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Abstract

Ageing is accompanied by loss of tissue integrity and organismal homeostasis partly due to decline in stem cell function.
The age-associated decrease in stem cell abundance and activity is often referred to as stem cell exhaustion and is
considered one major hallmark of ageing. Importantly, stem cell proliferation and differentiation potential are tightly
coupled to the cellular epigenetic state. Thus, research during the last years has started to investigate how the epigenome
regulates stem cell function upon ageing. Here, we summarize the role of epigenetic regulation in stem cell fate decisions
and we review the impact of age-related changes of the epigenome on stem cell activity. Finally, we discuss how targeted
interventions on the epigenetic landscape might delay ageing and extend health-span.

Key words: epigenetics; chromatin; ageing; stem cells

Introduction
Chromatin describes the macromolecular complex of proteins
and DNA that can be found in the nucleus of every eukaryotic
cell. It provides the scaffold for packaging the entire genetic
material, facilitating its compaction and protecting DNA. The
core of chromatin consists of the nucleosome. Research dur-
ing the last decades has revealed that post-translational mod-
ifications on histones, which are the protein components of
nucleosomes, and on DNA itself regulate gene expression and
allow time- and tissue-controlled read-out of the genetic infor-
mation [1, 2]. These studies have highlighted the contribution
of chromatin architecture and dynamics during physiological
development as well as upon tumorigenesis [3, 4]. Recent data
also underscore the central role of epigenetics in the develop-
ment and progression of ageing and age-related diseases, such
as cardiovascular, neurodegenerative and metabolic disorders
[5].

Adult stem cells play a vital role in tissue repair and regen-
eration; thus, they are essential for the maintenance of tis-
sue homeostasis. Stem cell exhaustion, which describes the
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decline in the stem cell number and/or function, is one well-
established hallmark of ageing. During the last years, the role
of the epigenome in the regulation of adult stem cell activity,
particularly in the context of ageing, has been the subject of
increased scientific interest. Given the major contribution of
stem cells in the maintenance of tissue integrity and homeosta-
sis, investigating the mechanisms that govern stem cell ageing is
of exceptional importance for interventions aiming at delaying
or even preventing ageing and age-associated pathologies. How-
ever, stem cell ageing research is extremely challenging, mostly
due to technical limitations, such as the isolation of pure stem
cell populations in sufficient numbers. As a result, we still have
only limited insight into the age-related changes of the stem cell
epigenome. Nevertheless, the increasing progress in identifying
suitable markers for purification of homogenous stem cell pop-
ulations, the constant improvement of flow cytometers allow-
ing cell sorting based on several markers simultaneously and,
more importantly, the development of sensitive (epi-)genomic
assays to study the chromatin landscape even at single-cell
resolution has now made it possible to address these intriguing
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questions during the course of ageing. Here, we summarize
the current knowledge on the role of epigenetics in the ageing
process focusing on the impact of age-dependent alterations
of the epigenome on stem cell physiology. We conclude our
review discussing how careful interventions to the epigenetics-
ageing axis might represent a potential way to alter stem cell
fate decisions, favouring rejuvenation of aged stem cells and
enhancing tissue homeostasis.

Age-associated alterations of the epigenome
DNA methylation was discovered almost simultaneously with
the identification of DNA as the genetic material [6, 7]. We know
now that ∼70% of cytosines are methylated genome-wide, as
part of the dinucleotide motif CpG [8] and that DNA methylation
at gene promoters correlates with transcriptional repression.
The responsible mechanisms for the establishment and main-
tenance of DNA methylation as well as its role in transcriptional
regulation are extensively discussed elsewhere [1, 9].

Given the early discovery of DNA methylation, it is not sur-
prising that the first data on age-associated epigenetic modifi-
cations focused on the analysis of the DNA methylation profile
in young and old individuals. Early studies showed that DNA
methylation decreases with age in several organs in salmons,
rats and mice [10–12]. Around ∼25% of the CpG sites in mice
exhibit age-related methylation changes across tissues, with
the most prominent alterations observed in highly proliferative
organs, such as the gut and the spleen [13]. Interestingly, the
alterations of the DNA methylation profile occur progressively
and linearly upon ageing, with similar rates between hyper- and
hypomethylation; a phenomenon that has been described as
epigenetic drift. The progressive modulation of the DNA methy-
lation status with age explains the use of methylation patterns
as a biomarker of ageing. Indeed, there are now available several
global and tissue-specific epigenetic ageing clocks that are built
on statistical models, taking into consideration the methylation
level at specific genomic loci [14].

