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ABSTRACT Recently, dysbiosis in the human gut microbiome and shifts in the rela-
tive abundances of several bacterial species have been recognized as important fac-
tors in colorectal cancer (CRC). However, these studies have been carried out mainly
in developed countries where CRC has a high incidence, and it is unclear whether
the host-microbiome relationships deduced from these studies can be generalized
to the global population. To test if the documented associations between the micro-
biome and CRC are conserved in a distinct context, we performed metagenomic and
metabolomic association studies on fecal samples from 30 CRC patients and 30
healthy controls from two different locations in India, followed by a comparison of
CRC data available from other populations. We confirmed the association of Bacte-
roides and other bacterial taxa with CRC that have been previously reported in other
studies. However, the association of CRC with Flavonifractor plautii in Indian patients
emerged as a novel finding. The plausible role of F. plautii appears to be linked with
the degradation of beneficial anticarcinogenic flavonoids, which was also found to
be significantly correlated with the enzymes and modules involved in flavonoid deg-
radation within Indian CRC samples. Thus, we hypothesize that the degradation of
beneficial flavonoids might be playing a role in cancer progression within this Indian
cohort. We also identified 20 potential microbial taxonomic markers and 33 potential
microbial gene markers that discriminate the Indian CRC from healthy microbiomes
with high accuracy based on machine learning approaches.

IMPORTANCE This study provides novel insights on the CRC-associated microbiome
of a unique cohort in India, reveals the potential role of a new bacterium in CRC,
and identifies cohort-specific biomarkers, which can potentially be used in noninva-
sive diagnosis of CRC. The study gains additional significance, as India is among the
countries with a very low incidence of CRC, and the diet and lifestyle in India have
been associated with a distinct gut microbiome in healthy Indians compared to
other global populations. Thus, in this study, we hypothesize a unique relationship
between CRC and the gut microbiome in an Indian population.
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Colorectal carcinoma (CRC) is among the most frequently diagnosed cancers world-
wide and is a major cause for mortality (1). CRC shows the highest incidence in

developed countries, such as in the United States and Japan, and is also on the rise in
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East Asian countries. Mutations in several tumor suppressor genes, such as APC, MSH2,
MLH1, PMS2, DPC4/Smad4, and p53, and activation of oncogenes, such as �-catenin,
COX-2, and K-RAS, have been implicated as one of the many causes of colorectal cancer
(2). The human colon is a unique organ that harbors thousands of bacterial species
comprising �1012 to 10�14 microbes, which play a prominent role in human health,
likely implicated in the etiology of several human diseases such as inflammatory bowel
disease (IBD), obesity, type 2 diabetes, and cardiovascular and other diseases (3–5).
Similar associations of an altered gut microbiome with CRC have also been revealed in
recent studies in Chinese, Austrian, French, and American populations (6–9). In the
majority of the studies, Fusobacterium nucleatum and Bacteroides spp. have been
observed to be consistently associated with tumorigenesis (7, 10).

Beyond taxonomic profiling, a few recent metagenomic studies have also focused
on the identification of potential fecal biomarkers for the improved detection of CRC (6,
8). In the Chinese population, Yu et al. identified 20 microbial gene markers differen-
tiating the CRC and healthy gut microbiome (6). Another study, from a European
population, also identified potent taxonomic biomarkers, which showed similar diag-
nostic accuracy as that of the fecal occult blood test (FOBT) for both early- and
late-stage CRC (8). When the two approaches were combined, an improvement of
�45% in sensitivity of machine learning models was observed compared to FOBT, while
maintaining their specificity for CRC detection, suggesting that microbial biomarkers
hold the potential to supplement the existing diagnostic techniques for early-stage and
noninvasive detection of CRC.

The previous microbiome studies have mostly emphasized the identification of
global CRC markers, as opposed to population-specific microbial biomarkers. However,
most of these studies also focus on developed countries and/or populations with high
incidences of CRC, which may share environmental or lifestyle factors that influence
both CRC and the microbiome. It is, therefore, unclear how universal the reported
associations between CRC and the gut microbiome are. Due to the significantly distinct
lifestyles and dietary characteristics of different populations worldwide, it is important
to identify both country-specific and global markers of CRC.

India is among the few countries in the world where CRC shows the lowest
incidence. Low rates of CRC in India are often linked to vegetarianism, use of spices
such as curcumin (turmeric), and other food additives having apparent anticancer
properties (11). Given the profound role of diet in shaping the gut microbiome, these
unique dietary traits are likely to affect the gut microbiome. A cross-population
comparison carried out in one of our recent studies also showed that the Indian
population forms a distinct cluster from other world populations (China, United States,
and Denmark), driven by the predominance of Prevotella spp. (12). If the gut micro-
biome does mediate CRC disease progression, these unique gut microbial traits may
explain the low incidence of CRC in India. However, no study has yet been carried out
in the Indian population to examine these relationships. Therefore, to gain novel
insights into the role of the gut microbiome in CRC in India, and to identify population-
specific bacterial markers of CRC, we performed a comprehensive gut microbiome
analysis of CRC patients in India and compared that microbiome with healthy Indian
individuals. Specifically, we profiled the fecal metagenome using shotgun metag-
enomic sequencing along with gas chromatography-mass spectrometry (GC-MS)-based
profiling of the fecal metabolome in a cohort of 60 individuals (30 CRC patients and 30
healthy controls) from two distinct locations (north-central and southern India).

RESULTS

Shotgun metagenomic sequencing in n � 60 individuals from both Bhopal and
Kerala cohorts (see Table S1 in the supplemental material) yielded a total of 641 million
high-quality sequencing reads with an average of 10.7 � 5.1 million reads/sample
(average � SD). We then constructed a gene catalogue containing a set of 2,364,248
nonredundant genes for the Indian cohort. For maximum quantification of microbial
genes, the Integrated Gene Catalogue (IGC) and the India-specific gene catalogue were
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combined to construct a nonredundant Updated Gene Catalogue (UGC), which com-
prised 11,118,467 genes (an addition of 12.5% genes in the current IGC) including
9,879,896 genes from the IGC and 1,238,571 genes unique to the Indian population.
The UGC was used for mapping of metagenomic reads from the 60 Indian samples and
resulted in 54.47% � 7.84% (average � SD) mapping of reads and in the identification
of 3,824,855 million genes in the Indian cohort.

Variations in the CRC-associated gut microbiome in the Indian cohort. Rarefac-
tion analysis showed that the gene richness approached saturation in both groups
(healthy and CRC) and was higher in CRC than in healthy individuals (Fig. 1A). The
increased gene richness was further validated by calculating the within-sample diver-
sity (�-diversity) using the Shannon index, which measures within-sample gene diver-
sity. It was observed that the individuals with CRC had a more significantly diverse gene
pool than healthy controls (Wilcoxon rank sum test; q value � 0.0052) (Fig. 1B).
Interindividual distances in gene composition, as determined by Bray-Curtis distance
metrics, showed that CRC individuals are much more dissimilar than healthy controls
(Wilcoxon rank sum test; q value � 0.0003) (Fig. 1C). Taken together, these results
suggest distinct differences in the diversity of functions carried out by gut microbial
communities in the CRC-associated gut compared to the healthy controls.

