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Abstract: The ecological barrier is a complex ecosystem that couples the human–nature relationship,
and the ecologically critical area is an irreplaceable area with a special value in the ecosystem.
Therefore, protecting the ecologically critical area is vital for maintaining and improving regional
ecological security. Limited research has been conducted on the evolution of ecologically critical
areas, and none of the studies have considered the spatiotemporal heterogeneity of the driving
factors for different evolution modes and types. Therefore, this research adopts the ecologically
critical index, landscape expansion index, and the random forest model to analyze the pattern,
driving factors, and its spatial-temporal heterogeneity to the evolution modes and specific types
of ecologically critical areas in the Sichuan–Yunnan ecological barrier area in the last 15 years. The
results showed that: (1) the ecologically critical areas in the Sichuan–Yunnan ecological barrier have
changed dramatically, with the area reduction being 61.06%. Additionally, the spatial distribution
characteristics of the ecologically critical area from north to south include planar, point, and linear
forms. (2) The evolution trend of the ecologically critical area is ‘degradation–expansion–degradation’.
Spread is the predominant type of expansion mode, whereas atrophy is the predominant type of
degradation mode, indicating that the evolution mainly occurs at the edge of the original ecologically
critical areas. (3) In general, precipitation, area of forest, area of cropland, and GDP have contributed
significantly to the evolution of ecologically critical areas. However, the same driving factor has
different effects on the expansion and degradation of these areas. Expansion is driven by multiple
factors at the same time but is mainly related to human activities and land use change, whereas
for degradation, climate and policy are the main driving factors. The present research aimed to
quantitatively identify the evolution modes and specific types of ecologically critical areas and
explore the spatiotemporal heterogeneity of driving factors. The results can help decision-makers
in formulating ecological protection policies according to local conditions and in maintaining and
enhancing the regional ecological functions, thereby promoting the sustainable development of
society-economy-ecology.

Keywords: ecologically critical area; evolution modes and types; driving factors; spatiotemporal
heterogeneity; Sichuan–Yunnan ecological barrier

1. Introduction

Global climate change has been posing great risks to terrestrial ecosystems [1]. Addi-
tionally, the rapid socioeconomic development has caused a series of ecological problems.
To safeguard national ecological security, China has built the ‘two barriers and three
belts’ ecological security strategic pattern [2,3]. As a complex ecosystem that couples the
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human–nature relationship [4], an ecological barrier has good self-maintenance and inter-
nal regulatory capabilities, thus protecting the surrounding area or ensuring large-scale
environmental security externally [5], which are fundamental to human development [6].
Under the background of global change, the ecological environment in the national ecologi-
cal barrier has great spatiotemporal uncertainty [7], which has introduced great difficulties
in the formulation of ecological policies and projects.

Ecologically critical area (ECA) is the important or fragile area with a particular value
for the protection of ecosystem functions or biodiversity and resource productivity [8]. With
rapid urbanization and industrialization, the degradation of the ecological environment
is becoming increasingly serious [9]. ECA is highly sensitive to interference by humans.
The degeneration or disappearance of these areas has a serious impact on the stability of
the regional ecosystem [10,11]. An ecological barrier is a multiplexed system composed of
multiple ecological projects with regional resources, the environment, and the economy as
the background. This barrier not only considers the overall planning of the whole region
and all factors but also coordinates the priority of construction and protection [12,13].
Therefore, identifying ECA from the geographical perspective [14] is of great significance
for ensuring ecological safety.

As early as 1973, the United States termed the areas with fragile ecological environ-
ments as sensitive to external disturbance and having an irreplaceable role in maintaining
biodiversity as the “critical area” [15]. In 1984, the Conservation Foundation formally
proposed the concept of ECA, arguing that ECA should receive special attention and pro-
tection as they serve unique functions compared with other areas [16]. However, under
limited economic and social resources, protecting all biodiversity areas is challenging [17].
Myers [18] proposed the hotspot concept on the basis of the research on the degree of threat
to tropical rain forests. Subsequently, in 2000, Myers [19] proposed 25 priority hotspots
for global biodiversity conservation. In the Global 200 Project sponsored by the World
Wide Fund for Nature (WWF) [20], the list of global biodiversity priority conservation
areas was constructed based on the theory of biodiversity conservation and the ecological
regions [21], and the global biodiversity priority protection areas were divided into 233
ecological regions according to the main habitat types [22].

