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MECP2 regulates cortical plasticity underlying
a learned behaviour in adult female mice
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Neurodevelopmental disorders are marked by inappropriate synaptic connectivity early in life,

but how disruption of experience-dependent plasticity contributes to cognitive and

behavioural decline in adulthood is unclear. Here we show that pup gathering behaviour and

associated auditory cortical plasticity are impaired in female Mecp2het mice, a model of Rett

syndrome. In response to learned maternal experience, Mecp2het females exhibited transient

changes to cortical inhibitory networks typically associated with limited plasticity. Averting

these changes in Mecp2het through genetic or pharmacological manipulations targeting the

GABAergic network restored gathering behaviour. We propose that pup gathering learning

triggers a transient epoch of inhibitory plasticity in auditory cortex that is dysregulated

in Mecp2het. In this window of heightened sensitivity to sensory and social cues, Mecp2

mutations suppress adult plasticity independently from their effects on early development.
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R
ett syndrome (RTT) is a neuropsychiatric disorder
predominantly caused by mutations in the X-linked gene
methyl CpG-binding protein 2 (MECP2)1. Males with

mutations of their single copy of the gene suffer neonatal
encephalopathy and die in infancy2, and most surviving patients
with RTT are females that are heterozygous for Mecp2 mutations.
In these females, random X-chromosome inactivation leads
to mosaic wild type MECP2 expression and consequently
a syndromic phenotype. Patients with RTT achieve early
postnatal developmental milestones, but experience an abrupt
developmental regression around 6–12 months3,4. They typically
survive into middle age5, exhibiting sensory, cognitive and motor
deficits throughout life.

MECP2 is broadly expressed in the developing and adult
brain6,7 and is continually required to maintain adult neural
function8–10. Moreover, restoration of normal MECP2 expression
in adult mice improves symptoms8–10. These observations
establish that MECP2 is necessary to regulate brain function in
adulthood. However, the specific function of MECP2 in the
mature brain remains unclear, despite its widely studied role in
development.

MECP2 regulates neuronal chromatin architecture and gene
transcription11–13 in response to neural activity and experience
during postnatal life14,15. The known cellular function of MECP2
and the characteristic timing of disease progression raise the
possibility that the regulation of neural circuits by MECP2 is
increased during specific windows of enhanced sensory and
social experience throughout life. We therefore hypothesized
that continued disruptions of experience-dependent plasticity in
female mice heterozygous for Mecp2 (Mecp2het) hinders learning
during adulthood. We tested this hypothesis in adult female
Mecp2het mice using pup retrieval, a learned natural maternal
behaviour, which is known to induce experience-dependent
auditory cortical plasticity16–18. First-time mother mice respond
to their pups’ ultrasonic distress vocalizations by gathering
the pups back to the nest, an essential aspect of maternal care19,20.
Virgin females with no previous maternal experience
(‘surrogates’) can acquire this behaviour when co-housed with a
first-time mother and her pups16. Single-unit neural recordings
show that proficient pup gathering behaviour is correlated with
neurophysiological plasticity in the auditory cortex in both
surrogates and mothers16–18.

Here we report that adult Mecp2het surrogates, and surrogates
with conditional knockout of Mecp2 in auditory cortex, exhibit
impaired pup retrieval behaviour. Maternal experience-triggered
changes in GABAergic interneurons occur in wild-type
surrogates, but we found that additional changes were observed
in Mecp2het surrogates. Specifically, we observed elevated
expression of parvalbumin (PV) and perineuronal nets (PNNs).
Increases in expression of these markers are associated with the
termination or suppression of plasticity in development and
adulthood21–26. Genetic manipulation of GAD67, the primary
synthetic enzyme for GABA, suppressed increases in PV and
PNNs and restored gathering in Mecp2het. Furthermore, specific
depletion of the PNNs into the auditory cortex also restored
efficient pup retrieval behaviour in Mecp2het. Finally, we found
that specific knockout of Mecp2 in PV neurons was sufficient to
transiently interfere with pup retrieval behaviour. Altogether,
our results show that MECP2 regulates experience-dependent
plasticity in the adult auditory cortex.

Results
Pup gathering behaviour requires auditory cortex. To assess the
efficacy of cortical plasticity underlying pup gathering learning,
we devised an assay for gathering behaviour in nulliparous

surrogates (Sur). We chose to examine cortical plasticity under-
lying the acquisition of gathering behaviour in Sur to eliminate
the influence of pregnancy. Our intent was not to study maternal
behaviour per se or plasticity in mothers, but to use this assay to
study the function of MECP2 in adult experience-dependent
plasticity in Sur at the neural circuit and behavioural levels.

Assaying the effects of heterozygous deletion of Mecp2 on
gathering behaviour presents several advantages. First, the vast
majority of patients with RTT are females and heterozygous for
mutations of Mecp2 who exhibit mosaic expression of the wild
type protein. Thus, female Mecp2het (ref. 27) are a particularly
appropriate model of RTT. Second, we can directly relate a
natural, learned adult behaviour to specific, experience-dependent
changes in the underlying neural circuitry. Third, we can observe
effects on adult learning and plasticity that are distinct from
developmentally programmed events in the Sur by studying a
window of heightened plasticity that is triggered by exposure to
a mother and her pups.

Two 7–10 week old matched female littermates (Sur) were
co-housed with a first time mother and her pups from late
pregnancy until the fifth day following birth (D5) (Fig. 1a).
Sur were virgins with no prior exposure to pups. All three adults
(the mother and both Sur) were subjected to a retrieval assay (see
Materials and Methods) on D0 (day of birth), D3 and D5.

We confirmed the experience-dependent nature of gathering
behaviour by comparing performance of maternally-naive WT
(NaiveWT) females with that of SurWT on D5. Performance was
assessed by computing a normalized measure of latency (latency
index, see Methods) and by counting the number of gathering
errors (instances of interacting with a pup and failing to gather it
to the nest). SurWT performed significantly better than NaiveWT
by both measures (Fig. 1b,c) (NaiveWT: N¼ 9 mice; SurWT:
N¼ 18 mice; Mann–Whitney, P¼ 0.027), presumably reflecting
maternal experience-dependent plasticity.

Several lines of evidence suggest that auditory cortical
responses to ultrasonic distress vocalizations facilitate perfor-
mance of pup gathering behaviour16–18,28. We confirmed this by
making bilateral excitotoxic (ibotenic acid) lesions of the auditory
cortex in wild type mice. Compared with saline-injected mice,
mice with lesions exhibited significantly larger latency indices
(Saline: 0.20±0.034, N¼ 6 mice; Lesion: 0.66±0.033, N¼ 6
mice; Mann–Whitney: P¼ 0.0022) and made more errors (Saline:
1.33±0.95 errors, N¼ 6 mice; Lesion: 6.64±0.91 errors, N¼ 6
mice; Mann–Whitney: P¼ 0.015).