To compare the gene contents among all 60 samples, a set of genes commonly
present in at least 3 samples (5% of the total samples) was constructed, which
comprised 1,988,680 genes. Using these 1.9 million genes, gene abundance profiles
were generated for each of the 60 samples. The variations in microbial community
composition between samples were first scored to examine the effect of each of 8
covariates (health status, location, age, gender, body mass index [BMI], stage, histopa-
thology, and localization) (Table 1) by performing permutational multivariate analysis of
variance (PERMANOVA) on the gene abundance profiles. It was observed that health

FIG 1 Variations in intersample and intrasample diversity between healthy and CRC samples. (A) Rarefaction curves based on gene counts at each sample depth
in healthy and CRC individuals are shown using the box plot. (B) Richness of microbial communities revealed using Shannon diversity is shown for healthy and
CRC samples. (C) Intersample Bray-Curtis distances showing diversity between CRC and healthy samples are shown using the box plot. The boxes represent
interquartile range between the first (25th percentile) and third (75th percentile) quartiles, and the line or notch in the boxes represents the median. The
whiskers extending 1.5� interquartile range on both sides represent the deviations in the values from the median.
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status explained the maximum variation (P value � 0.0009, R2 � 0.04) compared to the
other covariates. The location also showed a significant effect but explained less
variation than the health status (P value � 0.009, R2 � 0.03).

To further dig into the covariates explaining variation in the gene profiles across
cohorts, principal-component analysis (PCA) based on the gene profiles was performed.
The first and the second principal component explained 7.2% and 6.8% of the total
variations (see Fig. S1 in the supplemental material) and were significantly associated
with health status (polyserial correlation; q value � 10�15) and location (polyserial
correlation; q value � 0.00004), respectively (Table S2). CRC and healthy samples
clustered separately along PC1, corroborating significant functional microbiome differ-
ences explained mainly by the health status followed by location of the samples
(Table S2).

Taxonomic variations in the CRC-associated gut microbiome. Taxonomic differ-
ences in the gut microbiome of CRC and healthy individuals were examined to identify
the microbial taxa associated with the patterns observed in the previous analysis. For
this analysis, three different methods were used: (i) reference-based Human Micro-
biome Project-National Center for Biotechnology Information (HMP-NCBI) species, (ii) de
novo clustering-based metagenomic species (MGS), and (iii) clade-specific-marker-
based metagenomic OTU (mOTU) species and Metaphlan species (see Materials and
Methods). On performing correlation analysis, 158 HMP-NCBI-mapped species, 147
MGS, 61 species-level mOTUs, and 45 Metaphlan species were observed to be signifi-
cantly associated with CRC or healthy samples (Wilcoxon rank sum test; q value � 0.01;
mean abundance � 0.001) (Table S3). To improve the robustness of taxonomic marker
identification in CRC, the taxonomic species that were identified by all the three
strategies simultaneously (HMP-NCBI species, MGS, and any one of the clade marker-
based approaches, i.e., mOTUs or Metaphlan) were considered for further analysis. A
total of 20 taxonomic markers were identified based on their significant association
with the health status using the above methods. Among these 20 marker species, six
species, namely, Eubacterium rectale, Prevotella copri, Bifidobacterium adolescentis, Me-
gasphaera elsdenii, Faecalibacterium prausnitzii, and Lactobacillus ruminis, were ob-
served to be highly associated with the gut microbiome of healthy Indian subjects.
These species have also been associated with a healthy phenotype in previous studies,
and significant reductions in their proportion were observed in CRC in this study
(13–18). The remaining 14 species were associated and enriched in CRC samples.
Among these, nine species including Akkermansia muciniphila (6, 19), Bacteroides fragilis
(20), Bacteroides clarus (21), Bacteroides eggerthii (7), Escherichia coli (6, 19), Odoribacter
splanchnicus (7), Peptostreptococcus stomatis (6, 8), Parvimonas micra (6, 7), and Para-
bacteroides distasonis (22), have been shown to be strongly associated with colorectal
cancer in the previous studies (Fig. 2).

Remarkably, a few gut bacteria that have not yet been associated with colorectal
cancer in the previous reports were also observed to be significantly associated with
Indian CRC samples. Among these, a novel and striking finding was the presence of

TABLE 1 PERMANOVA on microbial gene profiles of all samples to test the impact of
health status, sample location, and clinical parameters on the gut microbiota with q
of �0.01 (in bold)a

Variable df S.Sq F.Model R2 Pr (>F) q value

Health status 1 1.22 2.97 0.04 0.0009 0.004
Age 1 0.506 1.24 0.02 0.03 0.09
Gender 1 0.408 0.99 0.01 0.467 0.6
BMI 1 0.444 1.08 0.01 0.183 0.336
Location 1 0.896 2.19 0.03 0.0009 0.004
TNM staging 1 0.443 1.08 0.02 0.1878 0.336
Histopathology 1 0.343 0.84 0.01 0.972 0.972
Localization 1 0.411 1.00 0.01 0.409 0.6
adf, degrees of freedom; S.Sq, sum of squares; F.Model, F-statistic; Pr, P value; R2, coefficient of
determination.
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Flavinofractor plautii, which was significantly associated (Wilcoxon rank sum test,
q � 0.00001) (Fig. 2) with CRC samples in this study. Additionally, the predictive power
of taxonomic association using Random Forest (RF) analysis on HMP-NCBI species
abundance also showed Flavonifractor plautii as the most important species in sepa-
rating Indian CRC samples from the healthy controls (Table 2). The high abundance of
this flavonoid-degrading bacterium in Indian samples is intriguing, as the diet of Indian
populations is rich in polyphenols, with flavonoids being the most abundant dietary
polyphenol (23). Additionally, a few gut bacteria not associated with colorectal cancer
in the previous reports were also observed to be highly associated with CRC; these
included Bacteroides intestinalis, Methanobrevibacter smithii, Streptococcus parasangui-
nis, and Veillonella parvula (Fig. 2).

Further, PERMANOVA showed that only health status (q value � 0.004) and location (q
value � 0.004) significantly explained variation in species abundance based on the four

FIG 2 The 20 differentially abundant species between healthy and CRC samples. The box plots showing 20 differentially abundant species observed using all
three methods of species identification between CRC (red) and healthy (blue) samples are represented in panels. The y axis represents relative abundance of
samples calculated by mapping the reads against reference genomes collected from HMP-NCBI. The boxes represent interquartile ranges between the first (25th
percentile) and third (75th percentile) quartiles, and the line or notch in the boxes represents the median. The whiskers extending 1.5� interquartile range on
both sides represent the deviations in the values from the median.
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methods used to identify species. All other covariates were not significant (q value � 0.09)
(Table S4). In order to derive associations between microbial markers, a species cooccur-
rence network was generated from pairwise correlations using sparCC (Fig. 3). Flavoni-
fractor plautii, Bacteroides fragilis, Bacteroides intestinalis, and Parabacteroides distasonis,

TABLE 2 Mean decrease in accuracy calculated using the 20 marker species

Species

Mean decrease

Accuracy Gini

Flavonifractor plautii 0.0688 5.0677
Prevotella copri 0.0313 2.5754
Peptostreptococcus stomatis 0.0144 1.2526
Bacteroides intestinalis 0.0128 1.3198
Bifidobacterium adolescentis 0.0104 1.0669
Bacteroides fragilis 0.0097 1.4901
Streptococcus parasanguinis 0.0085 0.9585
Odoribacter splanchnicus 0.0067 0.9543
Parvimonas micra 0.0061 0.7280
Eubacterium rectale 0.0061 0.7019
Bacteroides eggerthii 0.0054 0.6979
Escherichia coli 0.0047 0.8368
Veillonella parvula 0.0043 0.6180
Akkermansia muciniphila 0.0039 0.5529
Methanobrevibacter smithii 0.0033 0.4000
Parabacteroides distasonis 0.0031 0.4248
Megasphaera elsdenii 0.0029 0.7362
Lactobacillus ruminis 0.0028 0.5452
Faecalibacterium prausnitzii 0.0024 0.3228
Bacteroides clarus 0.0020 0.3583