Currently, a general method for quantitatively identifying the spatial features of
ECA evolution trends is lacking. Although many scholars have constructed a landscape
expansion index to express the dynamic spatiotemporal pattern of urban expansion [23–25],
only a few studies have applied it to ecological protection. Previous studies on the driving
mechanisms of ECA evolution have focused on landscape pattern changes and ecological
function changes [26] but lacked an assessment of the spatial and temporal heterogeneity of
the driving factors. Related studies have revealed some common factors such as topography,
accessibility, climate, and socioeconomic [27,28]. Studying these factors can contribute to
the development of relevant ecological policies to protect ECA [29].

The Sichuan–Yunnan ecological barrier (SYEB) is an important part of the ‘two barriers
and three belts’ ecological security strategic pattern, which plays an irreplaceable role in
improving the ecological quality of key ecological function areas and enhancing ecosystem
service capabilities. However, existing studies of the ecological barrier lack quantitative
study, with a particular shortage of research on ECA evolution and its driving factors.

To fill the aforementioned research gap, the present research explored the spatiotempo-
ral heterogeneity of ECA evolution and its driving factors at the county scale, considering
the SYEB in China. The objectives of this research are as follows: (1) mapping the area
of ECA expansion and degradation at the county scale at three time intervals (2005–2010,
2010–2015, and 2015–2019); (2) defining the specific types of ECA expansion mode and
degradation mode during 2005–2010, 2010–2015, and 2015–2019 by using the landscape
expansion index; and (3) quantifying the spatiotemporal heterogeneity between cropland
evolution and its driving factors through the random forest model from the environmental,
socioeconomic, and policy perspectives.
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2. Materials and Methods
2.1. Study Area

The SYEB is part of the Sichuan–Yunnan-loess plateau ecological barrier and is a key
component of China’s ecological security strategic patterns. The SYEB is located in the
Hengduan Mountains and the transition zone from the Yunnan–Guizhou Plateau to the
Qinghai–Tibet Plateau, wherein the topography is decreasing from northwest to southeast
and the ecological environment is relatively fragile (Figure 1). This region is dominated by
plateau mountain temperate and subtropical monsoon climate, with annual precipitation
of 500–1400 mm, and the average annual temperature in the region can vary by more than
20 ◦C [30]. The SYEB has a special ecological status and plays an important role in soil
conservation, water conservation, and biodiversity maintenance.
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Figure 1. Study area.

2.2. Data and Processing

Table 1 shows the names, formats, and sources of the data used in this research. The
boundaries were extracted from the China National Ecological Barrier Area dataset, which
is produced on the basis of a combination of Google Earth satellite images and vector
boundary maps of Chinese counties, etc. According to the land classification system and
our research problem, we grouped the data into seven categories, namely cropland, forest,
grassland, water, wet land, impervious, and other land. The slope data were generated
based on the DEM data. We integrated all data into a 1 km× 1 km grid for a unified analysis.
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Table 1. Data name, format, and source.

Data Name Data Format Resolution Data Source

BarrierZoneChina. shp / http://geodoi.ac.cn/
(accessed on 15 March 2021)

Land cover data tif 30 m https://zenodo.org/record/5210928
(accessed on 30 March 2021)

Digital terrain data tif 30 m http://www.gscloud.cn/
(accessed on 4 April 2021)

Meteorological data nc 1 km http://www.geodata.cn/
(accessed on 6 April 2021)

Soil data mdb 1 km https://www.fao.org/
(accessed on 6 April 2021)

NPP data tif 500 m
https:

//ladsweb.modaps.eosdis.nasa.gov/
(accessed on 6 April 2021)

Nightlight data tif 1 km http://data.tpdc.ac.cn/
(accessed on 6 April 2021)

Population count tif 100 m https://www.worldpop.org/
(accessed on 8 April 2021)

GDP tif 1 km http://www.resdc.cn/
(accessed on 10 April 2021)

2.3. Methodology
2.3.1. Research Framework

In this research, we evaluated the ecological significance of each grid and identified the
ECA, classified the evolution modes and specific types, and explored its driving factors at
the county scale. The overall research framework is shown in Figure 2 and it comprised five
steps: (1) calculating the ecological critical index (ECI) of each grid during 2000, 2005, 2010,
2015, and 2019 through the county-scale spatial analysis by comprehensively considering
the ecosystem service function and landscape ecological security; (2) determining the
threshold value and identifying ECA based on the frequency distribution characteristics of
ECI; (3) determining the expansion mode and degradation mode of ECA evolution during
2005–2010, 2010–2015, and 2015–2019 and classifying the specific types of expansion mode
and degradation mode by landscape expansion index (LEI); (4) selecting the explanatory
variables according to the research topic and previous research and then putting the
dependent variable and the explanatory variables into the random forest (RF) model and
running the model; and (5) analyzing the spatiotemporal heterogeneity of the driving
factors for evolution modes and specific types.