Apart from the changes in the DNA methylation profile,
the chromatin landscape undergoes dramatic alterations upon
ageing, including re-organization and loss of heterochromatic
regions. In particular, reduction or redistribution of the tran-
scriptional repressing H3K9me2/3 marks disrupts HP1 localiza-
tion [12] and affects heterochromatin organization. Such hete-
rochromatin rearrangements have been correlated with ageing
in C. elegans, D. melanogaster and humans [15–17]. Similarly, epi-
genetic modifications in euchromatin have also been reported
to change with age. Although this subject has been covered
in detail elsewhere [18, 19], for the purpose of this review, we
would like to discuss two important observations that highlight
the fundamental role of an altered epigenetic landscape in the
ageing process. Firstly, genetic manipulation of chromatin mod-
ifiers has been shown to elicit a profound effect on longevity in
different model organisms; deletion of the chromatin-associated
proteins ASH-2, WDR-5, and SET-2 leads to decreased H3K4me3
levels and subsequently, lifespan extension in C. elegans [20]. In
contrast, mutations in set1 and met-1 genes, which encode for the
enzymes that deposit H3K36me3, reduce lifespan of S. cerevisiae
and C. elegans, respectively [21, 22]. Furthermore, in a landmark
publication, Ocampo et al. [23] demonstrated that a transient and
subtle induction of Oct4, Sox2, Klf4 and Myc genes ameliorates
progeria and improves regeneration of various murine tissues,
via epigenetic remodelling. These examples indicate that epi-
genetic reprogramming has a beneficial effect on organismal

function and is associated with extension of the health-span and
lifespan.

Changes in epigenetic modifications represent one exten-
sively studied hallmark of ageing. However, one important issue
to consider when interpreting results from epigenetic studies in
aged organisms is that so far most of them have been carried out
in complex biological systems or tissues composed of multiple
cell types. Thus, these data likely reflect the average of all the
cell types found in each tissue. Therefore, the possibility that
the epigenetic drift is also—at least in part—caused by a change
in tissue composition with age cannot be excluded. To this
end, development of methods to analyse DNA methylation and
chromatin architecture at single-cell resolution and establish-
ment of ChIP-like approaches which require low cell numbers,
such as the CUT&RUN [24] and the CUT&Tag [25] technics, will
considerably facilitate research on the role of epigenetics in
ageing.

Epigenetic regulation of fate decisions in adult
stem cells
Adult stem cells have the dual capacity to proliferate and differ-
entiate into specific lineages in response to various internal and
external stimuli [26, 27]. Given that stem cells share the same
genetic information with somatic cells, their epigenome and
the associated transcriptional signature distinguish them from
their differentiated counterparts. Importantly, the characteristic
epigenetic profile of stem cells reflects their wide developmental
potential. During the last years, the molecular mechanisms via
which changes in the chromatin landscape control stem cell fate
decisions have been the subject of intense scientific research,
both in embryonic stem cells (ESCs) as well as in various adult
stem cell populations.