MECP2 is required for efficient pup gathering behaviour. Next,
we compared the pup gathering performance of SurHet with that
of mothers and SurWT. SurWT retrieved pups to the nest with
efficiency (as measured by latency index in Fig. 1d,f) and accuracy
(as measured by errors in Fig. 1e,g) that were indistinguishable
from the mother (Supplementary Movie 1). By contrast, SurHet
exhibited dramatic impairment in gathering behaviour, retrieving
pups with significantly longer latency and more errors when
compared with the SurWT or mothers (Fig. 1d–g). Moreover,
this behaviour did not improve with subsequent testing on
D3 and D5 (Fig. 1d,e) (N¼ 13–24 mice; Kruskal–Wallis
with Bonferroni correction: H values for latency – D0¼ 9.4,
D3¼ 13.05, D5¼ 21.68; H values for error – D0¼ 26.07,
D3¼ 26.31, D5¼ 24.32; *post-hoc Po0.05). The variability in
behaviour in SurHet can be partly explained by the variability in
MECP2 expression in the auditory cortex because of random
X-chromosome inactivation. Specifically, SurHet with fewer cells
expressing MECP2 performed worse in latency and errors than
SurHet with more cells expressing MECP2, showing that the
range of variability in SurHet behaviour is correlated with
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MECP2 expression in the auditory cortex (Fig. 1h,i) (N¼ 10 mice;
Pearson’s r). Taken together, the results demonstrate that MECP2
is required for successful acquisition of this learned behaviour.

In these experiments, we used a germline Mecp2 knockout that
affects MECP2 expression throughout the animal. Therefore,
the poor pup gathering performance of SurHet could, in
principle, be because of motor deficits or deafness. We found
no significant difference in movement during behavioural trials
between the genotypes (SurWT: 2,059±216.5 significant motion
pixels (SMP), N¼ 8 mice; SurHet: 2,139±259.9 SMP, N¼ 8 mice;

Mann–Whitney: P¼ 0.78), consistent with previous findings that
Mecp2het lack robust motor impairments29.

We also found no evidence that Mecp2het are deaf or otherwise
insensitive to sound, consistent with a previous study30. Neurons
in the auditory cortex of NaiveHet exhibited widespread and
robust responses to auditory stimuli. Baseline spontaneous
activity was comparable between NaiveWT and NaiveHet
(Fig. 2a) (WT: n¼ 99 cells, 11 mice; Het: n¼ 87 cells, 13 mice;
Mann–Whitney, P¼ 0.70). Analysis of stimulus-evoked responses
showed that auditory cortex neurons of NaiveHet showed a slight
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Figure 2 | Auditory cortex activity is grossly similar in NaiveHet and NaiveWT. (a) Baseline spontaneous activity was not different between NaiveWT

and NaiveHet (WT: n¼99 cells, 11 mice; Het: n¼ 87 cells, 13 mice; Mann–Whitney, P¼0.70). (b,c) NaiveHet neurons were excited by a small but

significantly greater number of stimuli (b; WT: n¼ 56 cells, 11 mice; Het: n¼66 cells, 13 mice; Mann-Whitney, *P¼0.047), but inhibited by a similar

number of stimuli compared with NaiveWT (c; WT: n¼47 cells, 11 mice; Het: n¼ 24 cells, 13 mice; Mann–Whitney, P¼0.33). (d,e) Response strength,

measured as a z score, was not significantly different between NaiveWT and NaiveHet, for excitation (d) but was significantly increased in NaiveHet for

inhibition (e) (Excitation: WT: n¼ 136 responses, 56 cells, 11 mice; Het: n¼ 192 responses, 66 cells, 13 mice; Mann-Whitney, P¼0.43; Inhibition: WT:

n¼ 133 responses, 47 cells, 11 mice; Het: n¼ 59 responses, 24 cells, 13 mice; Mann–Whitney, *P¼0.0054). (a–e) Bar graphs represent mean±s.e.m.

D5D3D0
0

0.4

0.6

0.8

1.0

0.2

La
te

nc
y 

in
de

x *
*

*SurWT
SurHet

Mother

*

0

20

30

10
er

ro
rs

D5D3D0

*

*

SurWT
SurHet

Mother

0

0.4

0.6

0.8

1.0

0.2
La

te
nc

y 
in

de
x

*

NaiveWT SurWT

E
rr

or
s

0

10

15

20

5

*

NaiveWT SurWT

0

0.4

0.6

0.8

1.0

0.2

La
te

nc
y 

in
de

x

*

E
rr

or
s

0

10

20

30

*

20 30 40 50 60
% cells with MECP2

r = –0.75
p = 0.012

0

0.4

0.6

0.8

1.0

0.2

La
te

nc
y 

in
de

x 
(D

5)
E

rr
or

s 
(D

5)

% cells with MECP2

20 30 40 50 60
0

10

20 r = –0.55
p = 0.098

Surrogates

3–5 days
before birth

pup retrieval assay
D0, D3 and D5

14 days

X

WT Het

M
ot

he
r

Sur
W

T

Sur
Het

M
ot

he
r

Sur
W

T

Sur
Het

a b d f h

c e g i

Figure 1 | Female Mecp2het mice perform poorly at pup retrieval behaviour. (a) Schematic of behavioural paradigm. Virgin Mecp2het (Het) and wild type

littermates (WT) mice were co-housed with a pregnant female before birth of pups. Surrogates (Sur) were tested on the pup retrieval task on days 0 (D0),

3 and 5 after birth. (b,c) SurWT tested on D5 (N¼ 18 mice) showed significant improvements on a normalized measure of latency to gather (b) and

reduced number of gathering errors (c) compared with pup-naive mice (N¼ 9 mice) (Mann–Whitney, *P¼0.027). Lines represent mean±s.e.m.

(d,e) Mean performance at D0, D3 and D5 for mothers, SurWT and SurHet as measured by normalized latency (d) and errors (e).Lines represent

mean±s.e.m. SurHet showed consistently poorer pup retrieval performance than mothers and SurWT in all three sessions (N¼ 13–24 mice;

Kruskal–Wallis with Bonferroni correction: H values for latency — D0¼9.4, D3¼ 13.05, D5¼ 21.68; H values for error—D0¼ 26.07, D3¼ 26.31,

D5¼ 24.32; *Po0.05). (f,g) Mean performance of normalized latency (f) and errors (g) averaged over all three sessions (N¼ 13–24 mice; Kruskal-Wallis

with Bonferroni correction: latency—H¼ 29.95, error—H¼ 35.45; *post-hoc Po0.05). SurHet had significantly longer latency and made more errors

compared with mothers and SurWT. Mean±s.e.m. are shown in line. (h,i) At D5 Sur, Het performance of normalized latency (h) and errors (i) negatively

correlated with percentage of cell population expressing MECP2 (N¼ 10 mice; Pearson’s r: For H: r¼ �0.75, P¼0.0012; for I: r¼ �0.55, P¼0.098).
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increase in excitatory responses to a larger number of stimuli
compare to NaiveWT (Fig. 2b; WT: n¼ 56 cells, 11 mice; Het:
n¼ 66 cells, 13 mice; Mann–Whitney, *P¼ 0.047), but did not
show differences in the number of inhibitory responses (Fig. 2c;
WT: n¼ 47 cells, 11 mice; Het: n¼ 24 cells, 13 mice;
Mann–Whitney, P¼ 0.33). Moreover, the response strengths for
excitation were comparable between NaiveWT and NaiveHet
(Fig. 2d; WT: n¼ 136 responses, 56 cells, 11 mice; Het: n¼ 192
responses, 66 cells, 13 mice; Mann–Whitney, P¼ 0.43), whereas
the response strengths for inhibition were slightly increased in
NaiveHet compared with NaiveWT (Fig. 2e; WT: n¼ 133
responses, 47 cells, 11 mice; Het: n¼ 59 responses, 24 cells,
13 mice; Mann–Whitney, *P¼ 0.0054). Taken together, these
data establish that the impaired pup gathering behaviour in
Mecp2het is not caused by frank deafness or insensitivity of the
auditory system in naive females.