http://geodoi.ac.cn/
https://zenodo.org/record/5210928
http://www.gscloud.cn/
http://www.geodata.cn/
https://www.fao.org/
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
http://data.tpdc.ac.cn/
https://www.worldpop.org/
http://www.resdc.cn/
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2.3.2. Ecological Critical Index

By coupling the ecosystem service function and landscape ecological security, the ECI
was constructed to represent the degree of ecological importance at the county scale. ECI is
the basis for identifying ECA and is calculated using the following formula:

ECIi =
√

MESLIi × LESSIi (1)

where ECII is the ecological critical index of the ith grid; MESLII is the multiple ecosystem
services landscape index of the ith grid; and LESSII is landscape ecological structure security
index of the ith grid.

MESLI can be used to effectively identify the ability of a region to provide multiple
ecosystem services at the same time [31], which is a comprehensive and valuable environ-
mental indicator for identifying cold and hot spots for multiple ecosystem services [32]. It
is calculated using the following formula:

MESLI =
n

∑
i=1

xi −min(xi)

max(xi)−min(xi)
(2)

where i is the type of ecosystem service function; n is the number of ecosystem service func-
tion; and xi, max(xi), and min(xi) are the observed value, maximum value, and minimum
value of the ith ecosystem service function, respectively.

According to the functional orientation of the SYEB mentioned in the “Master plan for
major projects for the protection and restoration of important ecosystems nationwide”, four types
of ecosystem services are selected, namely carbon sequestration, water production, soil
conservation, and habitat quality. Referring to previous studies, NPP was used to represent
the carbon sequestration function, and the water production services, soil conservation,
and habitat quality were calculated using the INVEST model [33,34].

LESSI evaluates the security of the landscape structure from three perspectives, namely
landscape vulnerability, boundary fragmentation, and landscape type fragmentation [35],
and it has been widely used in the landscape ecological security assessment [36,37]. LESSI
is calculated using the following formula:

LESSI = 1 − [(PD + ED) × 2.5V] (3)
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V = α × AWMSI + β × F + γ × D (4)

where PD is the patch density in the landscape class, ED is the edge density in the landscape
class, and V is the landscape fragmentation. AWMSI is the area-weighted mean shape
index; F is fractal dimension; D is division; and α, β, and γ are the weights of AWMSI, F,
and D, respectively, which are assigned as 0.5, 0.3, and 0.2, respectively.

2.3.3. Identifying the Evolution Modes and Specific Types of ECA

Traditional landscape indices can only reflect the static spatial distribution of the
landscape [38], whereas LEI can quantitatively describe the dynamic change process [39].
The formula for calculating LEI is as follows:

LEI = 100× A0

AE −AP
(5)

where A0 is the area of the original ECA grid in the buffer zone; AE is the area of buffer zone;
and AP is the area of new ECA; the range of LEI values is between 0 and 100. Considering
the area of the studied region, we set the buffer radius as 1 km. All ECA grids whose
buffers overlap belong to the same patch and have the same LEI.

Through the spatial analysis, we divided the ECA evolution into two modes: ex-
pansion and degradation. Grids that were previously identified as non-ECA and later
identified as ECA are called expansion. By contrast, grids that were previously identified
as ECA and later identified as non-ECA are called degradation (Figure 3).

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 3. Graphical representation of evolution modes and specific types of ECA. 

According to the definition of LEI [39], we have defined six types of ECA evolution. 
The expansion mode has three specific types: (1) if the buffer of a new ECA patch consists 
of non-ECA only (LEI = 0), it is classified as the isolation type, implying that the new ECA 
patch is spatially discontinuous with the original ECA patch; (2) if the buffer of a new 
ECA patch consists of non-ECA mixed with original ECA (0 < LEI ≤ 50), it is classified as 
the spread type, meaning that the new ECA patch is located at the edge of the original 
ECA patch; and (3) if the buffer of a new ECA patch is mostly occupied by the original 
ECA (50 < LEI ≤ 100), it is classified as the infilling type, indicating that the new ECA patch 
is located within the original ECA patch. The degradation mode also has of three specific 
types, namely departed, atrophy, and disintegration. Their classification rules correspond 
to the specific type of expansion mode. 

