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An effective detection method 
for wheat mold based on ultra 
weak luminescence
Gong Yue‑hong1,2,3, Yang Tie‑jun1,2,4*, Liang Yi‑tao3, Ge Hong‑yi3, Chen Liang5, Gao Hui6 & 
Shen Er‑bo6

It is widely known that mold is one of important indices in assessing the quality of stored wheat. 
First, mold will decrease the quality of wheat kernels; the wheat kernels infected by mold can 
produce secondary metabolites, such as aflatoxins, ochratoxin A, zearalenone, fumonisins and so 
on. Second, the mycotoxins metabolized by mycetes are extremely harmful to humans; once the 
food or feed is made of by those wheat kernels infected by mold, it will cause serious health problems 
on human beings as well as animals. Therefore, the effective and accurate detection of wheat mold 
is vitally important to evaluate the storage and subsequent processing quality of wheat kernels. 
However, traditional methods for detecting wheat mold mainly rely on biochemical methods, which 
always involve complex and long pretreatment processes, and waste part of wheat samples for 
each detection. In view of this, this paper proposes a type of eco‑friendly and nondestructive wheat 
mold detection method based on ultra weak luminescence. The specific implementation process is 
as follows: firstly, ultra weak luminescence signals of the healthy and the moldy wheat subsamples 
are measured by a photon analyzer; secondly, the approximate entropy and multiscale approximate 
entropy are introduced as the main classification features separately; finally, the detection model 
has been established based on the support vector machine in order to classify two types of wheat 
subsamples. The receiver operating characteristic curve of the newly established detection model 
shows that the highest classification accuracy rate can reach 93.1%, which illustrates that our 
proposed detection model is feasible and promising for detecting wheat mold.

Wheat, as a type of global grain, is one of the staple foods that human beings and animals rely on. The history of 
wheat cultivation can be traced back to ten thousand years ago, and wheat has become the second most cultivated 
crop in the world due to its high productivity and strong  adaptability1. However, when a suitable surrounding 
moisture and temperature is available, microorganisms will make great contributions to trigger wheat mold 
phenomenon, thus decreasing the quality and quantity of storage  wheat2. It is reported that the average loss of 
storage wheat caused by mold nearly takes up 2.1% of the total wheat yields annually in  China3. In addition, 
the health of human beings will be extremely threatened once certain edible food is made of moldy wheat as 
raw  materials4. The moldy wheat kernels will carry a wide variety of mold, such as aspergillus flavus, aspergil-
lus candidus, aspergillus glaucus, aspergillus nidulans, aspergillus pali, aspergillus versicolor, aspergillus terreus, 
aspergillus fumigatus, aspergillus niger, and so on. Moreover, Many mycotoxins are metabolized by these molds, 
such as aflatoxin B1, aflatoxin B2, aflatoxin G1, aflatoxin G2, and so on, among which aflatoxin B1 (AFB1) is the 
most striking contaminant and has the strongest  carcinogenicity5. The AFB1 is prone to cause a series of illnesses, 
such as retarded growth, immune suppression, human or animal death, and so  on6. Therefore, research of an 
effective and nondestructive technique in detecting AFB1 for stored wheat is of necessity to ensure the security 
of human beings and animals.

Due to the low contents of fungaltoxin, conventional AFB1 detection methods are mainly involved in bio-
chemical methods, such as fluorescence analysis method, determination of microbial activity method, molecular 
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biology method, and so  on7,8. Although above-mentioned methods have achieved fine-grained detection degree 
for wheat mold, all of them are time-consuming, high cost and involved in long pretreatments, which are difficult 
to meet the requirements of rapid on-site detection.

The study of biological photons was traced back to 1923 when the Russian biologist Gurwitsch used biological 
detectors to test the roots of onions and found a special phenomenon: onion cells were able to emit ultraviolet 
light that stimulated other cells to accelerate cell  divisions9. In 1955, the Italian scientist Colli placed some plant 
buds on detectors with photomultiplier tubes for measurement and observed ultra weak luminescence (UWL) 
 phenomenon10. Subsequently, a large number of experiments have proved that UWL is a common life phenom-
enon that is related to biological or physiological activities as well as information exchange or energy transmis-
sion  processes11–13. Up to now, detection technology based on UWL has been applied in various grain quality 
analysis fields and obtained fruitful achievements, including hidden insects  detection14, seedling germination 
 testing15, wheat fresh degree  classification16, and so on. Duan et al.17 applied the permutation entropy algorithm 
to analyze the UWL signals between the healthy and the infected wheat and then used a back propagation (BP) 
neural network to establish the detection model, and the classification accuracy reached 90%. Similarly, this 
paper took advantage of UWL signals of healthy wheat samples and moldy wheat samples, using multiscale 
approximate entropy as the main classification features, and then resorted to support vector machine (SVM) to 
establish the detection model.