MECP2 in adult auditory cortex is required for pup gathering.
Measuring behavioural effects in germline mutants leaves open
the possibility of a requirement for MECP2 in early postnatal
development and/or in other brain regions. Therefore, we used a
conditional deletion approach to specifically deplete MECP2
expression in the auditory cortex by bilaterally injecting AAV-
GFP-Cre (adeno-associated virus expressing CRE recombinase)
in 4-week old Mecp2flox/flox mice31 (Fig. 3a). Histological analysis
of sections from SurMecp2flox/flox five weeks after injection with
AAV-Cre showed 491% of GFP expressing (GFPþ ) nuclei in
the auditory cortex (n¼ 685 GFPþ cells, 12 images, 3 mice) (see
methods) were devoid of MECP2 expression (Fig. 3b–f). We
counted non-GFP expressing (GFP� ) and GFPþ cells to
determine the extent of MECP2 knock-down in the GFPþ cells
and found significant reduction of MECP2 expression in the

GFPþ cells of the auditory cortex (Fig. 3f; n¼ 119 cells per cell
type, 3 mice; Mann–Whitney, *Po0.05).

Mecp2flox/flox mice injected with AAV-GFP alone (control),
consistently showed strong pup gathering performance (Fig. 3g,h)
(N¼ 14 mice). In contrast, Mecp2flox/flox mice injected with
AAV-Cre exhibited variable pup gathering behaviour that
depended on the proportion of auditory cortex affected by the
injection. The degree of impairment for an individual mouse was
positively correlated with the percentage of the auditory cortices
encompassed by the virus injection site (Fig. 3g,h) (Latency:
r¼ 0.80, P¼ 0.0006; N¼ 14 mice; Errors: r¼ 0.83, P¼ 0.0002;
N¼ 14 mice; Pearson’s r). No positive correlation between
injection area and behavioural performance was found with
regions surrounding the auditory cortex (Latency: r¼ 0.40,
P¼ 0.16; Errors: r¼ 0.25, P¼ 0.40; N¼ 14 mice; Pearson’s r).
Taken together, these findings demonstrate that MECP2
expression, specifically in the auditory cortex of mature females,
is required for proficient learning of pup gathering behaviour.

SurHet exhibit altered plasticity of GABAergic interneurons.
The regional requirement for MECP2 led us to examine maternal
experience-dependent molecular events in the auditory cortex.
Recent data on the neurophysiological correlates of maternal
learning suggest that there are changes in inhibitory responses
of vocalizations in the auditory cortex of mothers and
surrogates17,32. There is also evidence that inhibitory networks
are particularly vulnerable to Mecp2 mutation33–35. For these
reasons, we focused our attention on experience-dependent
dynamics of molecular markers associated with inhibitory circuits.

We used immunostaining of brain sections from the auditory
cortex of Sur and naive females to examine experience-induced
molecular events in inhibitory networks of Mecp2het and
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Figure 3 | MECP2 expression in the auditory cortex is required for efficient pup retrieval. (a) Diagram depicting AAV-GFP-Cre injection into the auditory

cortex (green arrows) of female Mecp2flox/flox mouse. These mice also carried a nuclear localized and Cre-dependent GFP allele (H2B-GFP) that allowed us

to directly visualize Cre-positive cells. (b) Photomicrograph of a brain section from a Mecp2flox/flox mouse with AAV-GFP-Cre injection and counterstained

with the nuclear marker, DAPI. Dotted lines mark the boundary of auditory cortex. Scale bar¼ 1 mm. (c–e), Magnified confocal images of a selected region

boxed in B. GFPþ cells (c, green) are negative for MECP2, as confirmed by anti-MECP2 immunostaining (d and e, blue) (91.2±0.03%; n¼ 685

GFPþ cells, 12 images, 3 mice). Arrows point to GFPþ cells that are MECP2� . Arrowheads point to GFP� cells that are MECP2þ , which served as a

positive control for MECP2 staining. Scale bar, 20mm, applies to c–e. (f) Mean MECP2 expression (intensity; A.U.¼ arbitrary units) in AAV-GFP-Cre

infected cells (GFPþ) and uninfected cells (GFP�) in the same AAV-GFP-Cre injected animals (n¼ 119 cells per cell type, 3 mice; Mann–Whitney,

*Po0.05). Cre-infected cells showed significantly reduced MECP2 expression compared with uninfected cells. Boxplot with standard Matlab-generated

whiskers are shown. Notches represent 95% confidence interval of median. Each dot overlaid on the boxplot represents a cell. (g,h) Correlation analysis

showed a significant positive relationship between the proportion of auditory cortex expressing GFP-Cre and both gathering latency (g) and number of

errors (h) (green dots; N¼ 14 mice; Pearson’s r: For G: r¼0.80, P¼0.0006; for H: r¼0.83, P¼0.0002). Control Mecp2flox/flox mice injected with

AAV-GFP alone (ctrl; black dots) showed normal behaviour (N¼ 14 mice).
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wild-type littermates. Expression of GAD67, the key rate-limiting
enzyme for GABA synthesis, was significantly increased five days
after initiation of maternal experience in mutant and wild type
mice (Fig. 4a,b) (n¼ 36–451 cells, 12–32 images, 4–8 mice;
ANOVA: Tukey’s post-hoc test, *Po0.05). For both Sur
genotypes, expression returned to baseline by the time the pups
were weaned (D21) (Fig. 4a,b). This suggests that maternal
experience triggers transient experience-dependent molecular
changes in inhibitory neurons in the auditory cortex of Sur mice.

In SurHet only, we observed transient increases in additional
markers of inhibitory networks that are often associated with
suppressing plasticity. For example, recent work has linked high
parvalbumin (PV)-expressing inhibitory networks to reduced
capacity for adult learning and plasticity25, and the closure of
developmental critical periods21,24,36. We detected a maternal
experience-induced shift in the intensity distribution of PV
immunofluorescence in SurHet but not SurWT (Fig. 5a,b,f).
The intensity distribution for SurHet was fit with a mixture of
two Gaussians to define high and low PV-expressing populations.
The proportion of high PV-expressing neurons was
significantly greater in SurHet than in any other group (Fig. 5b)
(n¼ 2704–4906 cells, 19–20 images, 5 mice; ANOVA: Tukey’s
post-hoc test, *Po0.05 compared with all other groups).