2.3.4. Random Forest Model 
The RF model is a data mining method for categorical regression trees proposed by 

Breiman [40]. RF is an effective classifier that is composed of a set of tree-structured clas-
sifiers {h (x, θk), k = 1, ……}, where {θk} represents explanatory, identically-distributed 
random vectors. With the input of the explanatory variable X, each DT casts a unit vote 
for the most popular class [41]. 

In this research, we chose the minimum Gini value method as the segmentation cri-
terion. The minimum Gini value of an internal tree node was calculated using the follow-
ing formula: Gini(t) = 1 െ ∑ ሾp(q|t)ሿଶ୳୯ୀଵ   (6) 

where p(q|t) represents the probability of the risk class q at node t; u represents the num-
ber of classes. 

In this study, the decrease in the Gini index at the node split was used to calculate 
the importance of each index to the result of risk classification. The formula used for cal-
culation is as follows: P(r) = ∑ ∑ ୈృ౨౟ౠ౪ౠసభౡ౟సభ∑ ∑ ∑ ୈృ౨౟ౠ౪ౠసభౡ౟సభ౨ౣసభ × 100%  (7) 

where m represents the total number of indices, k is the number of texturing trees, t is the 
number of nodes in each tree, DGrij is the Gini decrease value at the jth node in the ith tree 
that belongs to the rth index, and Pr is the degree of contribution of the rth index from all 
available indices. 

Figure 3. Graphical representation of evolution modes and specific types of ECA.

According to the definition of LEI [39], we have defined six types of ECA evolution.
The expansion mode has three specific types: (1) if the buffer of a new ECA patch consists
of non-ECA only (LEI = 0), it is classified as the isolation type, implying that the new ECA
patch is spatially discontinuous with the original ECA patch; (2) if the buffer of a new ECA
patch consists of non-ECA mixed with original ECA (0 < LEI ≤ 50), it is classified as the
spread type, meaning that the new ECA patch is located at the edge of the original ECA
patch; and (3) if the buffer of a new ECA patch is mostly occupied by the original ECA
(50 < LEI ≤ 100), it is classified as the infilling type, indicating that the new ECA patch is
located within the original ECA patch. The degradation mode also has of three specific
types, namely departed, atrophy, and disintegration. Their classification rules correspond
to the specific type of expansion mode.
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2.3.4. Random Forest Model

The RF model is a data mining method for categorical regression trees proposed by
Breiman [40]. RF is an effective classifier that is composed of a set of tree-structured classi-
fiers {h (x, θk), k = 1, . . . . . . }, where {θk} represents explanatory, identically-distributed
random vectors. With the input of the explanatory variable X, each DT casts a unit vote for
the most popular class [41].

In this research, we chose the minimum Gini value method as the segmentation
criterion. The minimum Gini value of an internal tree node was calculated using the
following formula:

Gini(t) = 1−
u

∑
q=1

[p(q|t)]2 (6)

where p(q|t) represents the probability of the risk class q at node t; u represents the number
of classes.

In this study, the decrease in the Gini index at the node split was used to calculate the
importance of each index to the result of risk classification. The formula used for calculation
is as follows:

P(r) =
∑k

i=1 ∑t
j=1 DGrij

∑m
r=1 ∑k

i=1 ∑t
j=1 DGrij

× 100% (7)

where m represents the total number of indices, k is the number of texturing trees, t is the
number of nodes in each tree, DGrij is the Gini decrease value at the jth node in the ith tree
that belongs to the rth index, and Pr is the degree of contribution of the rth index from all
available indices.

2.3.5. Determination of Explanatory Variables

According to the previous research and the theoretical analysis, the potential driv-
ing factors that could influence the ECA evolution were grouped into two categories:
environment condition and socioeconomic development (Table 2).

Table 2. Factors and explanatory variables of driving factors for ECA evolution.

Factor Variable Description Unit

Environmental
condition

x1 Average altitude m
x2 Average slope ◦

x3 Average temperature ◦C
x4 Total precipitation mm
x5 Proportion of forest area km2

x6 Proportion of grassland
area km2

Socioeconomic
development

x7 Proportion of cropland
area km2

x8 Average GDP million CNY/km2

x9 Population density number of
people/km2

x100 Average night light /

x11 Euclidean distance from
impervious km

x12 Euclidean distance from
cropland km

DEM (x1), slope (x2), temperature (x3), precipitation (x4), area of forest (x5), and area
of grassland (x6) were selected as the six explanatory variables to represent environmental
conditions from the perspectives of terrain, meteorology, and ecosystem composition. The
DEM and slope determine whether the conditions of a region are suitable for ecosystem
succession to higher levels. Precipitation and temperature determine ecosystem succession
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by affecting vegetation growth. Land use reflects the regional ecosystem composition, and
we selected the major land use components in the ECA including forest and grassland.