FIG 3 Species involved in gut microbial dysbiosis associated with colorectal cancer. The cooccurrence network
derived from Spearman’s rank correlation coefficient using the relative abundance of 20 differentially abundant
species is shown. The 14 species which are enriched in CRC individuals and 6 species which are enriched in healthy
individuals are shown. Significant correlations (� � 0.5 and FDR-adjusted P � 0.05) are shown using network analysis. The
node size shows the association of each species with other species. The node color shows the taxonomic families to which
they belong.
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which have been previously reported to be associated with CRC, showed higher
degrees of association with each other and also with microbes such as Peptostrepto-
coccus stomatis and Parvimonas micra (6). The most influential nodes in the network
were determined using centrality measure, and it was observed that Flavonifractor
plautii, Bacteroides intestinalis, Bacteroides fragilis, Bacteroides clarus, and Parabacte-
roides distasonis showed much higher centrality, thus showing their influence on the
entire network. The high association between these species indicates that CRC-
associated microbes tend to cooccur, and form more associations, in contrast with taxa
characterizing healthy states.

Global comparative metagenome-wide association study (MGWAS) meta-
analysis. To demonstrate the utility of CRC-associated taxonomic markers in the
CRC-associated gut microbiome between cohorts, we selected a similar group of 75
CRC cases and 53 healthy control samples from a Chinese cohort (19), and a group of
46 CRC cases and 57 healthy control samples from an Austrian cohort (7) for the
comparative analysis. Using data sets from multiple countries, a meta-analysis was
performed to identify global variations in the CRC microbiome. In order to control the
variations arising due to uneven sequencing depths from other studies, we used a
rarefied table for performing meta-analysis. We performed multivariate distance-based
redundancy analysis (db-RDA) with health status (CRC and healthy) and country (India,
China, and Austria) as metainformation. The multivariate analysis was constrained using
these two pieces of information, and the most important axes explaining maximum
variations between samples were extracted. The projection shows all the CRC and
healthy samples from the three countries, with country-/study-wide differences on the
x axis and differences due to CRC status on the y axis (Fig. 4). It was observed that
the Indian population differed significantly from the Austrian and Chinese cohorts (P
value � 10�15) (Fig. 4). The Indian CRC samples showed marked differences in microbial
composition and were separated from the other country samples, thus revealing the
unique microbial community composition in Indian gut microbiomes. The MGS/CAGs
that showed maximum contributions in driving the separation of Indian CRC samples
included Flavonifractor plautii, Veillonella parvula, and Parabacteroides distasonis (Fig. 4).

To look at the global taxonomic patterns, we performed differential analysis un-
stratified for CRC status (while controlling for the populations) and found 85 MGS/CAGs
to be significantly associated with CRC (Table S5). The MGS/CAG belonging to Fuso-
bacterium nucleatum, which has been reported in earlier studies (24), showed the
highest association with CRC status with a P value of �10�15. The other species that
have been associated with CRC in the previous studies included Peptostreptococcus
stomatis, Bacteroides fragilis, and Porphyromonas asaccharolytica (6, 7, 25). Flavonifractor
plautii, which showed a striking association in Indian CRC samples, was also observed
in this list, albeit with low P values compared to the previously mentioned species.

Functional characterization of microbiome associated with CRC. A metagenome-
wide association analysis was performed to gain functional insights on the CRC-
associated gut microbiome. Out of the total of 1.9 million genes, which were present
in at least 5% of the samples, 228,299 genes were found to be significantly associated
with the disease status (Wilcoxon rank sum test, q � 0.01). These CRC-associated genes
were functionally annotated using the KEGG database. Using the stringent criteria of P
value of �0.01 and log odds ratio (LOR) of �|2|, 473 KEGG orthologues (KOs) were
found associated with health status (Table S6). The top-ranked enzymes (KOs) include
invasins, multidrug resistance protein, and enzymes involved in secretion and the
transport system, which points toward a pathogenic and invasive environment with
high cross-talk between host and microbes. Specifically, the high abundance of invasins
has also been associated with the colorectal cancer-associated gut microbiome in the
past (26, 27), as they help the bacteria to gain entry into host cells (22, 26).

The pathways associated with CRC were identified using reporter feature analysis,
which takes into consideration the significance and enrichment of all the genes present
in the pathway. It was observed that out of the 12 pathways, “ABC transporters”
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(q value � 0.013) could pass the stringent cutoff being significantly enriched in CRC
(Table S7). It was interesting that pathways related to the biosynthesis of six amino
acids (leucine, isoleucine, lysine, phenylalanine, tryptophan, and valine) out of the nine
essential amino acids were observed to be significantly high in healthy controls
compared to the CRC cases (Table S7), suggesting depletion of essential amino acids in
the gut microbiome of CRC individuals.

Further, to gain additional functional insights, we identified KEGG modules which
were significantly associated with health status. For this, only those modules for which
at least 90% of the module’s enzymes are present in the samples were considered, and
these modules were also found associated with health status with a q value of �0.001
(Wilcoxon rank sum test). Using these stringent criteria, a total of 46 modules could
qualify, of which 12 modules were found higher in CRC cases than in the healthy
controls. A module with the function of “Catechol ortho cleavage” was observed to be
significantly associated with the CRC cases. This module is involved in the degradation

FIG 4 Major effects of CRC on gut microbiome from multivariate meta-analysis. Principal-component analysis of the samples from China,
Austria, and India using MGS abundance derived from metagenome-wide association study is projected. The multivariate analysis using
distance-based redundancy analysis (db-RDA) was constrained by studies/populations and health status. The marginal box plots show
separation of constrained projected coordinates on the x axis (constrained for studies/populations) and y axis (constrained for health status). The
top three MGS that showed significant association with Indian CRC samples are interpolated on the plane of maximal separation.
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of catechols such as 3,4-dihydroxypheynlacetic acid, which are generated by degrada-
tion of flavonoids by the gut bacterium Flavonifractor plautii (28). On performing the
Spearman correlation between these 46 modules and the 20 taxonomic species
selected above, the “Catechol ortho cleavage” module was observed to correlate
significantly (r � 0.63, P � 3.6 � 10�7) with Flavonifractor plautii (Fig. S2).