Mature neural circuits are often stabilized by perineuronal nets
(PNNs), which are composed of extracellular matrix proteins
such as chondroitin sulfate proteoglycans37, and mainly surround
PVþ GABAergic interneurons in the cortex38. We observed a
dramatic experience-dependent increase in the number of
high-intensity PNNs in SurHet but not in SurWT (Fig. 5c,g)
(n¼ 292–1,735 PNNþ cells, 12–38 images, 3–9 mice; ANOVA:
Tukey’s post-hoc test, *Po0.05 compared with all other groups).
Importantly, both PV and PNNs returned to baseline levels in
surrogates by weaning age of the pups (D21) (Fig. 5b,c). In
addition, the percentage of PNN that co-localized with PVþ cells
was unchanged among all groups of mice (Fig. 5d,h) (n¼ 1–107
PNNþ cells, 1–103 PV cells, 6 images, 3 mice; ANOVA: Tukey’s
post-hoc test, P40.05). However, SurHet at D5 showed an
increased percentage of PVþ cells co-localized with PNN
(Fig. 5e) (n¼ 92–319 PV cells, 1–103 PNNþ cells, 6 images,
3 mice; ANOVA: Tukey’s post-hoc test, *Po0.05 compared with
all other groups except SurWT P21). Thus, maternal experience
triggers temporally-restricted changes to inhibitory circuits in
SurHet, but there are also additional changes not observed in
SurWT, including elevated PV and PNN expression. We have
separately observed elevated PV and PNN expression and altered
plasticity in the visual cortex of Mecp2-null males during the
visual critical period39. Similar changes may act to limit network
plasticity after maternal experience. Moreover, the reversion to
baseline levels following weaning indicates that pathological
features of the plasticity are temporally limited and suggests that
certain aspects of Mecp2het pathology are only revealed during
appropriate experiences that occur within that window.

Rescue of SurHet phenotypes by Gad1 manipulation. GAD67 is
an activity-regulated, rate-limiting enzyme that synthesizes the
cortical inhibitory neurotransmitter GABA. GAD67 expression
levels also correlate highly with PV levels25 and regulate PV
neuron maturation40. Several recent studies suggest that mice that
are heterozygous for loss of the GAD67 gene (Gad1) exhibit lower
levels of PV expression41,42. We have separately observed that
lowering GAD67 levels in the Mecp2-null male mice normalized
expression of PV and PNN in the developing visual cortex39. We
therefore speculated that genetically manipulating GAD67
expression (Gad1het) in Mecp2het might result in normalization
of PV network-associated markers in the adult auditory cortex.
To test this idea, we crossed germline Gad1het mice into the
Mecp2het background and examined the effects on maternal
experience-dependent changes in PV and PNNs.

As expected, naive WT and Mecp2het carrying the Gad1het

allele (NaiveWT;Gad1het and NaiveHet;Gad1het, respectively)
showed half the GAD67 expression seen in WT and Mecp2het

(NaiveWT: 458.9±60.6 cells per mm3, NaiveHet: 393.5±73.3
cells per mm3, NaiveWT;Gad1het: 174.6±60.9 cells per mm3,
NaiveHet;Gad1het: 193.2±41.3 cells per mm3; n¼ 92–334 cells,
20–32 images, 5–8 mice; T-test: Po0.05 NaiveHet;Gad1het

compared with NaiveWT and NaiveHet; T-test: Po0.05
NaiveWT;Gad1het compared with NaiveWT and NaiveHet). In
contrast to SurHet, SurHet;Gad1het exhibited a correction in the
maternal experience-dependent increase in PV expression levels
(Fig. 6a,b) and had a significantly lower proportion of high-
intensity PVþ cells (Fig. 6b) (n¼ 4,353–5,079 cells, 16–20
images, 4–5 mice; ANOVA: Tukey’s post-hoc test, *P¼ 0.02).
We also saw significantly fewer PNNs in the double mutants
(Fig. 6d) (n¼ 196–1,735 PNNþ cells, 17–38 images, 4–9 mice;
ANOVA: Tukey’s post-hoc test, *P¼ 0.01). NaiveWT;Gad1het

exhibited a significantly elevated percentage of high-intensity
PVþ cells, compared with NaiveWT (Fig. 6c), likely because of
compensatory effects of long-term genetic reduction of GAD67.
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Figure 4 | Maternal experience transiently enhances GAD67 expression

level in the auditory cortex of wild-type and Mecp2het mice. (a) The

density of high-intensity GAD67 cells was significantly increased in both

SurWT (dark blue) and SurHet (red) at D5, and returned to naive levels at

D21 (n¼ 36–451 cells, 12–32 images, 4–8 mice; ANOVA: Tukey’s post-hoc

test, *Po0.05). Bar graphs represent mean±s.e.m. (b) Representative
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high-intensity GAD67 cells. Scale bar, 100 mm, applies to all images.

Dashed lines delineate cortical layers with layers III and V indicated.
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Interestingly, this increase was not seen after maternal experience
(Fig. 6c), returning to the appropriate activity-dependent
expression of PV that was not significantly different from the
WT (n¼ 3,561–4,782 cells, 16–20 images, 4–5 mice; ANOVA:
Tukey’s post-hoc test, *Po0.05). There was no change in PNNs in
this genotype, before or after maternal experience (Fig. 6e)
(n¼ 319–780 PNNþ cells, 16–28 images, 4–7 mice; ANOVA:
Tukey’s post-hoc test, P40.05). These data indicate that
manipulating GAD67 in the Mecp2-deficient background ame-
liorates features of impaired maternal experience-dependent
auditory cortical plasticity in SurHet.

We next assessed whether the corrective effect of
GAD67 reduction on inhibitory markers in SurHet reinstated
learning. Remarkably, SurHet;Gad1het exhibited significant
decreases in latency index (Fig. 6f) and the number of
errors (Fig. 6g) (SurHet;Gad1het: N¼ 7 mice; SurWT: N¼ 18
mice; SurHet: N¼ 18 mice; ANOVA: Tukey’s post-hoc test,
*Po0.05) when compared with SurHet. In fact, the gathering
performance of SurHet;Gad1het was indistinguishable from
that of SurWT or SurWT;Gad1het (Fig. 6f,g) (SurWT;Gad1het:
N¼ 7 mice). These results show that manipulating GABAergic
neurons in the Mecp2-deficient background alleviates
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showing the mean distribution of PV cell intensity in adult surrogates 5 days after pup exposure (D5). Top panel, distribution of PV cell intensity is similar

between SurWT (dark blue) and NaiveWT (grey). Bottom panel, there is a shift in the distribution toward elevated PV expression in SurHet (red) compared

with NaiveHet (grey) (n¼ 2704–4906 PVþ cells, 19–20 images, 5 mice for each group). The solid line and shaded region represent mean±s.e.m.

respectively, in both panels. (b) The shift reflects a significant transient increase in high-PV expressing cells at D5 that returned to baseline at D21 in SurHet

(ANOVA: Tukey’s post-hoc test, *Po0.05 compared with all other groups). (c) The density of high-intensity perineuronal nets (PNNs) was significantly

increased only in SurHet at D5 (n¼ 292–1735 PNNþ cells, 12–38 images, 3–9 mice; ANOVA: Tukey’s post-hoc test, *Po0.05 compared with all other

groups), and returned to baseline at D21. (d) The percentage of PNN co-localizing with PV-expressing cells was not significantly different across genotypes

and conditions (n¼ 1–107 PNNþ cells, 1–103 PV cells, 6 images, 3 mice; ANOVA: Tukey’s post-hoc test, P40.05). (e) However, the percentage of PV cells

co-localizing with PNN was significantly higher in SurHet at D5 (n¼ 92–319 PV cells, 1–103 PNNþ cells, 6 images, 3 mice; ANOVA: Tukey’s post-hoc test,

*Po0.05 compared with all other groups except SurWT P21). (b–e) Bar graphs represent mean±s.e.m. (f–h) Representative confocal images taken from

the auditory cortex of a SurWTand SurHet showing relative expression of PV (f) and PNN (g). Arrowheads indicate high-intensity PV cells. Arrows point to

co-localization of PV and PNN. Scale bar, 50mm, applies to all images. Dashed lines delineate cortical layers with layers III and V indicated.
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learning deficits, potentially through effects on levels of PV
and PNNs.