Socioeconomic factors indicate the impact of human activities, with the most important
factors being the area of cropland (x7), GDP (x8), population (x9), and nightlight (x10).
These four explanatory variables are direct representations of human activity. We chose the
distance from impervious (x11) and cropland (x12) to represent ECA location, reflecting
the ease with which ECA is affected by these regions. This research could be improved by
considering these factors, thus providing a better understanding of ECA evolution.

3. Results
3.1. Spatial-Temporal Pattern of ECA

By counting and plotting the frequency distribution of ECI during 2005, 2010, 2015,
and 2019, we observed that the frequency distribution of ECI in each period is similar.
By comparing the extraction results of different thresholds, including peak, trough, and
inflection point, we finally chose the last peak of the trend line as the extraction threshold
(T) of ECA (Figure 4). Therefore, the grids with ECI > T were identified as ECA, whereas
those with ECI < T were identified as non-ECA.
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The last 15 years have witnessed a serious decline in the number of ECA grids, from
49,068 to 19,105, representing an overall decrease of 61.06%. ECA had the largest number
of grids, reaching 49,068, in 2005. In 2010, the number of ECA grids reduced to 33,300. In
2015, the number of ECA grids increased slightly to 41,169. Finally, in 2019, the number of
ECA grids drastically reduced to 19,105.

According to the aforementioned identification process, we determined the spatial
distribution of the ECA of the SYEBZ in 2005, 2010, 2015, and 2019. The results showed a
significantly heterogeneous distribution of ECA (Figure 5). The ECAs in the northern part of
the study area were distributed in a planar form and located mainly in Mianyang, Deyang,
Chengdu, Ya’an, Meishan, and Leshan. In the central part, the ECAs were distributed in a
pointed form, and located in Ganzi, Liangshan, and Panzhihua. The ECAs in the southern
part were distributed in a linear form and located mainly in Lijiang, Nujiang, and Dali.
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3.2. Spatial-Temporal Distribution of Evolution Trends of ECA
3.2.1. Evolution Modes of ECA

The ECA evolution trend was “degradation–expansion–degradation”. From 2005
to 2010, the number of expanded grids was 1537 and the number of degradation grids
was 17,305; the direction of ECA evolution mainly showed a degradation trend. The
expansion grids were mainly located at the junction of Chengdu, Leshan, and Ya’an,
whereas the degradation grids were concentrated in Mianyang, Deyang, Chengdu, and
Meishan in the north. From 2010 to 2015, the number of expansion grids was 11,248, the
number of degradation grids was 3379, and the direction of ECA evolution mainly showed
an expansion trend. The expansion grids were mainly concentrated in Mianyang, Aba,
Chengdu, Ya’an, and Meishan in the northern part of the region. The distribution of the
degradation grids was more discrete, located mainly in the south of the region. From 2015
to 2019, the number of expansion grids was 2271, the number of degradation grids was
24,335, and the ECA evolution showed mainly the degradation trend. The expansion grids
showed mainly a discrete distribution in the central part of the region, and the degradation
grids were mainly concentrated in Mianyang, Aba, Ya’an, Meishan, and Leshan in the
northern region (Table 3, Figure 6).

Table 3. Count and proportion of evolution modes.

Period
Evolution Modes

Expansion Mode Degradation Mode

Count Proportion Count Proportion

2005–2010 1537 8.16% 17305 91.84%
2010–2015 11248 76.90% 3379 23.10%
2015–2019 2271 8.54% 24335 91.46%
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3.2.2. Specific Types of Evolution Modes