As discussed above, DNA methylation at regulatory regions,
such as gene promoters and enhancers, impacts stem cell fate
decisions via altering the transcriptional output (Figure 1). For
instance, differentiating ESCs display increased DNA methy-
lation and high levels of H3K9me3 and H3K27me3, but low
levels of H3K4me3 [28–30]. This increase in the transcriptional
repressive marks promotes silencing of self-renewal genes and
enhances lineage commitment. In contrast, regulatory regions
of differentiation-associated genes are usually methylated in
quiescent hair follicle stem cells (HFSCs), whereas they undergo
a progressive, but profound de-methylation upon differentia-
tion [31]. Likewise, neural stem cells (NSCs) display high DNA
methylation, which is lost upon induction of differentiation,
favouring efficient development of mature neurons [32]. The
critical role of DNA and histone methylation in the regulation
of stem cell function has also been investigated using various
genetic models. For example, loss of the DNA methyltransferase
3A and/or 3B (DNMT3A/B) impairs the differentiation capacity
of murine haematopoietic stem cells (HSCs) [33, 34]. Similarly,
deletion of KMT5B, the enzyme that deposits H4K20me2, acti-
vates muscle stem cells (MuSCs) and forces them to differentiate.
This leads to depletion of the MuSC population and impairs
muscle integrity [36]. Furthermore, deletion of Tet1, the enzyme
involved in DNA hydroxymethylation, regulates the expression
of Wnt target genes in mouse intestinal stem cells (ISCs), altering
their self-renewal capacity and influencing the integrity of the
intestinal epithelium [35].

Histone acetylation is associated with activation of gene
transcription and requires acetyl-CoA as the donor of the acetyl-
group. Several studies have investigated the role of histone
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Figure 1. Epigenetic changes during stem cell differentiation. Overview of the changes that occur on the epigenome during differentiation of stem cells. DNA methylation

increases in the differentiating HSCs, while it decreases upon NSCs differentiation. H3acetylation (H3ac) is higher in the differentiating NSCs, whereas it is reduced

in MSCs during lineage commitment. Differentiating MuSCs exhibit high levels of H4K16ac and low levels of H4K20me2. Importantly, these changes occur at specific

genomic loci, favouring the expression of lineage-specific genes and preventing expression of self-renewal and stemness-related genes. In blue boxes are indicated

small molecules and metabolites that influence the activity of the respective epigenetic enzymes, affecting stem cell fate decisions.

acetylation in different stem cell populations both in prolifer-
ating cells as well as during the course of differentiation. In
mesenchymal stem cells (MSCs), elevated levels of global H3
acetylation (H3ac) correlate with enhanced stemness; indeed, in
proliferating human MSCs increased H3ac promotes expression
of core pluripotency genes, whereas osteogenic differentiation
is accompanied by loss of global H3ac, leading to repression
of self-renewal genes [37]. Consistently, histone deacetylation
by SIRT3 is essential for efficient adipogenesis. In contrast, in
mouse MuSCs elevated H4K16ac drives myogenic differentiation
[38], whereas inhibition of histone deacetylases in NSCs is crucial
for neurogenesis in mice and rats, favouring the development
of both neuronal and glial lineages [39, 40]. In ISCs, nutritional
interventions in the form of fasting or caloric restriction leads
to elevated b-hydroxybutyrate levels and inhibition of histone
deacetylases [41, 42]. These alterations influence ISC function
via changing the H3K27ac abundance on promoters of genes
involved in the Notch pathway [41]. Therefore, it is evident
that the effect of histone acetylation on the regulation of the
proliferation/differentiation balance depends heavily on the cell
type and the modified residue.

Findings from epigenetic studies in adult stem cell popu-
lations have also led to the discovery of drugs, usually small
molecules and metabolites, which can redirect—and even repro-
gram—stem cells towards specific lineages. For instance, vorino-
stat and sodium butyrate, two inhibitors of histone deacetylases
that are commonly used in cancer treatment, arrest murine
NSCs in the G1 phase and control cell cycle progression and
differentiation [36]. Furthermore, Kohyama et al. [43] showed that

treatment of mature osteoblasts with 5-azacytidine (5-AzaC), an
inhibitor of DNA methylation, converts them to NSCs, via alter-
ations in their epigenome and their gene expression profile. Sim-
ilarly, osteocytes treated with valproic acid, a histone deacety-
lase inhibitor, are able to re-differentiate to functional NSCs
[44]. In this context, it is worth mentioning that metabolism
might represent a potential means to alter the epigenome and
thus the stem cell identity. More specifically, a growing body
of evidence suggests that chromatin interacts with metabolism
in a direct and dynamic manner. Similar to the central role of
acetyl-CoA in the establishment of histone acetylation marks,
the metabolism-chromatin interaction is primarily mediated
via intermediate metabolites, including α-ketoglutarate (α-KG)
and S-adenosylmethionine (SAM). These metabolites serve as
cofactors and substrates for epigenetic writers and erasers, mod-
ulating their activity and thus affecting stem cell fate decisions
[45–48].