Suppressing PNN formation of SurHet improves pup gathering.
PNNs are known to act as barriers to structural plasticity23,24.

Thus, relief from the excessive formation of PNNs in
SurHet;Gad1het could be a critical factor allowing efficient pup
gathering. We speculated that suppressing PNN formation
selectively in the auditory cortex just before maternal
experience is sufficient to improve behavioural performance of
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significantly more high-intensity PV cells compared with NaiveWT and SurWT. Upon maternal experience, the PV population of SurWT;Gad1het shifted

towards WT PV expression levels (n¼ 3561–4782 PVþ cells, 16–20 images, 4–5 mice; ANOVA: Tukey’s post-hoc test, *Po0.05). (d) At D5, high-intensity

PNN densities were significantly reduced in SurHet;Gad1het, compared with SurHet (n¼ 196–1735 PNNþ cells, 17–38 images, 4–9 mice; ANOVA: Tukey’s
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*Po0.05). Mean±s.e.m. are shown.
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SurHet. We therefore made bilateral auditory cortical injections
of chondroitinase ABC (ChABC), which dissolves and suppresses
the formation of PNNs (ref. 24), thereby allowing for the
formation of new synaptic contacts37. Two sites of injection were
made into each hemisphere one to three days before initiating
assessment of retrieval performance (see Materials and Methods).
Injection of ChABC into the auditory cortex of Het and WT
significantly reduced high-intensity PNN counts compared with
their respective controls: penicillinase-injected24 mice (Fig. 7a–d)
(Het-Pen: n¼ 710 PNNþ cells, 31 images, 8 mice; Het-ChABC:
n¼ 273 PNNþ cells, 24 images, 6 mice; Mann Whitney,
*P¼ 0.0003; WT-Pen: n¼ 455 PNNþ cells, 32 images, 8 mice;
WT-ChABC: n¼ 108 PNNþ cells, 32 images, 8 mice; Mann
Whitney: *Po0.0001). SurHet mice that received bilateral
injections of ChABC in the auditory cortex showed significantly
improved gathering performance of D5 pups. ChABC-injected
SurHet retrieved pups with lower latency index (Fig. 7e,g) and
fewer errors (Fig. 7f,h) compared with SurHet injected with the
control enzyme, penicillinase (at D5: Het-Pen: grey line, N¼ 12
mice; Het-ChABC: red line, N¼ 10 mice; Mann–Whitney,
*Po0.05). ChABC-injected WT performed similarly to the
penicillinase-injected WT, with a small significant decrease in
latency index at Day 3 (Fig. 7e–h) (For clarity, only WT-ChABC
data are shown in the blue line, N¼ 5 mice; WT-Pen:
normalized latency index – D0¼ 0.43±0.13, D3¼ 0.29±0.12,
D5¼ 0.19±0.07, N¼ 7 mice, at D3: Mann–Whitney, P¼ 0.048;
WT-Pen: errors – D0¼ 2.3±1.4 errors, D3¼ 1.6±0.78 errors,
D5¼ 1.57±0.81 errors, N¼ 7 mice; Mann–Whitney, P40.05).

Not all injections covered the entire auditory cortex, because of
technical issues. Hence, we correlated the percentage of the region
affected by the injection with gathering performance. In SurHet,
the proportion of auditory cortex bilaterally encompassed by the
injection site was significantly negatively correlated with latency
index (Fig. 7i) (N¼ 13 mice, r¼ � 0.75, P¼ 0.0033, Pearson’s r)
and number of errors (Fig. 7j) (N¼ 13 mice, r¼ � 0.75,
P¼ 0.0034, Pearson’s r) exhibited on D5 pups. Interestingly, this
relationship did not emerge until day 5 of maternal experience.
Therefore, increased PNNs in SurHet inhibit auditory cortical
plasticity that is required for rapid and accurate pup gathering.

Knocking out Mecp2 in PV neurons affects early learning. Lack
of MECP2 expression in PVþ neurons contributes to distinct
RTT-like phenotypes35 and affects critical period plasticity in the
visual cortex43. To determine the role of MECP2 in PV neurons
in the pup retrieval behaviour, we crossed Mecp2flox (ref. 31) mice
with PV-Cre mice44. Mecp2flox/PVcre (PV-KO) mice displayed
significant impairment in latency and errors on D0, but improved
significantly to WT performance by D3 and D5 (Fig. 8a–d;
Normalized Latency: CTRL: N¼ 11 mice; PV-KO: N¼ 9 mice;
Mann–Whitney, *P¼ 0.020; Errors: CTRL: N¼ 11 mice; PV-KO:
N¼ 9 mice; Mann–Whitney, *P¼ 0.010). In agreement with the
behaviour results, PNN numbers were similar between WT and
PV-K0 at D5 (Fig. 8e; CTRL: n¼ 514 PNNþ cells, 36 images,
9 mice; PV-KO: n¼ 344 PNNþ cells, 34 images, 9 mice;
Mann–Whitney, P¼ 0.064). These results potentially reveal a
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dynamic role for MECP2 in PV neurons during pup retrieval
behaviour. Further work will be required to define the time course
and molecular mechanisms mediating the change in plasticity
between D0 and D3.

Discussion
A key challenge for understanding the pathogenesis of RTT and
neuropsychiatric disorders in general is to identify the associated
molecular and cellular changes and trace the resulting circuit
alterations that underlie behaviour deficits. It is also critical to
differentiate between impairment of developmental programs and
effects on experience-dependent neural plasticity. Here we take
advantage of a robust natural behaviour in female mice that relies
on a known cortical region, and link molecular events in that
region and behaviour. Our data identify a specific critical role for
MECP2 in experience-dependent plasticity of cortical inhibitory
networks in adults.

Most previous studies in mouse models of RTT were
conducted in Mecp2-null male mice, because they exhibit earlier

and more severe phenotypes in many assays. Therefore, with the
exception of a few studies29,45,46, the molecular, circuit and
behavioural defects in Mecp2het female mice are largely unknown.
Since RTT affects more females, Mecp2het female mice represent a
more translationally-relevant model of RTT than Mecp2-null
male mice.