Among the three specific types of the expansion mode, the predominant type is spread
(Figure 7), indicating that expansion mainly starts at the edge of original ECA. In the last
15 years, as for the isolation type, the proportion of grid count increased from 5.70% to
10.45%, and the proportion of patch area increased from 10.30% to 16.75%, indicating
that the spatial distribution of the isolation type tends to be concentrated. For the spread
type, the proportion of grid count increased from 70.14% to 79.58%, and the proportion
of patch area increased from 54.20% to 65.23%, indicating that the spatial distribution of
the spread type shifted from concentrated to dispersed. Finally, for the infilling type, the
proportion of grid count decreased from 24.16% to 9.97%, and the proportion of patch area
decreased from 35.50% to 18.02%, showing that the dispersed characteristic is more obvious
for this type.
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Atrophy is the predominant type among the three specific types of the degradation
mode (Figure 7), indicating that degradation also mainly starts at the edge of the original
ECA. In the last 15 years, for the departed type, the proportion of grid count increased from
4.92% to 5.77%, and the proportion of patch area increased from 22.54% to 29.74%, indicating
that the spatial distribution of departed type tends to be more dispersed. For the atrophy
type, the proportion of grid count increased from 86.09% to 92.47%, and the proportion
of patch area decreased from 57.21% to 52.05%, indicating that the spatial distribution of
the atrophy type tends to be more concentrated. Finally, for the disintegration type, the
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proportion of grid count decreased from 9.00% to 1.76%, and the proportion of patch area
decreased from 20.25% to 18.21%, indicating that the distribution of this type tends to be
more dispersed.

3.3. Spatial-Temporal Heterogeneity of Driving Factors
3.3.1. Verification of RF Model Accuracy

RF models were run with two modes of ECA evolution, three specific types of ex-
pansion modes, and three specific types of degradation modes as predictor variables,
respectively. The percentage of correct classification results was used to evaluate the accu-
racy of the RF model. According to Table 4, the highest prediction accuracy was 97.96%,
whereas the lowest prediction accuracy was 68.86%, and the average accuracy reached
83.98%. These data suggest that the results of the RF model are credible.

Table 4. Prediction accuracy of the random forest model.

Period Evolution Modes Types of Expansion
Mode

Types of Degradation
Modes

2005–2010 92.86% 72.50% 86.08%
2010–2015 82.19% 79.01% 68.86%
2015–2019 97.96% 82.83% 94.75%

Statistics
Max Min Mean

97.96% 68.86% 83.98%

3.3.2. Heterogeneity of Driving Factors to the Evolution Modes and Specific Types of ECA

The importance of explanatory variables to ECA evolution was classified from low to
high as follows: I (0–0.5037%), II (0.5038–1.5381%), III (1.5382–3.7400%), IV (3.7401–8.4272%),
V (8.4273–18.4052%), and VI (18.4053–39.6460%) (Figure 8) by the geometric interval grad-
ing method.
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The environment is the primary driving factor. The importance level of DEM (x1) was
relatively stable, with it being IV for all three periods. The importance level of slope (x2)
showed a decreasing trend, exhibiting levels V, III, and II during 2005–2010, 2010–2015, and
2015–2019, respectively, suggesting that with the gradual adaptation of the ecosystem to
the terrain, the impact of the terrain gradually decreases. The importance of temperature
(x3) also showed a decreasing trend, with the level being IV in 2005–2010 and decreasing
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to III in 2010–2015 and 2015–2019. The importance level of precipitation (x4) showed a
fluctuating upward trend, with it being V in 2005–2010, decreasing to IV during 2010–2015,
and then increasing to VI during 2015–2019. In the context of climate change, hydrothermal
conditions are crucial for ECA evolution. The importance level of area of forest (x5) was V
during 2005–2010 and 2010–2015, which decreased to II during 2015–2019. The importance
level of area of grassland (x6) increased from II in 2005–2010 to IV in 2010–2015 and finally
restored to II in 2015–2019, indicating that the importance of natural ecosystem background
conditions for ECA is gradually decreasing.

In terms of socioeconomic factors, the importance level of area of cropland (x7) was
IV in 2005–2010, which increased to VI during 2010–2015 and 2015–2019, indicating that
the impact of artificial ecosystems is gradually increasing. The importance level of GDP
(x8) was stable, with it being V in all three periods. The importance level of population
(x9) decreased from IV in 2005–2010 to II in 2010–2015 and 2015–2019. The importance
level of nightlight (x10) also showed a downward trend, decreasing from level III in
2005–2010 to level I during 2010–2015 and 2015–2019, indicating the importance of the
economic output. Owing to urbanization, rural population and economic activities are
gradually being concentrated in cities; hence, the importance of human activity gradually
decreased. The importance level of distance from impervious (x11) showed a fluctuating
trend, increasing from IV in 2005–2010 to V in 2010–2015 and then decreasing to III in
2015–2019. The importance of distance from cropland (x12) has increased from level II in
2005–2010 to level III in 2010–2015 and 2015–2019. The Chinese government has proposed a
‘new urbanization’ policy to alleviate the ecological pressure caused by rapid urbanization;
therefore, the impact of urban expansion first increased and then decreased. In addition,
due to the implementation of the Cropland Balance Policy, cropland will gradually move
out with urban expansion.

