protein phosphatase 2A
regulatory subunit PsrA and the presenilin 1 ortholog PsenB
that were partially involved in the effect of curcumin and EF24
(82). Recently, Ramayanti et al. investigated the potential of
curcumin and its analogs to trigger the Epstein-Barr virus (EBV)
lytic cycle in nasopharyngeal (NPC) and gastric carcinoma cells.
They found that EF24 showed high lytic inducing activity and
enhanced the cytolytic virus activation (83). EF24 therefore may
serve as a good adjuvant in cytolytic virus activation treatment.

Neuroprotective Activity
Reports on the neuroprotective role of EF24 are very limited. One
is related to the nitrosative stress that is causal in a select sporadic
variant of Parkinson’s (PD) and Alzheimer’s (AD) diseases.
Increased nitric oxide (NO) can disrupt the redox activity of
protein-disulfide isomerase, a key chaperone in the endoplasmic
reticulum by S-nitroso modification of its redox-active cysteines
(84, 85). Curcumin has been demonstrated to scavenge nitric
oxide (NO) species from model NOx donors (86). Similarly,
EF24 exerts neuroprotective effects by ameliorating nitrosative
stress-linked damage to protein-disulfide isomerase (PDI) and
the associated onset of PD and AD (87).

Progress on Improving Bioactivity and
Bioavailability of EF24
New Derivatives Improved Bioactivity of EF24
To further improve the anti-cancer activity, some groups have
moved forward to design and synthesize new analogs of EF24.
In 2012, Lagisetty et al. synthesized a hydrazinonicotinic acid
conjugate using an amine derivative of EF24. The derivative has
improved aqueous solubility compared to EF24, and showed
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significant anti-tumor effects (88). Wu et al. synthesized and
purified 20 EF24 analogs, from which they identified one to
have greater activity than EF24, showing potent anti-migration
and anti-proliferative activity against A549 cells (89). Xie et al.
designed and synthesized four series of EF24 analogs, from
which they found one displaying excellent inhibition of both
IKKβ activity and pancreatic cancer (PC) development and
progression (90). A group from Germany synthesized 14 EF24
analogs and revealed that they have promising anti-proliferative
activity against eight cancer cell lines with low IC50 values, and
showed superior anti-angiogenic and vascular-disruptive effects
(91). Last year, a research group from China synthesized a
series of EF24 analogs and identified one to have much greater
inhibitory activity against IKKβ and to induce apoptosis and cell
cycle arrest in multiple cancer cell lines (92). Recently, a series
of EF24 analogs were synthesized and screened, resulting in one
with good potency and selectivity in killing cancer cells (93).

New Drug Delivery Systems (DDS) to Improve the

Bioavailability of EF24
Improving the bioavailability of chemotherapy drugs can greatly
increase the therapeutic effect while reducing the side effects.
To achieve this aim, specific drug delivery systems (DDS) have
been investigated. For example, scientists observed that the
tissue factor is aberrantly and abundantly expressed in many
cancer cells (94, 95), and based on this expression, the group
that first designed and synthesize EF24 later proposed a new
drug delivery system that associated with tissue factor on the
surface of cancer cells, releasing the cytotoxic agent into the
cytoplasm. This system displayed a greater effect than EF24 alone
in human breast and melanoma cell lines (96). Later, it was
reported that the conjugation of EF24 with coagulation factor
VIIa induced apoptosis in tumor cells and significantly reduced
tumor size in human breast cancer xenografts in athymic nude
mice. The targeted drug delivery system has the potential to
enhance therapeutic efficacy, while reducing toxic side effects
(97). Although EF24 has shown promising in vitro therapeutic
efficacy in various human cancer cells, increasing water solubility
and systemic bioavailability will be beneficial for its clinical
applications. Agashe et al. designed EF24-liposomes and showed
their anti-proliferative activity to be superior to that of EF24
alone (98). Bisht et al. designed nano-encapsulation of EF24
into pegylated liposomes (Lipo-EF24), evaluated the particles in
pancreatic cancer models, and observed good therapeutic efficacy
and favorable toxicity profile (99), which provide evidence
for development of future combinatorial therapeutic regimens
against pancreatic cancer.

Conclusions and Perspectives
This review gives a brief summary of the biological and
pharmacological activities of EF24, a novel analog of curcumin
(Figure 2). Enhanced bioavailability and potency makes it
promising as a therapeutic compound alone or combination use
with other agents. EF24 has been found to suppress tumor growth
by inducing cell cycle arrest or apoptosis in many cancer types.
It also shows good anti-inflammatory and anti-bacterial activity.
The main mechanisms of action for EF24 include inhibition of
the NF-κB pathway and HIF-1α protein and regulation of the

FIGURE 2 | Biological activities and mechanisms of EF24.

MAPK pathway and ROS production. The latter two may be
cancer/cell type-dependent and need to be confirmed in future
studies.

Natural products usually have biological molecular targets,
which confers them multiple bio-activities. Exploring and
understanding the targets will provide insights into the
mechanisms of action of a natural product and help to
improve its efficiency and lower side effects in clinical
applications. Based on the known activities of curcumin,
we can expect that EF24 may have additional unexplored
bioactivities and molecular targets. For example, like some
triterpenoid compounds (100, 101), curcumin plays an
important role in regulating energy metabolism (102),
while application of EF24 in metabolic diseases needs to be
determined. In addition, because current therapeutic effects
of EF24 are based on cell culture and animal studies, clinical
trials are needed to fully verify its therapeutic potential.
It is promising that we bring this natural product to the
forefront of therapeutic agents for the treatment of human
diseases.
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