We found a robust behavioural phenotype in the Mecp2het

mice, suggesting impairment of adult experience-dependent
plasticity. We conclude that dysregulated auditory processing in
the cortex, because of impaired inhibitory neuronal plasticity,
leads to altered learned behaviour. We also showed that when
normal plasticity is restored, even acutely during adulthood, this
behavioural deficit is improved. These results suggest that Mecp2
deficiency impairs not only developing neural circuits, but also
the function and plasticity of adult circuits, via mechanisms
involving PVþ GABAergic networks. GABAergic interneurons
are basic components of cortical microcircuits that are conserved
across brain areas. The same mechanisms that underlie
experience-triggered and MECP2-dependent PV interneuron
function during development and adulthood may also apply to
other functional modalities affected in RTT.

Emerging evidence indicates that the appropriate
expression and function of MECP2 is required in adulthood for
normal plasticity and behaviour8,9. Remarkably, restoring normal
MECP2 expression in adulthood improves behaviour deficits in
mice45,47. These observations have several implications. First,
they indicate that some cellular functions of MECP2 are involved
in the maintenance and adult plasticity of neural circuitry, not
only its development. Second, they raise the possibility that in
humans it may be beneficial to therapeutically restore MECP2
levels at later stages. Nevertheless, the specific mechanisms by
which Mecp2 mutations impair adult neural function need to be
elucidated.

Our data demonstrate that heterozygous mutations in Mecp2
(Mecp2het) interfere with auditory cortical plasticity that occurs in
adult mice during initial maternal experience. Mothers and
wild type virgin surrogates achieve proficiency in pup
retrieval behaviour by an experience-dependent learning
process16,19,20,32,48,49, that is correlated with neurophysiological
plasticity in the auditory cortex16,17,18,50. We used gathering
behaviour to assay defects in this sensory plasticity. Our results
show that Mecp2het have markedly impaired ability to learn
appropriate gathering responses to pup calls. This interference is
in large part because of a specific requirement for MECP2 in the
adult auditory cortex. Deletion of MECP2 in adult mice
selectively in the auditory cortex also produced inefficient
retrieval. We saw no improvement in the behaviour of
the mutants over the first five days post birth. At that point,
pups were sufficiently mobile that they no longer required
gathering. However, it is tempting to speculate that the Mecp2het

might improve with more practice, such as with subsequent
litters.

Electrophysiological recordings from naive mice of both
genotypes demonstrate that there are no gross deficits in basic
auditory cortex function in heterozygous mutants and that they
are not deaf. We speculate instead that there are more subtle and
context-specific impairments of intra-cortical processing and
plasticity in the auditory cortex of Mecp2het.

We find evidence of dysregulated cortical inhibitory networks
during maternal experience in Mecp2het. This is consistent with
increasing evidence that dysfunction of GABA signalling is
associated with autism disorders and RTT (refs 33–35,51).
Importantly, disruption of MECP2 in GABAergic neurons
recapitulates multiple aspects of RTT including repetitive
behaviours and early lethality34, although the pathogenic
mechanisms remain unclear.
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Figure 8 | Knocking out Mecp2 in PV neurons affects early learning.

(a–d), Mice with PV cells lacking MECP2 (PV-KO) behaved significantly

worse than their control littermates (CTRL) at Day 0 (D0) by measure of

latency (a,c) and errors (b,d) (CTRL: N¼ 11 mice; PV-KO: N¼ 9 mice;

At D0: Latency: Mann–Whitney, *P¼0.020; errors: Mann–Whitney,

*P¼0.010). However, PV-KO mice behaved equally as well as their control

littermates at Day 3 and 5 (D3 and D5, respectively (c,d; Mann–Whitney,

P40.05). Lines represent mean±s.e.m. (e) Density of high-intensity

PNNþ cells were comparable between PV-KO mice and their control

littermates accessed at Day 5 (D5) (CTRL: n¼ 514 PNNþ cells, 36 images,

9 mice; PV-KO: n¼ 344 PNNþ cells, 34 images, 9 mice; Mann–Whitney,

P¼0.064). Bar graphs represent mean±s.e.m.
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Our data suggest that an important aspect of the pathology
associated with heterozygous Mecp2 mutations is impaired
plasticity of cortical inhibitory networks. Pup exposure and
maternal experience trigger an episode of heightened auditory
cortical inhibitory plasticity. For example, GAD67 levels are
roughly doubled in the auditory cortex of both wild type and
Mecp2het five days after the birth of the litter. This result suggests
a reorganization of the cortical GABAergic network triggered by
maternal experience. Although this feature of auditory cortex
plasticity is shared between SurWT and SurHet, SurHet also show
large increases in expression of PV and PNNs on the fifth day of
pup exposure. Notably, initial levels of these inhibitory markers in
NaiveWT and NaiveHet, and levels in Sur after pups are weaned,
are identical. Therefore, potentially crucial features of Mecp2het

pathology may only be revealed by the commencement of an
episode of heightened sensory and social experience, as occurs
with first-time pup exposure. We speculate that this may be a
general phenomenon wherein exposure to salient sensory stimuli
may define a particularly vulnerable point for Mecp2het. Further
assessment using natural stimuli targeting motor and social
circuits that challenge network plasticity mechanisms may reveal
endo-phenotypes.

Both WT and Mecp2het female mice exhibit low GAD67
expression as maternally-naive adults. Expression sharply
increases after exposure to a mother and her pups, and returns
to baseline levels when the pups are weaned. This is correlated
with a surge in the expression of PV and PNNs in Mecp2het only.
This result is consistent with increased PV (ref. 33) and PNN
expression observed in the developing Mecp2-null visual cortex39.
Several lines of evidence implicate elevated expression of PV
and PNN as brakes that terminate episodes of plasticity in
development and adulthood. In the developing cortex,
maturation of GABAergic inhibition mediated by the fast-
spiking PV interneuron network is a crucial mechanism for
regulating the onset and progression of critical periods36. During
postnatal development, PV interneurons undergo substantial
changes in morphology, connectivity, intrinsic and synaptic
properties52–55, and they form extensive reciprocal chemical and
electrical synapses52,56,57. Learning associated with a range of
adult behaviours might rely on similar local circuit mechanism
observed in the developing cortex25,58. This model is supported
by our finding that knockout of Mecp2 specifically in PV neurons
is sufficient to impair pup gathering behaviour. From these
results, we speculate that increased PV and PNN expression
might support an enhanced inhibitory function that might lead
to reduced neuronal activation of excitatory circuits in a
stimulus-specific manner, in agreement with previously
published reports30,59,60.

PNNs inhibit adult experience-dependent plasticity in the
visual cortex24, and in consolidating fear memories in the
amygdala61. PNN assembly in the SurHet tracks with changes in
PV expression after maternal experience, suggesting there is
remodelling of the extracellular matrix during natural behaviour.
This is an interesting observation as the prevailing notion of
PNNs during adulthood is as a stable, structural barrier which
needs to be removed with chondroitinase ABC to reactivate
plasticity. Related to this, there was no further improvement in
WT that received ChABC injection possibly revealing a ceiling
effect.

We demonstrate that manipulating GAD67 expression using
Gad1 heterozygotes is sufficient to restore normal PV and PNN
expression patterns and behaviour. This result suggests a critical
role for Gad1 in regulating MECP2-mediated experience-driven
cellular and circuit operations. MECP2 directly occupies the
promoter regions of Gad1 and PV (refs 33,34), thus potentially
configuring chromatin in these promoter and enhancer regions

for appropriate activity- and experience-dependent regulation.
We speculate that MECP2 regulates specific ensembles of genes
and the temporal profile of their expression to control the tempo
of plasticity. MECP2 regulates many genes13,62; therefore there
are likely other as yet unappreciated targets that could contribute
to this control.