Insights from comparative metabolomic profiling. The principal-component
analysis revealed marked variations in the metabolomic profiles of CRC and healthy
individuals. These differences could be attributable to the host physiological changes
and the microbial metabolism, which depends on the type of microbes inhabiting the
gut. The first and the second principal components explained 71.55% and 10.66% of
the total variations (Fig. 5A), respectively. The peaks annotated to metabolites
4-hydroxyphenyl pyruvic acid, butanoic acid, valeric acid, L-valine, and cyclohexene
were observed to be significantly enriched (P value � 0.05; log fold change � �2) in
CRC individuals compared to the healthy group (Fig. 5B). Among these, the higher level
of 4-hydroxyphenyl derivates can be directly corrected with the flavonoid-metabolizing
ability of the CRC microbiome, which is dominated by Flavonifractor plautii (formerly
Clostridium orbiscindens), a microbe involved in the degradation of quercetin flavonoid
(28, 29). A higher abundance of compounds such as valerate, isovalerate, and isobu-
tyrate (which are salts or esters of valeric acid and butanoic acid [butyric acid]) in CRC
individuals has also been reported in other studies (30). Taken together, these obser-
vations indicate significant differences in the metabolic profiles in CRC individuals
compared to the healthy group, which correlates with the flavonoid-metabolizing
ability of the CRC microbiome in the Indian patient cohort. However, detailed studies
to gain insights on the functional contribution of respective microbes for production of
these metabolites and their impact on host health are needed to confirm these results.

CRC gene biomarker discovery. We divided our 60 samples into two sets, cohort
A comprising 48 samples and cohort B comprising 12 samples, by random selection
from the two locations and health status (see Materials and Methods). To identify
potential CRC-associated biomarkers, a robust feature selection method was followed
using the 102,168 health status-associated genes from the samples of cohort A. From
these genes, we identified a subset that were highly correlated with each other
(Pearson correlations � � 0.9) and chose the longest gene from each correlated group

FIG 5 (A) Principal-component analysis of the raw metabolomic peaks identified from CRC and healthy samples (n � 18). The PC1 and PC2 explaining almost
80% of variation between samples show distinct metabolomic profiles in CRC and healthy individuals. (B) Volcano plot showing the significantly enriched
metabolites in CRC and healthy individuals. The fold change was calculated as log fold between CRC and healthy individuals. The adjusted P values are plotted
on the y axis. The metabolites significantly enriched in CRC patients (adjusted P value � 0.05; fold change � �2) are shown in red whereas those enriched
in healthy individuals (adjusted P value � 0.05; fold change � 2) are shown in blue. Valeric acid, butanoic acid, and 4-hydroxyphenyl acetic acid were observed
to be significantly higher in CRC patients than in healthy individuals.
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to construct a statistically nonredundant set of 13,982 genes. Further, we used the
“CfsSubsetEval” method from Weka to identify a subset of 36 genes that are highly
correlated with the health status while having low intercorrelation with each other. The
genes from this subset were further validated using the Boruta algorithm, which uses
Random Forest to perform a top-down search for relevant features by comparing
original attribute importance with importance achievable at random, and we elimi-
nated irrelevant feature to stabilize the test. As a result, 33 out of 36 genes were
confirmed as markers using this algorithm and 3 were predicted as tentative markers
(Fig. S3). The principal-component analysis using these 33 genes showed clear sepa-
ration between CRC and healthy samples, and the first two principal components
explained 40.5% variation (Fig. 6A), which is a significant improvement compared to the
separation observed using raw data (11.4% variation explained using first two principal
components [Fig. S1]). Most importantly, the first three principal components were
observed to be significantly (adjusted P values: PC1 � 7.5 � 10�10, PC2 � 1.97 � 10�8,
PC3 � 0.0005) associated only with the health status with the stringent P value cutoff
less than 0.001 (Table 3). PERMANOVA showed that only CRC status explained the
variation in the 33 marker gene abundances significantly (P � 0.01, R2 � 0.19) (Table 4).
These results suggest that the 33 gene markers identified using the approach are
strongly associated with health status and not with any other covariate. Further, to
evaluate the predictive power of these marker genes in predicting the CRC status, the
Random Forest method was used, which resulted in the perfect classification of the two
classes (area under receiver operating characteristic [ROC] curve, area under the curve
[AUC] � 1) using 10-fold cross-validation. On performing the Spearman correlation of
these 33 gene markers with the 20 taxonomic markers identified above, it was observed
that the 16 genes enriched in CRC cases were highly correlated with Flavonifractor
plautii and Bacteroides fragilis (Fig. 6B). These results further validates that these two
species could play a role in Indian CRC samples.

Gene marker validation in independent metagenomic cohorts. To test the
accuracy and robustness of these gene markers, we evaluated the predictive power of
these 33 genes on cohort B (6 CRC samples and 6 healthy samples) from this study and
from a cohort with a different genetic background: 75 CRC samples and 53 healthy
samples from China and 46 CRC samples and 57 healthy samples from Austria. The
relative gene abundances of China and Austria data sets were constructed by mapping
their genes on the Updated Gene Catalogue constructed in this study. On cohort B, the
Random Forest (RF) model using the 33 genes resulted in an accuracy of 91.67% with
11 out of 12 samples being correctly predicted (sensitivity, 100%; specificity, 83.33%).
However, using the same gene markers on the Austria and China data sets resulted in
lower average accuracy of 65.05% and 51.56%, respectively. A CRC index using the log
relative abundances of the 33 gene markers was also calculated as mentioned in the
study by Yu et al. (6). The CRC index clearly separated the samples from the Indian
population (CRC index patients � 4.04; CRC index healthy � �4.65) with a P value of
3 � 10�1. However, it could not significantly differentiate between the CRC cases and
healthy controls for the other two populations (Fig. 6C).

DISCUSSION

Recently, gut microbiome dysbiosis has emerged as a key factor that triggers an
inflammatory response in the host and is proposed to lead to an initiation of colorectal
cancer (31, 32). However, most of our understanding comes from developed countries
with high incidences of CRC. India harbors a unique gut microbiome and also has one
of the lowest incidences of CRC. Thus, we expected to find a distinct relationship
between the gut microbiome and CRC in an Indian cohort. Our results showed a clear
distinction between the healthy and CRC-associated gut microbiomes. We also identi-
fied multiple potential microbial taxonomic and gene biomarkers associated with CRC.
While some of these biomarkers have been reported in other global populations, others
were unique to our cohort. Therefore, our study is one of the first to emphasize the
importance of utilizing population-specific microbiome biomarkers in studies of CRC.
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FIG 6 Association of 33 gene markers with the health status and taxonomic species identified. (A) Principal-component analysis based on abundances of 33
gene markers explains 40% of variation using only the first two principal components. (B) Association of 33 gene markers with the 20 taxonomic species
identified using three different strategies. (C) CRC index computed using the log abundances of the 33 gene markers showing significant association only in
the Indian CRC and healthy samples compared to Chinese and Austrian cohorts.

Gut Microbiome of Colorectal Cancer Patients in India

November/December 2019 Volume 4 Issue 6 e00438-19 msystems.asm.org 11

https://msystems.asm.org


Interestingly, gut microbiome diversity was higher in Indian CRC samples than in
healthy controls. A similar observation was made in Austrian CRC cases, which showed
an increased microbiome diversity; however, reduced microbial diversity was observed
in a Chinese cohort, pointing toward a contrasting trend, perhaps due to population-
specific variations (12). The higher diversity in the Indian CRC microbiome can be
explained by the fact that the Indian gut microbiome is highly skewed, with most (30%
to 75%) of the community dominated by Prevotella, as observed in our recent study
that examined the gut microbiome in a cohort of 110 Indian individuals (12). In this
study, we observed a much lower proportion of Prevotella in CRC samples (12.7%) than
in the healthy samples (45.31%). Thus, the apparent �3.5-fold reduction in this most

TABLE 3 Polyserial correlation of first five principal components with the 33 gene markers
identified in this study