These are just a few examples—and by no means an exhaus-
tive overview—that illustrate the tight control of stem cell func-
tion by epigenetics.

Epigenetic changes in ageing stem cells

Age-dependent decline in stem cell number and function is
observed virtually in all tissues and organs and is an important
hallmark of ageing [49]. As discussed above, stem cells play a
fundamental role in maintaining tissue homeostasis throughout
the lifespan of an organism [50] and their potency is tightly
linked with their epigenome. Therefore, it is not surprising that
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Table 1. Summary of age-related epigenetic alterations in several stem cell types and their functional consequences on stem cell activity

Stem cell type Modification Functional consequence Ref.

Enzyme HSC DNMT1 � Lineage bias & self-renewal defects [56–58]
DNMT3A/B � Arrest of HSC differentiation [33]
TET1 � Enhanced HSC self-renewal &

myeloid lineage skewing
[59]

MSCs HDAC � Senescence [60]
SIRT6 � Redox imbalance through H3K56ac on

Nrf2 promoter
[61]

MuSCs DNMT1 � Lineage bias & self-renewal defects [62]
NSCs DNMT3A/B � Arrest of NSC differentiation [63]

SIRT1 � Abnormal expansion of
oligodendrocyte progenitors

[64]

ISCs DNMT1 � Lineage bias & self-renewal defects [36]
TET1 � Enhanced ISC proliferation

HFSCs SIRT7 � Arrest of the hair follicle life-cycle
transition from telogen to anagen

[52]

Histone
modification

HSCs H3K4me3 local
broadening of peaks

� Broadening at genes involved in
self-renewal & loss of differentiation

[65]

H3K27ac � Altered expression of
tumour-suppressor genes

[66]

H4K16ac diffuse
pattern

� Myeloid lineage skewing &
misformed nuclei

[67, 68]

MSCs H3ac & H4ac � Impaired osteogenesis [69]
H3K9me3 � [70]

MuSCs H3K4me3 � Impaired stem cell function &
chromatin remodelling

[71]

H3K27me3 �
NSCs H3K27me3 � Inhibition of senescence-associated

genes
[64]

chromatin-mediated changes in stem cell function upon age-
ing have a profound impact not only on their resident tissue
but ultimately on the physiology of the whole organism. The
contribution of epigenetic modifications on stem cell ageing is
underscored by genetic models. For instance, Sirt7 knock out
in mice is shown to drive the exit of HSCs from quiescence
and to promote aberrant HSCs proliferation. This phenotype is
reminiscent—at least in part—to that of aged HSCs. Mechanis-
tically, this is achieved by loss of H3K56 deacetylation at the
promoter of Wnt target genes [51]. Furthermore, in HFSCs, SIRT7
controls hair growth by regulating the transition from telogen
to anagen during the hair-follicle life cycle. Sirt7 is downreg-
ulated in aged HFSCs, which correlates with the well-known
age-related loss and thinning of hair. Importantly, overexpres-
sion of Sirt7 in HFSCs of older animals restores hair-growth.
Mechanistically, this is mediated via deacetylation of the tran-
scription factor NFATc1, which leads to its destabilization and
the subsequent initiation of the hair follicle cycle [52]. For an
extensive review of similar examples that highlight the impact
of epigenetics on stem cell function during ageing, we refer the
interested readers to recent reviews on this topic [53–55] and to
Table 1.

But why does the chromatin landscape and the DNA and
histone modification profile change upon ageing? Several
studies in a wide range of organisms and cell types suggest
that age-dependent DNA damage elicits permanent changes
on the epigenome, redistributing chromatin-associated proteins
and resetting the chromatin landscape. These alterations are
not restored after repair of the DNA damage and have a
profound impact on both stem cell and organismal function. For
instance, in HFSCs, SIRT7, apart from regulating cell cycle, plays a

significant role in the repair of DNA double-strand breaks
(DSBs), via H3K18 deacetylation at the break site. This triggers
the recruitment of the damage response factor 53BP1 to the
DSB site. Thus, Sirt7 deletion has dramatic consequences
on the organismal function, resulting in shorter lifespan in
mice [72]. In addition to DNA damage, other mechanisms
contribute to the age-dependent changes in the epigenome,
e.g. metabolic alterations that impact chromatin modifications
[73], as metabolism and epigenome are tightly linked via the
abundance of central metabolites [53]. Recent data also point
towards an impact of age-related changes in cellular polarity on
the epigenome [68].