Our data are consistent with an emerging body of literature
that suggests that auditory cortical plasticity is triggered in adult
female virgin mice by pup exposure. By using pup gathering
behaviour as readout of the efficacy of this plasticity, we observe
that impaired MECP2 expression disrupts both behaviour and the
underlying auditory cortical plasticity. This is consistent with
recent data revealing sensory impairments in individuals with
RTT, which may contribute to behavioural symptoms63,64.
We further speculate that MECP2 deficiency results in
suppressed (‘negative’) experience-dependent plasticity65 that
may act at other brain regions and time points to contribute to
a range of altered behaviours.

Methods
Animals. All experiments were performed in adult female mice (7–10 weeks old)
that were maintained on a 12-h–12-h light-dark cycle (lights on 07:00 h)
and received food ad libitum. Genotypes used were CBA/CaJ, Mecp2het

(C57BL/6 background; B6.129P2(C)-Mecp2tm1.1Bird/J), Mecp2wt, Mecp2flox/flox

(B6.129S4-Mecp2tm1Jae/Mmucd) and PV-ires-Cre (B6;129P2-Pvalbtm1(cre)Arbr/J).
Mecp2flox/floxmice were bred with an H2B-GFP (Rosa26-loxpSTOPloxp-H2BGFP)
line66 to facilitate identification of injected cells. The double mutant Mecp2het;
Gad1het (Het;Gad1het) was generated by crossing Mecp2hetfemales and Gad1het

males. The Gad1het allele was generated using homologous recombination in ES
cells; a cassette containing de-stabilized GFP cDNA (D2GFP) was inserted at the
translation initiation codon (ATG) of the Gad1 gene. The goal was to generate a
Gad1 gene transcription reporter allele, but the same allele is also a gene knockout.
This design was essentially the same as the widely used Gad1-GFP knockin allele67.
Targeted ES clones were identified by PCR and southern blotting. Positive ES
clones were injected into C57BL/6 mice to obtain chimeric mice following standard
procedures. Chimeric mice were bred with C57BL/6 mice to obtain germline
transmission. D2GFP expression was weak and was restricted to GABAergic
neurons throughout the mouse brain, indicating successful gene targeting. The
colony is maintained as heterozygotes, as homozygotes are lethal. For genetic
knockout of MECP2 in PV cells, we obtained mice heterozygous for PV-ires-Cre;
Mecp2flox/flox (het-PM) by breeding males homozygous for PV-ires-Cre with
females homozygous for MeCP2flox/flox. For behavioural and molecular analysis,
het-PM were bred to obtain females of PV-ires-Creþ /� ;Mecp2flox/floxþ /þ and
control littermates (PV-ires-Cre� /� ;Mecp2floxþ /þ orþ /� ). All procedures were
conducted in accordance with the National Institutes of Health’s Guide for the Care
and Use of Laboratory Animals and approved by the Cold Spring Harbor
Laboratory Institutional Animal Care and Use Committee.

Pup gathering behaviour and movement analysis. We housed two virgin female
mice (one control and one experimental mouse; termed ‘surrogates’) with a
primiparous CBA/CaJ female beginning 1–5 days before birth. Pup retrieval
behaviour was assessed starting on the day the pups were born (postnatal day 0;
D0) as follows: (1) one female was habituated with 3–5 pups in the nest of the
home cage for 5 min, (2) pups were removed from the cage for 2 min and (3) one
pup was placed at each corner and one in the center of the home cage (the nest was
left empty if there were fewer than 5 pups). Each adult female had maximum of
5 min to gather the pups to the original nest. After testing, all animals and pups
were returned to the home cage. The same procedure was performed again at D3
and D5. All behaviours were performed in the dark, during the light cycle (between
10:30 AM and 4:00 PM) and were video recorded. For analysis, an experimenter
who was blind to genotype and experimental condition counted the number of
errors and measured the latency of each mouse to gather all five pups. An error was
scored for each instance of gathering of pups to the wrong location or of interacting
with the pups (for example, licking or sniffing) without gathering them to the nest.
Normalized latency was calculated using the following formula:

latency index ¼ t1 � t0ð Þþ t2 � t0ð Þþ :::þ tn � t0ð Þ½ �= n�Lð Þ

where n¼ # of pups outside the nest, t0¼ start of trial, tn¼ time of nth pup
gathered, L¼ trial length.

Movement was measured while the animal was performing pup retrieval
behaviour, using Matlab-based software (MathWorks)68.

Injections. Mice were anesthetized with ketamine (100 mg kg� 1) and xylazine
(5 mg kg� 1) and stabilized in a stereotaxic frame. Lesions in the auditory cortex of
CBA/CaJ mice were performed by injection of ibotenic acid (0.5 ml of 10 mg ml� 1

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14077

10 NATURE COMMUNICATIONS | 8:14077 | DOI: 10.1038/ncomms14077 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


per site; Tocris Bioscience). Control animals were injected with the solvent only
(0.9% NaCl solution). Pup retrieval behaviour was evaluated 3–5 days later. To
knock down MECP2 expression, we injected AAV9-GFP-IRES-Cre (0.3 ml of
4� 1012 mol ml� 1 per site; UNC Gene Therapy Center) into the auditory cortex of
4 weeks old Mecp2flox/flox mice. AAV2/7-CMV-EGFP was used as control (both
AAV viruses were kind gifts from Dr Bo Li, CSHL). Behaviour was evaluated 4–6
weeks later. To degrade PNNs, we injected chondroitinase ABC (0.3 ml of
50 U ml� 1 per site, in 0.1% BSA/0.9% NaCl solution; Sigma-Aldrich) into the
auditory cortex of Mecp2het and wild type littermate mice. Penicillinase
(50 U ml� 1, in 0.1% BSA/0.9% NaCl solution; Sigma-Aldrich) was used as
injection control. Pup retrieval behaviour was evaluated 3–5 days later. For
Fig. 7e–h, three ChABC-injected Het mice were excluded from analysis because of
mis-targeting of the auditory cortex. The data for these three mice were included in
the correlation analysis (Fig. 7i,j). All substances were injected into both auditory
cortical hemispheres, two sites per hemisphere, at the following coordinates:
bregma¼ � 2.25 and � 2.45 mm, B4 mm lateral and 0.75 mm from the dorsal
surface of the brain.