Principal component
and covariate Z score P value

Adjusted P value
(Benjamini-Hochberg)a

PC1
Status �6.4038 1.52E�10 7.5 � 10�10

Age 2.3870 0.01699 0.0424
Gender 1.2505 0.21113 0.263
BMI �1.4470 0.14789 0.2464
Location 0.7238 0.46920 0.469

PC2
Status 5.7314 9.96E�09 4.97 � 10�8

Age �1.6525 0.09843 0.099
Gender �2.1843 0.02894 0.0482
BMI 1.6496 0.09902 0.099
Location 2.5625 0.01039 0.0259

PC3
Status �3.8852 0.00010 0.0005
Age 2.1147 0.03445 0.057
Gender 0.7851 0.43240 0.432
BMI �1.4414 0.14948 0.1868
Location 2.8859 0.00390 0.0097

PC4
Status 0.0925 0.92628 0.9262
Age 0.4996 0.61738 0.7717
Gender 0.9185 0.35837 0.608
BMI �0.9062 0.36485 0.608
Location �1.7567 0.07898 0.394

PC5
Status �1.8325 0.06688 0.3343
Age �0.2352 0.81408 0.81407
Gender 0.5581 0.57681 0.721
BMI �1.0634 0.28759 0.7189
Location �0.7609 0.44673 0.721

aThe boldface values represent significant associations defined as P value � 0.001.

TABLE 4 PERMANOVA of 33 gene markers to test whether these 33 markers are
significantly associated with health status and not with any other covariatea

Parameter df

Gene marker

S.Sq F.Model R2 Pr (>F) q value

Health status 1 3.9072 15.4497 0.1866 0.0099 0.0495
Age 1 0.4392 1.7369 0.0209 0.0297 0.8910
Gender 1 0.3200 1.2654 0.0152 0.1584 0.3168
BMI 1 0.2980 1.1784 0.0142 0.2574 0.3168
Location 1 0.6581 2.6022 0.0314 0.0198 0.0792
adf, degrees of freedom; S.Sq, sum of squares; F.Model, F-statistic; Pr, P value; R2, coefficient of
determination.
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predominant taxon in CRC patients is likely to result in an increased diversity due to
more opportunities for other bacterial taxa to flourish (33). Another consequence of this
dysbiosis appears to be the reduction in pathways related to the biosynthesis of six
essential amino acids (leucine, isoleucine, lysine, phenylalanine, tryptophan, and valine)
out of the nine essential amino acids in CRC cases (see Table S6 in the supplemental
material), which makes it tempting to speculate on a dysbiosis-mediated mechanism of
CRC in the Indian population.

The most interesting key finding of this study was the identification of Flavonifractor
plautii as the key bacterium associated with CRC, which also emerged as one of the 20
taxonomic markers identified using three different strategies. Though its presence in
the gut microbiome is not unique to India, and it was present in other CRC data sets
(used in this study), it showed a differential abundance only in the CRC gut microbiome
of the Indian cohort. In addition to being significantly abundant, it also emerged as the
most important species in separating CRC samples from healthy samples in the Indian
cohort. Also, the high correlation of F. plautii with the 16 CRC-associated gene markers
highlights it as a potential key species in the CRC-associated Indian gut microbiome.
Among other species that showed a strong association with CRC, the Bacteroides
intestinalis and Methanobrevibacter smithii species were observed to be associated with
Indian CRC cases and were not previously reported in other CRC microbiome studies.
B. intestinalis is a gut commensal bacterium known to convert primary bile acids to
secondary bile acids via deconjugation and dehydration (34). These secondary bile
acids may have carcinogenic effects (35). M. smithii is a methanogenic archaeon and a
dominant methanogen in the distal colon of both healthy and diseased individuals (36).
To date, no direct mechanistic link has been established between gut-associated
diseases and methanogens; however, colonization by archaea has been suggested to
promote a number of gastrointestinal and metabolic diseases such as colorectal cancer,
inflammatory bowel disease, and obesity (37).

F. plautii can degrade flavonoids by cleaving the C-ring of the flavonoid molecules
(28). Flavonoids are important constituents of the human diet and are mainly com-
prised of polyphenolic secondary metabolites with broad-spectrum pharmacological
activities. Accumulating evidence from epidemiological, preclinical, and clinical studies
supports a role of these polyphenols in the prevention of cancer, cardiovascular
disease, type 2 diabetes, and cognitive dysfunction (28, 38). Flavonoids are proposed to
affect the composition of the gut microbiota and could therapeutically target the
intestinal microbiome by promoting beneficial bacteria and inhibiting potentially
pathogenic species (28). Several common Indian foods such as tea, coffee, apple, guava,
Terminalia bark, fenugreek seeds, mustard seeds, cinnamon, red chili powder, cloves,
turmeric, and pulses contain large amounts of flavonoids (39). Medium levels (50 to
100 mg) are found in Indian gooseberry, omum, cumin, cardamom, betel leaf, and
brandy (39). Small but significant amounts are also present in food items of high
consumption such as kidney beans, soybeans, grapes, ginger, coriander powder, mil-
lets, and brinjal (39). Given the significance of flavonoids, the high consumption of
beneficial flavonoids in the Indian diet has been correlated with low rates of CRC
occurrence in India (38).

However, extensive degradation of flavonoids by gut microflora may result in lower
overall bioavailability of intact flavonoids (40). Thus, in the Indian CRC samples it is
reasonable to associate the high abundance of Flavonifractor plautii, a key flavonoid-
degrading bacterium, with higher rates of flavonoid degradation that minimizes the
potential beneficial effects and bioavailability of flavonoids in CRC. Further, the high
association of F. plautii with the catechol cleavage pathway (catechols are generated by
degradation of flavonoids) also indicates a potential role of this species in flavonoid
degradation in the gut. In addition, the enzyme enoate reductase, which performs the
first step of flavonoid degradation, was also found to be significantly abundant in CRC
cases compared to healthy samples (Wilcoxon rank sum test; P value � 0.045). Taken
together, these observations underscore a potential role of this bacterium in degrada-
tion of flavonoids in CRC cases.
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Interestingly, Fusobacterium nucleatum has been associated with the CRC micro-
biome in the past in the major studies from other populations. The meta-analysis
performed in this study also found F. nucleatum as the top bacterium in the global
CRC-associated microbiome studies. However, this bacterium was not present in the list
of the 20 taxonomic markers identified in this study. Although its abundance was
significantly higher in CRC cases than in healthy controls, the proportional abundance
was below the minimum abundance criterion (�0.1%) selected in this study, and
hence, it was not included in the list of taxonomic markers. Further, its presence was
almost negligible (0.05%) in the Indian samples in comparison to its basal levels in
Austrian and Chinese CRC data sets. Hence, it could not appear as a taxonomic marker
for Indian CRC samples.