To explore the differences in the effects of each variable between ECA expansion
and degradation, we used three expansion types or three degradation types as predictor
variables. As shown in Figure 8, the length of the rectangle reflects relative importance. The
solid rectangles and dashed rectangles represent the relative importance of the explanatory
variables for three specific types of expansion mode and three specific types of degradation
mode, respectively. During 2005–2010, the explanatory variables with greater relative
importance to the type of expansion were nightlight (x10) and distance from impervious
(x11), whereas the explanatory variable with greater relative importance to the type of
degradation was precipitation (x4). During 2010–2015, the explanatory variables with
greater relative importance to the type of expansion were area of forest (x5) and area
of cropland (x7), whereas the explanatory variables with greater relative importance to
the type of degradation were area of grassland (x6) and distance from impervious (x12).
During 2015–2019, the explanatory variables with greater relative importance to the type
of expansion were area of forest (x5), area of cropland (x7), nightlight (x10), and distance
from impervious (x12), whereas the explanatory variables with greater relative importance
to the type of degradation were temperature (x3) and precipitation (x4). Overall, forest
ecosystems have abundant species and a complex network structure with good stability.
Thus, large areas of forest are conducive to ECA expansion. As an artificial ecosystem,
the agroecosystem is closely and intricately linked to the socioeconomic sphere of human
beings. Under the Cropland Balance Policy, economic development and urban expansion
have contributed to the outward expansion of cropland, leading to a negative impact on
ECA expansion. However, for ECA degradation, climate factors including temperature and
precipitation are more significant. Climate change is aggravating the imbalance of water
and heat distribution and thus promoting ECA degradation.

4. Discussion
4.1. Characteristics of the ECA Evolution Modes and Types

The spatial distribution characteristics of ECA from north to south include planar,
point, and linear forms. In the northern part of the study area, ECA is mainly distributed
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in the marginal mountain areas of the Sichuan Basin. The warm and humid climate has
contributed to the increased diversity of animal and plant resources in the area; therefore,
the spatial pattern of ECA is planar. The central part of the study area is the middle
section of the Hengduan Mountains, where the soil is barren, vegetation is sparse, and the
ecological environment is fragile. It is also difficult to form a concentrated and contiguous
habitat patch there, so the spatial pattern of ECA is a point pattern. In the southern part of
the study area, the Jinsha, Lancang, and Nu rivers flow in parallel, wherein the biological
communities are enriched, and the ECA is distributed linearly along the sides of the valley.

ECA has undergone dramatic changes in the last 15 years, and its evolutionary trend
is degradation–expansion–degradation. The socioeconomic development owing to rapid
urbanization inevitably causes different degrees of damage to the ecosystem [42], thereby
causing ECA degradation. To alleviate the ecological pressures of rapid development,
China has implemented various extensive ecological projects to protect and expand its
forests [43]. Central and Southwest China is one of the key regions for afforestation, and
the forest cover has increased significantly in a short time period, which is the main reason
for the ECA expansion in the study area in 2015. However, due to the low stability of single
species afforestation, forest plantation is more dependent on human management [44].
Therefore, planted forest ecosystems are more susceptible to degradation than natural
ecosystems.

The competition between the expansion and degradation processes is most intense
at the edge of the ECA, which often represents the junction or overlapping area between
different ecosystems. This is the transition zone of the community where species penetrate
each other and is the area with obvious environmental gradient changes [45]. Therefore,
ECA has a profound edge effect. The edge effect interpenetrates climate, vegetation, and
landscape in the area and undergoes gradient mutations, leading to increased environmen-
tal heterogeneity [46] and making ECA edges vulnerable to degradation. However, due
to edge effects, ecological engineering can enhance the overall ecological benefits. There-
fore, the government should implement different policies to promote expansion and curb
degradation according to the spatial distribution characteristics and evolution pattern of
ECA, which can help in enhancing regional ecological functions and maintaining regional
ecological security.