Immunohistochemistry. Immediately after the behavioural trial on D5, mice were
perfused with 4% paraformaldehyde/PBS, and brains were extracted and post-fixed
overnight at 4 �C. Brains were then treated with 30% sucrose/PBS overnight at
room temperature (RT) and microtome sectioned at 50 mm. Free-floating sections
were immunostained using standard protocols at RT. Briefly, sections were blocked
in 10% normal goat serum and 1% Triton-X for 2–3 h, and incubated with the
following primary antibodies overnight: MECP2 (1:1,000; rabbit; Cell Signaling),
PV (1:1,000; mouse; Sigma-Aldrich) and biotin-conjugated Lectin (labels PNNs;
1:500; Sigma-Aldrich). Sections were then incubated with appropriate AlexaFluor
dye-conjugated secondary antibodies (1:1,000; Molecular Probes) and mounted in
Fluoromount-G (Southern Biotech). To obtain GAD67 staining in soma, three
modifications were made according to a previous protocol69: (1) no Triton-X or
detergent was used in the blocking solution or the antibody diluent; (2) sections
were treated with 1% sodium borohydride for 20 min before blocking, to reduce
background; and (3) sections were left in GAD67 antibody (mouse; 1:1,000;
Millipore) for 48–60 h at room temperature. Brains of all uninjected mice were
processed together with the mothers at all steps in the process (perfusions,
sectioning, immunostaining and imaging with the same settings). Brains of injected
mice were processed together with their respective controls at all steps. Brain
sections for MECP2 expression analysis (Fig. 1h,i) and from MECP2 knockdown
experiment were further counterstained with a nuclear marker, DAPI.

Image acquisition and analysis. To determine the percentage of cell population
expressing MECP2 (Fig. 1h,i), all DAPIþ whole cells within a region of interest
(100 mm� 100 mm) in the � 20 projection image were determined to be either
positive or negative for MECP2 expression. Percentage was calculated by dividing
the number of DAPIþ cells with MECP2 expression by the total number of
DAPIþ cells. Each data point in Fig. 1h,i, represents an average percentage
value calculated from four � 20 projection images for each mouse.

To analyse percentage infection of the auditory cortex by AAV-GFP-Cre or
degradation of PNNs by chondroitinase ABC, 4–5 single-plane images per auditory
cortical hemisphere from each animal were acquired using Olympus BX43
microscope (� 4 objective, UPlanFL N) and analysed using ImageJ (NIH). To
calculate percentage infection/degradation in each image, the area of the entire
auditory cortex was measured based on Allen brain atlas boundaries (Version 1,
2008). Then, the area containing GFPþ cells or reduced PNN expression was
measured and divided by the total auditory cortical area. For non-auditory cortical
region analysis, cumulative regions included temporal association cortex,
entorhinal cortex and perirhinal cortex. Each correlation data point represents the
percentage infection/degradation per animal.

To determine the percentage of AAV-GFP-Cre infected cells lacking MECP2
expression, four confocal images of the auditory cortex (two images per
hemisphere) were acquired using the Zeiss LSM710 confocal microscope
(� 20 objective; � 2 zoom) for each AAV-GFP-Cre injected mouse. Using ImageJ
(NIH), a region of 100 mm2 was used to determine the percentage of GFPþ cells
that lack MECP2 expression.

For Fig. 2f, the amount of MECP2 knockdown was assessed by comparing
MECP2 intensity in infected cells (GFPþ ) and uninfected cells (GFP� ) within the
same auditory cortical region of each AAV-GFP-Cre injected mouse. 2 confocal
images of the auditory cortex (1 image per hemisphere) were acquired using the
Zeiss LSM710 confocal microscope (� 20 objective; � 1 zoom) for each mouse.
Using ImageJ and a region of 150 mm2 from each confocal image, the intensity of
MECP2 for each GFPþ infected cell was obtained and compared with the intensity
of MECP2 in MECP2þ cells that lack GFP (uninfected). Only cells with their
entire soma visible in the confocal images were used for the analysis.

To analyse GAD67þ and PVþ soma and PNNs, two confocal images from
each auditory cortical hemisphere of each animal were acquired using the Zeiss
LSM710 confocal microscope (� 20 objective; � 0.6 zoom) and analysed using the
LSM Image Browser. Each confocal image of the same hemisphere was separated
by at least 150 mm to minimize the counting of the same cells. Scans from each
channel were collected in the multiple-track mode. Maximum intensity projections
of the Z-stacks were obtained using the ‘Projection’ setting in the Zeiss LSM Image

Browser. To count high-intensity GAD67þ soma and mature PNNs, the ‘Contrast’
setting in the Browser was set to 100 to threshold weaker signals. All GAD67þ

soma and mature PNNs within the projection images were counted manually.
Measurement of PVþ cell intensity was performed using Volocity (Perkin Elmer).
PV confocal images were first merged. Then, cell identity and intensity were
measured using the option ‘Find 2D nuclei’ with ‘separate touching nuclei¼ 5 mm’
and ‘reject nuclei of area o10 mm2.’ Results were confirmed manually to exclude
non-cell objects and to include any missed PVþ cells. Finally, obtained cell
intensities were background subtracted. The experimenter performing the analysis
was blinded to all genotypes and conditions. All statistical analysis was performed
using Origin Pro (Origin Lab) and Matlab (MathWorks). All graphs were
generated using GraphPad Prism (GraphPad Software). Data are represented as
mean±s.e.m.

In vivo physiology. For awake-state recordings, we anesthetized Mecp2het mice
and Mecp2wt mice with an 80:20 mixture (1.00 ml kg� 1) of ketamine
(100 mg ml� 1) and xylazine (20 mg ml� 1) (KX) and stabilized in a stereotaxic
frame. A head bar was affixed above the cerebellum with RelyX Luting Cement
(3M) and methyl methacrylate-based dental cement (TEETS). For additional
support, five machine screws (Amazon Supply) were placed in the skull before
cement application. After one day of recovery, mice were anesthetized with iso-
flurane (Fluriso; Vet One) and small craniotomies were made to expose the left
hemisphere of auditory cortex. Mice were then head-fixed via the attached head bar
over a foam wheel that was suspended above the air table. The foam wheel allowed
mice to walk and run in one dimension (forward-reverse).

Stimuli were presented via ED1 Electrostatic Speaker Driver and ES1
Electrostatic Speaker (TDT), in a sound attenuation chamber (Industrial Acoustics)
at 65 dB SPL RMS measured at the animal’s head. Stimuli consisted of 100-ms
presentation of broadband noise, four logarithmically-spaced tones ranging
between 4 and 32 kHz, and ultrasound noise bandpassed between 40 and 60 kHz.

Single units were blindly recorded in vivo by the loose-patch technique using
borosilicate glass micropipettes (7–30 MO) tip-filled with intracellular solution
(mM: 125 potassium gluconate, 10 potassium chloride, 2 magnesium chloride
and 10 HEPES, pH 7.2). Spike activity was recorded using BA-03X bridge amplifier
(npi Electronic Instruments), low-pass filtered at 3 kHz and digitized at 10 kHz,
and acquired using Spike2 (Cambridge Electronic Design). Data were analysed
using Spike2 and Matlab.

Baseline spontaneous activity was calculated using a 2-second window taken
before the onset of stimuli. To assess statistical significance of responses to
individual stimulus, we used a bootstrap procedure as follows. If n trials were
collected with the response window length t (100 ms), then a distribution was
created by sampling n length t windows from the full spike record 10,000 times and
taking the mean deviation of each window from the spike rate measured in the
prior 2 s. Responses that were in the top or bottom 2.5% of this distribution were
deemed significantly excitatory or inhibitory, respectively.

Data availability. The data that support the findings of this study are available
from the corresponding author on reasonable request.
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