While data from genetic approaches, like the examples
described above, are essential to provide functional insights
into the role of epigenetics during stem cell ageing, it is also
vital to start incorporating age-associated changes in the
DNA methylation profile, histone modification patterns and
chromatin architecture in order to understand the general
trends and identify commonly affected genes. Of note, these
integrated studies should be performed in homogenous cell
populations, ideally over the course of the lifetime and in both
sexes to fully characterize the age-related changes as well as
the complex underlying mechanisms. Although technically
challenging, such studies will definitely shed light on the role of
epigenetics in stem cell ageing.

One of the first studies analysing global changes in the
DNA methylation profile of purified HSCs from young and old
mice used reduced representation bisulfite sequencing (RRBS)
[74]. The authors found that the DNA methylation pattern is
fairly stable upon ageing, with only a slight increase in residue-
specific DNA methylation levels, particularly in sites associated
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Figure 2. The epigenome and cell fate decisions. (A) In stem cells, the epigenome plays an important role in the regulation of fate decisions, which are heavily affected by

age-associated epigenetic alterations. Targeting the ageing epigenome represents a potential tool to reverse these changes and re-establish the full potency of the stem

cell population. (B) MSCs are used as an example to illustrate the effect of epigenetic interventions in stem cell ageing. Upon physiological ageing, MSCs exhibit skewed

differentiation at the expense of osteoblasts, which leads to accumulation of adipocytes (upper panel). Treatment of aged MSCs with acetate, α-KG or 5-azacytidine

(5-AzaC) enhances stemness and re-establishes a balanced differentiation potential, via altering the stem cell epigenome.

with the stem cell haematopoietic capacity. This study also
revealed that ageing in HSCs is linked to DNA hypermethylation
at genes that are regulated by the polycomb repressive complex
2 (PRC2). Importantly, these findings were confirmed later by an
independent study [65]. Recently, also human HSCs were profiled
using RRBS [66]. Of the ∼3 million identified CpGs sites, around
∼2200 sites changed their DNA methylation status upon ageing.
Interestingly, in the same study the authors investigated age-
related changes in histone modifications and integrated these
results to differentially methylated DNA regions at functional
sites of the genome, such as enhancers. Data analysis revealed
a strong change in promoter and enhancer DNA methylation of
genes that are involved in developmental processes and cancer.
Remarkably, these genes are also affected in a similar man-
ner in acute myeloid leukaemia (AML) [66], indicating that the
ageing DNA methylation pattern resembles a tumour-like state.
These studies on HSCs propose that the DNA methylation profile
changes with age. However, these changes are subtle and affect
only a subset of sites, suggesting that overall DNA methylation
is fairly stable. Likewise, single-cell DNA methylation analysis
of MuSCs revealed that the DNA methylation profile remains
relatively unchanged upon ageing with only modest increase of
DNA methylation, particularly over SINE elements and regions
marked by H3K36me3 [75]. However, it is important to highlight

that the examples discussed above refer to studies that were
carried out in quiescent stem cells. Results of genomic experi-
ments might be different in other compartments, in which stem
cells divide more frequently, such as the intestine, in which DNA
methylation changes are sufficient to predict the donor’s age
using epigenetic clocks [76].