4.2. Understanding the Spatiotemporal Heterogeneity of Driving Factors

Overall, the explanatory variables identified as having great importance in ECA
evolution are precipitation (x4), area of forest (x5), area of cropland (x7), and GDP (x8).
Precipitation is an important factor in ecosystem succession, and climate change has been
causing significant damage and increasingly irreversible losses to the ecosystem [47]. To
relieve ecological pressure, China has implemented various ecological projects such as
afforestation and reforestation projects since the 20th century [48]. In the “Outline of
National Ecological Fragile Area Protection Plan”, the SYEB mainly belongs to the southwest
mountainous ecologically fragile area with interlocking agriculture and animal husbandry,
where the future development direction needs to strictly return farmland to forests and
close hillsides for afforestation. Especially in the “National Main Functional Area Planning”,
it is further clarified that the SYEB needs to focus on strengthening the functions of soil
erosion control and natural vegetation protection, which have contributed to the greening
of China [49,50]. GDP represents the economic output of a region and is the primary
representation of the intensity of human activity [51]. Therefore, these explanatory variables
have strong impacts on ECA evolution.

The explanatory variables identified as having the least effect on ECA evolution are
population (x9) and nightlight (x10). This is because the ECA is located far from the city
center and thus is sparsely populated and dimly lit. Additionally, the new urbanization
policy [52] promoted by the Chinese government requires economic intensification and
ecological livability; therefore, the economic output of the region no longer depends only
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on the size of the population, and economic development is gradually becoming green and
sustainable.

4.3. Policy Implication

Scientific ecological policies can promote the sustainable development of the region.
Therefore, we propose site-specific policies to protect ECA based on the spatiotemporal
pattern of ECA, spatiotemporal heterogeneity of driving factors to ECA evolution, and
differences in the drivers of expansion and degradation.

The edges of ECA represent the intersection between natural and artificial ecosystems
and are the areas where anthropogenic disturbances compete most fiercely with natural
ecological restoration; hence, expansion and degradation occur mainly at the edges of ECAs.
These areas require the construction of ecological isolation zones, delineation of ecological
red lines, and other measures to control the intensity of interference due to human activities.
The afforestation and reforestation projects have contributed significantly to increasing
the forest area in the study area, which had a positive effect on ECA expansion. However,
the importance of human management in this area cannot be ignored [50]. Therefore, the
continuous management and monitoring of ecological projects are necessary to maintain
the ecological functions of planted forests.

Specifically, the northern part of the SYEBZ is the Sichuan Basin, which has the highest
population density and the strongest economic activity. The ECA in this region has a planar
distribution and is heavily degraded. We suggest that in the future, urban development
boundaries should be strictly controlled, and high-standard cropland construction should
be implemented to alleviate the ecological pressure of urban and cropland expansions.
Coordinating the contradiction between economic development and ecological protection
is essential to curb ECA degradation. The central part of the SYEBZ is the middle section of
the Hengduan Mountains, which is an ecologically fragile area with fewer human activities
and a high degree of preservation of the original ecological environment. The ECA in
this region has a point distribution. To promote ECA expansion in the region, a system of
nature reserves should be built to improve ecological containment functions and the local
climate. The southern part of SYEBZ, wherein three rivers flow in parallel, has a fragile
ecological environment and poor socioeconomic development. The ECA in this region has a
linear distribution. In this region, the concept of ecological priority and green development
should be strictly implemented in the future. With ecological connotation as the premise,
the advantages of water and heat conditions in the high mountain valley should be utilized,
and ecological utilization-based agriculture should be vigorously developed.

5. Conclusions

This study constructs ECI to identify ECAs in the SYEBZ during 2005, 2010, 2015,
and 2019. Then, the LEI was used to delineate the specific types of ECA expansion and
degradation modes during three periods, namely 2005–2010, 2010–2015, and 2015–2019.
Finally, the RF model was used to explore the spatiotemporal heterogeneity of drivers of
ECA evolution modes and specific types.

The overall trend of ECA evolution is degradation–expansion–degradation. Among
the three expansion types, namely isolation, spread, and infilling, the predominant type
is spread. Similarly, among the three degeneration types, namely departed, atrophy, and
disintegration, the predominant type is atrophy. This indicates that the evolution of ECA
mainly occurred at the edge of the original ECA. The drivers having a great importance
in ECA evolution are mainly precipitation (x4), area of forest (x5), area of cropland (x7),
and GDP (x8), indicating that ECA expansion is driven by various factors but is primarily
associated with land use change and anthropogenic factors. However, for ECA degrada-
tion, climate factors including temperature and precipitation are more significant. These
conclusions are vital to the protection and management of the national ecological barrier
zone and the promotion of coordinated regional socio-economic-ecological development.
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