The results of the study also have translational applications in CRC diagnosis.
Survival rates in CRC are reported to increase if the cancer is diagnosed and treated at
an early stage (41). The standard colonoscopy method used to diagnose CRC is invasive
and also expensive, due to which many high-risk individuals are not screened at their
initial stages of cancer. The available noninvasive tests, such as the fecal occult blood
test, fecal immunochemical test, and DNA-based Cologuard test (42), lack sensitivity
and detection of early-stage disease, may provide false-positive results, and also need
confirmation due to nonspecific diagnosis (43). Similarly, the molecular subtyping
method which is commonly used in cancer research, where cancer subclasses are based
on clinically relevant gene expression patterns (44), does not show clear results in CRC
(45, 46). Thus, the apparent limitations in the diagnosis of CRC prompt the need for the
development of alternative diagnosis methods such as the microbial biomarkers iden-
tified in this study and other similar previous studies. The 33 potential gene markers
associated with the Indian microbiome samples and their high accuracy (91.67%) in
classifying Indian CRC samples from the healthy samples provide a proof of concept for
the development of an affordable diagnostic test using fecal microbial gene markers.
However, due to the lack of a significant number of samples to represent each of the
four stages of CRC, a correlation analysis of the 33 gene markers with the stage of
the cancer could not be performed in this study, which would be helpful to identify the
early-stage CRC markers. In addition, the robustness of these candidate markers should
be further validated on other Indian cohorts with larger numbers of samples and on
similar cohorts in other populations, which is presently a limitation of this study and
provides impetus for further studies.

MATERIALS AND METHODS
Cohort design and subject enrollment. A considerable sample size consisting of 60 samples (30

cases and 30 controls) was recruited from two different locations (Bhopal and Kerala) in India. For
constructing a balanced data set, 15 cases and 15 controls were selected from both the locations. The
two selected locations represent different geographies (2,000 km apart) and lifestyles in order to remove
the confounding effect of diet and making the observations generalizable for the Indian cohort. Bhopal
is a city located in central India and is populated with people from all over the country; hence, samples
from here can act as a proxy to represent the diversity of the country. Samples from Kerala were
specifically chosen because, among all the other states of India, Kerala has the highest rate of colorectal
cancer incidence. The fecal samples were collected only from CRC cases, and those from healthy subjects
were taken from a previous study (12). Each fecal sample was collected and immediately transported to
the lab at 4°C for further processing. Diagnosis of all the cases was carried out by experienced oncologists
at the hospitals through biopsy and colonoscopy. The study exclusion criteria for patients were any
previously diagnosed serious medical conditions and recent use of antibiotics, to avoid the effect of
confounding factors. Patients with incomplete medical information were also removed from the selected
set. Fecal samples were collected prior to colonoscopy in sterile containers.

Fecal metagenomic DNA extraction. Metagenomic DNA was isolated from all the fecal samples
using the QIAamp stool minikit (Qiagen, CA, USA) according to the manufacturer’s instructions. DNA
concentration was estimated by the Qubit HS double-stranded DNA (dsDNA) assay kit (Invitrogen, CA,
USA), and quality was estimated by agarose gel electrophoresis. All the DNA samples were stored at
�80°C until sequencing.

Shotgun metagenome sequencing. The extracted metagenomic DNA was used to prepare the
sequencing libraries using the Illumina Nextera XT sample preparation kit (Illumina Inc., USA) by
following the manufacturer’s protocol. The sizes of all the libraries were assessed on the Agilent 2100
Bioanalyzer using the Agilent high-sensitivity DNA kit (Agilent Technologies, Santa Clara, CA, USA) and
were quantified on a Qubit 2.0 fluorometer using the Qubit HS dsDNA kit (Life Technologies, USA) and
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by quantitative PCR (qPCR) using Kapa SYBR Fast qPCR master mix and Illumina standards and primer
premix (Kapa Biosystems, MA, USA) according to the Illumina suggested protocol. The shotgun meta-
genomic libraries were loaded on an Illumina NextSeq 500 platform using the NextSeq 500/550 v2
sequencing reagent kit (Illumina Inc., USA), and 150-bp paired-end sequencing was performed at the
Next-Generation Sequencing (NGS) Facility, IISER, Bhopal, India.

Preprocessing of the metagenomic reads. A total of 150 Gbp of metagenomic sequence data
(mean � 1.36 Gb) was generated from 60 fecal samples. The metagenomic reads were filtered using the
NGSQC (v2.3.3) toolkit with a cutoff of q of �20 (47). The high-quality reads were further filtered to
remove the host-origin reads (human contamination) from bacterial metagenomic reads, which resulted
in the removal of an average of 1% of reads. The reads from each sample were assembled into contigs
at a k-mer size of 63 bp using SOAPdenovo (v2.0) (48). The singletons resulting from each sample were
pooled, and de novo assembly was repeated on the combined set of singleton reads from all samples.
The open reading frames (ORFs) from each contig (length of �300 bp) were predicted using Meta-
GeneMark (v3.38) (49). Pairwise alignment of genes was performed using BLAT (v2.7.6), and the genes
which had an identity of �95% and alignment coverage of �90% were clustered into a single set of
nonredundant genes, from which the longest gene was selected as the representative ORF to construct
the nonredundant gene catalogue.

The Integrated Gene Catalogue (IGC), which represents 1,297 human gut metagenomic samples
comprising HMP, MetaHIT and Chinese data sets, was retrieved (50). The gene catalogue constructed
from Indian samples was combined with the IGC to construct a nonredundant gene catalogue (using
�95% identity and �90% alignment coverage) and is referred to as “updated IGC” in the subsequent
analysis.

Quantification of gene content. The quantification of gene content was carried out using the
strategy performed by Qin et al. (51) in which the high-quality reads were aligned against the updated
IGC using SOAP2 (v2.21) in the SOAP aligner with an identity cutoff of �90% (52). Two types of
alignments were considered for sequence-based profiling: (i) the entire paired-end read mapped to the
gene and (ii) one end of the paired-end read mapped to a gene and other end remained unmapped. In
both cases, the mapped read was counted as one copy. Further, the read count was normalized based
on length of the gene as bi � xi/Li.

The relative abundance of a gene within the sample was calculated as follows:

ai �
bi� jbj

�

xi

Li

� j
xj

Lj

where ai is relative abundance of gene in sample S, xi is number of times that gene i was detected in
sample S (the number of mapped reads), Li is length of gene i, j is all the genes, and bi is copy number
of gene i in sequenced data from sample S.

Construction of updated gene catalogue for gut profiling. To construct the gene catalogue for
gut microbiome profiling, the high-quality sequencing reads were subjected to a de Bruijn graph-based
assembly which resulted in 2,143,541 contigs of �300 bp in length with a total contig length of 1.52 Gb.
To capture low-coverage genomic regions or low-abundance genomes, all unassembled reads were
extracted and combined with the singletons from each sample to further assemble into an additional 1.2
million contigs (�300 bp) with a total assembled length of 0.76 Gb. The gene prediction on all assembled
contigs resulted in 4,591,809 genes, out of which 2,36,4248 genes were nonredundant and which
represents the gene catalogue of the Indian population. We incorporated these genes to update the
currently available Integrated Gene Catalogue (IGC), which contained 9.8 million genes from 1,267 gut
metagenomes from three continents (Europe [53–55], United States [56], and China [51]), as it lacked
information on genes specific to the Indian population. The Updated Gene Catalogue (UGC) comprised
11,118,467 genes (an addition of 12.5% genes in the current IGC) with 1,238,571 genes unique to the
Indian population.

On this updated gene catalogue, reads from each sample were mapped and the genes present in the
Indian population were identified. On average, 54.47% � 7.84% (average � SD) of high-quality reads
mapped from each sample to UGC and resulted in the identification of 3.8 million genes present in the
Indian cohort. Taxonomic assignment and functional annotation were performed for these 3.8 million
genes present using 4,097 reference genomes (HMP and NCBI species) and KEGG and eggNOG data-
bases. A total of 2.41 million genes (62.9%) could be successfully assigned a taxonomy at genus level. The
remaining genes are expected to be from currently unidentified microbial species. At the functional level,
8,312 KEGG orthologues and 59,303 eggNOG orthologue groups were identified in the updated gene
catalogue. Additionally, 24% of the genes which were not mapped to the orthologue groups could be
clustered into 649 novel gene families, which did not have any assigned function but were still included
in the analysis as novel eggNOG groups.