In contrast to DNA methylation, histone modifications
undergo profound alterations during ageing in various types of
somatic stem cells. In human HSCs, ChIP-seq analysis revealed
a strong reduction of H3K4me1, H3K27ac and H3K4me3 levels
upon ageing, while H3K27me3 levels are only mildly affected
[66]. In contrast, aged murine HSCs display a significant increase
in H3K4me3 and H3K27me3 levels in comparison to the young
HSCs. In addition to its altered levels, H3K4me3 mark in aged
HSCs exhibits a broader distribution over regions associated
with HSC identity and self-renewal [65]—a phenomenon that is
thought to enhance transcriptional consistency and increase
transcriptional output [77]. On the other hand, MuSCs are
characterized by a global loss of H3K4me3 and a slight increase of
H3K27me3 levels [71]. Importantly, in all of the described cases,
the epigenetic changes were corroborated by transcriptional
alterations. We recently performed ATAC-sequencing on MSCs
isolated from young and old mice and observed a strong
decrease in chromatin accessibility, which is in agreement to
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a global histone hypoacetylation in aged MSCs [69], contrary to
the belief that generally, chromatin becomes more accessible
with age.

Together, these data point towards a cell-type-specific
change in the chromatin modification pattern with age, and
they highlight the necessity for a deeper understanding of the
contribution of histone modifications to the ageing process
of stem cells. Integration of the histone modification profile
with chromatin accessibility patterns, the DNA methylation
distribution and the transcriptional output will hopefully
help us generate a more complete view regarding the precise
mechanisms via which the epigenome regulates ageing in
somatic stem cells.

Outlook: interfering with the epigenome to
positively impact longevity
Although we have only recently started to study the changes
that occur in the epigenome of ageing stem cells, it is clear
that chromatin structure plays a fundamental role in regulating
stem cell fate and function. Interestingly, since modulation of
the chromatin architecture enables targeted alteration of the
transcriptional output and ultimately of the stem cell identity,
the epigenome represents an attractive target for development
of anti-ageing strategies (Figure 2). Of note, such approaches to
direct stem cell fate decisions towards specific lineages could
be combined with the currently used approaches during autol-
ogous stem cell therapy. For instance, ex vivo manipulation of
the chromatin landscape to enhance stem cell activity prior
to HSC and MSC transplantation could potentially increase the
efficiency of stem cell therapies. Proof-of-concept studies have
been published in the last years using model organisms to
explore the potentially beneficial effects of such approaches. For
example, ex vivo treatment of aged MuSCs using a combination of
biophysical (rigidity of culture matrix) and biochemical (p38a/b
inhibitor) approaches resulted in MuSC rejuvenation. Indeed,
after transplantation, treated MuSCs contributed to extensive
myofiber repair and restored strength to injured muscles in aged
mice [78]. While this study did not use any epigenetic inter-
vention, it clearly illustrates the potential of an ex vivo therapy.
On the other hand, inhibition of DNMTs by 5-azacytidine has
been used in various studies to enhance stem cell differentiation
capacity of MSCs purified from elderly human donors [79, 80].
Furthermore, two recent studies demonstrated that supplemen-
tation of MSCs with the epigenetic-related metabolites a-KG and
acetate improves osteogenesis in aged MSCs. Mechanistically,
both metabolites elicit changes on chromatin architecture; in
particular, a-KG leads to decreased repressive marks on the
promoters of osteogenic genes [81], whereas acetate restores
histone acetylation levels and thus, chromatin accessibility on
osteogenesis-involved genes [69]. In line to this, manipulating
the intracellular metabolism by regulation of nutrient-sensing
pathways via caloric restriction and/or pharmacological inter-
ventions, such as rapamycin and resveratrol treatment, influ-
ences stem cell fate decisions, via altering the epigenome. There-
fore, ex vivo treatments to manipulate the chromatin landscape
are emerging as a potential tool for efficient stem cell rejuvena-
tion.

Although there has been significant progress in the use of
epigenetic interventions in various cancer types [82], before we
start following such approaches to delay age-related decline
in stem cell function, we should address several key-issues,
including (i) a more complete understanding of the profile of

epigenetic modifications in ageing stem cells and the under-
lying molecular mechanisms and (ii) the development of safe
and efficient protocols for stem cell purification and transplan-
tation.

Key Points
• The epigenetic state of a stem cell is tightly linked with

cellular fate.
• Ageing leads to changes on the epigenetic level and

thus, alters stem cell potential and fate.
• Targeting the ageing epigenome might represent a

potent strategy to re-establish stem cell potency in the
elderly and to extend health-span.
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