Diversity and rarefaction analysis. Estimation of total gene richness, �-diversity (within-sample
diversity), and �-diversity (between-sample diversity) in the set of 60 metagenomic samples was
performed by randomized sampling and replacement, and estimates were compared to a different group
of samples. Rarefied matrices were obtained by rarefying at 6 million reads per sample. In total, we
performed 10 repetitions, and in each of these, we measured richness, �-diversity (by using the Shannon
index), and �-diversity (by using Bray-Curtis distance) for each sample. The median values were taken as
the respective measurement for each sample. Intersample distances were calculated using the Bray-
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Curtis distance matrices. The significance of the association with health status was performed using the
Wilcoxon rank sum test.

Phylogenetic assignment of reads. A total of 4,097 reference microbial genomes were obtained
from the Human Microbiome Project (HMP) and National Center for Biotechnology Information (NCBI) on
5 December 2015. The databases were independently indexed into two Bowtie indexes using Bowtie 2
(v2.3.4.1) (57). The metagenomic reads were aligned to the reference microbial genomes using Bowtie
2. The mapped reads from the two indexes were merged by selecting the alignment having the higher
identity (�90% identity). The percent identity was calculated using the formula: % identity � 100 �
(matches/total aligned length). The normalized abundance of a microbial genome was calculated by
summing the total number of reads aligned to its reference genome, normalized by the genome length
and the total number of reads in the data set. For reads showing hits to the two indexed databases with
equal identity, each genome was assigned an 0.5 read count. The relative abundance of each genome
was calculated by adding the normalized abundance of each genome divided by the total abundance.
The Calinski-Harabasz index (CHI) was used to calculate the variance between the clusters compared to
the variance within clusters (58). A clade-specific-marker-based taxonomic assignment of reads was also
done using the mOTUs (v2) (59) approach and Metaphlan (v2.0) (60).

Construction of metagenomic species for MGWAS. The gene cohort and its abundance from 291
samples belonging to India (60), Austria (103), and China (128) were combined and used for determining
MGS/CAGs. The Pearson’s correlation coefficient (PCC) cutoff of �0.9 was used for considering associa-
tion between genes, and only genes having an abundance of �0 in at least 30 samples were considered
for association analysis. Furthermore, the genes for which �90% abundance was obtained from a single
sample were discarded. To determine the taxonomic origin of each MGS/CAG (metagenomic cluster), all the
genes were aligned against reference microbial genomes of 4,097 genomes from HMP and NCBI at nucleotide
level using BLASTN. The alignment hits were filtered using an E value of �10�6 and alignment coverage of
�80% of the gene length, and 2,687,688 genes showed alignments against the reference genomes. The
remaining genes were aligned against the UNIREF database (UniRef50) at protein sequences (61). The multiple
best hits with equal identity and scores were further assigned taxonomy based on the lowest common
ancestor (LCA) method. The genes were finally assigned to taxa based on comprehensive parameters of
sequence similarity across phylogenetic ranks as described earlier (62). The identity threshold of �95% was
used for assignment up to species level, �85% identity threshold was used for assignment up to genus level,
and �65% identity was used for phylum-level assignment using BLASTN. The taxonomic assignments of
MGS/CAGs were performed with the criterion that �50% of genes in each MGS should map to the same
lowest phylogenetic group. So, if a particular species is assigned �50% genes out of the total, the assignment
will be carried out at species level rather than at the level of genus or higher orders. The relative abundance
of MGS/CAGs in each sample was estimated by using relative abundance values of all genes from that
MGS/CAG. A Poisson distribution was fitted to the relative abundance values of the data. The mean estimated
from Poisson distribution was assigned as the relative abundance of that MGS. The profiles of MGS/CAGs were
generated and used for further analysis. The MGS/CAGs associated with CRC in the Indian population were
scored using log odds ratio, and P values were calculated using the Wilcoxon rank sum test between CRC and
healthy individuals. The Wilcoxon rank sum test was adjusted for multiple comparisons using false-discovery
rate (FDR) adjustment. The MGS having P values of �0.05 and log odds ratio of �2 (CRC) or �2 (healthy) were
considered enriched in CRC or healthy groups, respectively.

Fecal metabolomic sample preparation and derivatization. In order to identify the metabolic
potential of microbes, metabolomics profiling of a subset of individuals (n � 18; CRC patients � 9,
healthy � 9) was performed. Lyophilized fecal samples were used to achieve better metabolite coverage,
as described previously (12). Metabolites were extracted from 80 mg of lyophilized samples in 1 ml of
ice-cold methanol-water (8:2) by bead beating for 30 cycles (each cycle included 30 s of beating at
2,500 rpm and 1 min of standing at 4°C). The samples were then sonicated for 30 min in a probe-based
sonicator (Branson digital Sonifier, model 102 C with double-step microtip) at 4°C followed by 2 min of
vortexing. The supernatant was extracted by centrifugation at 18,000 � g for 15 min at 4°C and dried at
50°C under a gentle stream of nitrogen gas. To remove the residual water molecules from the samples,
100 �l of toluene was added to the dry residue and evaporated completely at 50°C under nitrogen gas.
The extracted metabolites were first derivatized with 50 �l of methoxyamine hydrochloride (MOX) in
pyridine (20 mg/ml) at 60°C for 2 h, and the second derivatization was performed with 100 �l of
N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) in 1% trimethylchlorosilane (TMCS) at 60°C for
45 min to form trimethylsilyl (TMS) derivatives. Finally, 150 �l of the TMS derivatives was transferred into
a GC glass vial insert and subjected to GC-time of flight MS (TOFMS) analysis.

GC-MS analysis. GC-MS was performed on an Agilent 7890A gas chromatograph with a 5975 C MS
system. An HP-5 (25-m by 320-�m by 0.25-�m-inside-diameter [i.d.]) fused silica capillary column (Agilent J&W
Scientific, Folsom, CA) was used with the open split interface. The injector, transfer line, and ion source
temperatures were maintained at 220, 220, and 250°C, respectively. Oven temperature was programmed at
70°C for 0.2 min and increased at 10°C/min to 270°C, where it was sustained for 5 min, and further increased
at 40°C/min to 310°C, where it was held for 11 min. The MS was operated in the electron impact ionization
mode at 70 eV. Mass data were acquired in full scan mode from m/z 40 to 600 with an acquisition rate of 20
spectra per second. To detect retention time shifts and enable Kovats retention index (RI) calculation, a
standard alkane series mixture (C10 to C40) was injected periodically during the sample analysis. RIs are relative
retention times normalized to n-alkanes eluted adjacently. The injector port temperature was held at 250°C,
and the helium gas flow rate was set to 1 ml/min at an initial oven temperature of 50°C. The oven temperature
was increased at 10°C/min to 310°C for 11 min, and mass data were acquired in full scan mode from m/z 40
to 600 with an acquisition rate of 20 spectra per second.
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Metabolomic analysis. The raw peaks were processed for peak identification and alignment using
the XCMS package in R. Initially, prior to alignment the parameters used for peak picking and retention
time correction were optimized using the IPO package in R. The package using iterative modes and a
range of values optimizes the best parameter settings for the GC-MS experiment. Using the centwave
algorithm, the peaks were detected from 18 samples and were further corrected for retention time
corrections using a “binwidth” of 1. The parameters optimized for preprocessing of the peaks from the
GC-MS experiment are as follows: minimum peak width � 3, maximum peak width � 18.75, parts per
million [ppm] � 575, difference in m/z values � 0.004588, signal-to-noise ratio [S/N] threshold � 10, bin
width size � 1. The peaks were annotated using NIST/Massbank databases.

The most prominent features of the GC-MS data which could be annotated were used for differential
analysis. In total, 234 features that were well annotated and showed prominent peaks were used. The
differential analysis of peaks was performed using the MetaboDiff package in R. The concentrations of fecal
metabolites in CRC and healthy subjects were quantified from peak intensities and were further normalized.

Meta-analysis. In order to define a non-reference-based approach of assigning genetic markers to
a particular condition (CRC in this case), we used the MGWAS approach, which uses correlations among
genes to generate clusters of genes. Various methods have been described for clustering genes in
previous studies (51, 63). We here used a recently published method of determining clusters of genes
using MGS-canopy-based correlations (55). The approach uses a matrix of gene abundance across
samples and the correlation coefficient cutoffs used to identify fine-grained clusters of genes belonging
to single species or closely related species.

The gene cohort and its abundance from 291 samples belonging to India (60), Austria (103), and
China (129) were combined and used for determining MGS/CAGs. The PCC cutoff of �0.9 was used for
considering association between genes, and only genes having an abundance of �0 in at least 30
samples were considered for association analysis. Furthermore, the genes for which �90% abundance
was obtained from a single sample were discarded. To determine the taxonomic origin of each MGS/CAG
(metagenomic cluster), all the genes were aligned against reference microbial genomes of 4,097
genomes from HMP and NCBI at nucleotide level using BLASTN. The alignment hits were filtered using
an E value of �10�6 and alignment coverage of �80% of the gene length, and 2,687,688 genes showed
alignments against the reference genomes. The remaining genes were aligned against the UNIREF
database (UniRef50) at protein sequences (61). The multiple best hits with equal identity and scores were
further assigned taxonomy based on the lowest common ancestor (LCA) method. The genes were finally
assigned to taxa based on comprehensive parameters of sequence similarity across phylogenetic ranks
as described earlier (62). The identity threshold of �95% was used for assignment up to species level, an
�85% identity threshold was used for assignment up to genus level, and �65% identity was used for
phylum-level assignment using BLASTN. The taxonomic assignments of MGS/CAGs were performed with
the criteria that �50% of genes in each MGS should map to the same lowest phylogenetic group. So, if
a particular species is assigned �50% genes out of the total, the assignment will be carried out at species
level rather than at the level of genus or higher orders. The relative abundance of MGS/CAGs in each
sample was estimated by using relative abundance values of all genes from that MGS/CAG. A Poisson
distribution was fitted to the relative abundance values of the data. The mean estimated from Poisson
distribution was assigned as the relative abundance of that MGS. The profiles of MGS/CAGs were
generated and used for further analysis.

Global comparative analysis. The MGS/CAG abundance table was rarefied for 100 times at a lowest
sequencing depth of 220,000 sequences/sample. The average of these rarefied counts from 100
iterations was calculated and used for further analysis. The principal-component analysis was performed
on the MGS abundance table, and the components were correlated with covariates (country and status)
using polyserial correlation. PCA with polyserial correlations showed countrywide variations as a major
factor correlated with PC1.

Since variations between countries were higher than those between CRC patients, we performed
multivariate analysis distance-based redundancy analysis (db-RDA). Canberra distances were selected
based on the highest rank index for performing db-RDA. The metainformation used was the status
(CRC/healthy) and country/study from which the data set came (India, China, and Austria). The Bray-Curtis
distances were used for constrained ordinations and were constrained for country and status. The
function “capscale” was used for performing ordinations with country and status separately, and the
ordinations were plotted on a PCA plot.

Identifying global taxonomic patterns. In order to identify global CRC MGS/CAG, we performed
univariate testing for differential abundance of MGS/CAG. Since countries and populations are stratified
and have variations between them, we controlled for population variations by applying block. The
independence test was performed using ytrafo � rank for Wilcoxon rank sum test and teststat � “scalar”
using the COIN package in R. The population variations were controlled, and differential abundances of
MGS/CAGs were calculated.

Gene biomarker identification. For gene biomarker identification, the 60 samples were divided into
two cohorts: cohort A and cohort B. Cohort A comprised 48 samples and cohort B comprised 12 samples, by
randomly selecting from each location and health status. Using the samples of cohort A, a group of genes that
were highly correlated with each other (Pearson correlation � � 0.9) were identified, and the longest gene
from each correlated group was used to construct a statistically nonredundant set. Further, we used the
“CfsSubsetEval” method from Weka to identify a subset of genes that are highly correlated with the health
status while having low intercorrelation with each other. The genes from this subset were further validated
using the Boruta algorithm, which uses Random Forest to perform a top-down search for relevant features by
comparing original attribute importance with importance achievable at random and eliminates irrelevant
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features to stabilize the test. To test the accuracy of these markers, a Random Forest model was constructed
using these genes and was used for making the prediction on samples from cohort B.

CRC index. To compare the performances of markers, we computed a CRC index, as defined by Yu
et al. (6), for each of the individuals on the basis of 33 gene markers identified using the methodology
mentioned above.

Supervised learning. Predictive models were built using supervised machine learning algorithm
Random Forest (RF). The models were optimized using 10,000 trees and default settings of mtry (number for
variables used to build the model). The mean 3-fold cross-validation error rates were calculated for each of
the binary trees and the ensemble of trees. The mean decrease in accuracy, which is the increase in error rates
on leaving the variable out, was calculated for each prediction and tree and was used to estimate the
importance score. The variables showing a higher mean decrease in accuracy of prediction were considered
important for the segregation of the data sets into groups based on the categorical variable.

Network plot. In order to derive associations between microbial markers, a species cooccurrence
network was generated from pairwise correlations using sparCC, which takes into account the compositional
data and estimates the correlations between species. The species associations with correlation coefficients of
�0.3 were considered for construction of networks and inferring associations among species.

Statistical analysis. All the statistical comparisons between groups were performed using a non-
parametric Wilcoxon rank sum test with FDR-adjusted P values to control for multiple comparisons. The
correlations between two variables and the correlations within the variable were calculated using
Spearman’s correlation coefficient with adjusted P values. The correlations between categorical and
numeric variables were performed using polyserial correlation/biserial correlations. To identify the
enrichment of enzymes/species associated with a host, odds ratio was used as a measure of the
enrichment of an enzyme in a host. The odds ratio was calculated as OR (k) � [�S � LOC1 ASk/�S � LOC1

(�i 	 k ASi)]/[�S � LOC2 ASk/�S � LOC2 (�i 	 k ASi)], where ASk denotes abundance of enzyme k in sample S.
Apart from that, the Reporter features algorithm was used for gene-set analysis of significant pathways
associated with different groups of samples. The algorithm takes the adjusted P values and fold changes
(log odds ratio) as input for each KO. The gene statistic is calculated based on the significant association
of KO and its direction of change through which the pathway is scored by calculating the global P value.
All the graphs and plots were generated using the ggplot2 package in R.
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