Materials and methods
Materials. Wheat samples. Original wheat sample in the year of 2019 was offered by the Yuda grain barn, 
Zhumadian city, Henan Province, China. Before performing the subsequent experiments, some pretreatments, 
including picking out foreign materials and damaged kernels, washing wheat kernels three times using distilled 
water, drying the sample to the degree of moisture at 12.5% using electric blast drying oven were of necessity. 
Subsequently, the original wheat sample was divided into two parts: one part was selected as the healthy sample, 
and the other part was sent to the College of Biological Engineering to cultivate the moldy sample with 50% As-
pergillus flavus. The moldy wheat sample was made by the following steps: firstly, the spores of Aspergillus flavus 
were inoculated on the Potato Dextrose Agar (PDA) medium plate, and cultured in the Constant Temperature 
and Humidity Incubator (Its type: ZSXD-A1430) manufactured by Nanjing Qianxi Instrument and Equipment 
Co., LTD at the temperature of 28 °C for 6 days, and then washed the spores of Aspergillus flavus with a small 
amount of aseptic water. Secondly, the suspension of Aspergillus flavus spores with concentration of 10^5 cfu/ml 
was prepared by counting hemocytometer. Furthermore, Aspergillus flavus spore suspension was inoculated on 
wheat surfaces and mixed evenly according to 5% ratio (weight/weight), and then placed into the incubator at 
the temperature of 28 °C to culture 30 days. Finally, once the moldy wheat was available, we mixed the moldy 
wheat with healthy wheat evenly according to 1:1 proportion in order to obtain the final moldy wheat sample, 
and then placed them into electric blast drying oven make the moldy sample at the same moisture degree as 
the healthy sample. Figure 1 shows the surface images of the healthy and the moldy wheat under the electron 
microscope. To the healthy wheat sample, we prepared 240 subsamples and the weight of each subsample is 
(20.00 ± 0.01) g. Half (120) subsamples were used as the training set (experimental set), and the other half were 
prepared for the testing set. To the moldy wheat sample, we prepared the subsamples according to the same 
partitions as the healthy ones. Meanwhile, protective measures were taken during this process due to the strong 
poisonous of AFB1. All the subsamples were stored in the fridge at the temperature of 4 °C for the sake of mini-
mizing influences caused by external environment.

Equipment. The BPCL-2-ZL, manufactured by Beijing Jianxin Lituo Technology Co., Ltd., was used to measure 
the photon signals of healthy and moldy wheat subsamples. Figure 2 shows the whole measurement instrument, 
which consists of two parts: (1) detection chamber, where subsample is placed; (2) photon analyzer, which con-
sists of a photon counting and optical hi-voltage converter device.

The parameters of photon analyzer are as follows:

Figure 1.  Comparison images between the healthy and the moldy wheat carrying 50% AFB1 under the electron 
microscope.
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• average background noise: 26counts/s
• testing spectral range: 300–650 nm
• fastest sampling rate: 0.1 ms
• peak voltage output: 1500 V
• working conditions: voltage (220 V, 50 Hz), temperature (5–40 °C), relative humidity (20–80%).

In the following tests, testing temperature is set as (20.0 ± 0.5) °C and high voltage is 1030 V.

Methods. Above all, all the following experiments on wheat samples were carried out according to the insti-
tutional guidelines. The whole detection process consisted of two stages. First stage was selecting the suitable 
environmental measurement parameters for measuring UWL signals of the subsamples. Since the UWL signals 
of two types of wheat samples were easy to be influenced by the surrounding factors, finding the optimum 
measurement environment was of priority. Consequently, all the measurements were conducted under the same 
conditions to minimize the environmental influences. After many measurements, we set the environmental tem-
perature as (20 ± 1 °C), humidity (25 ± 6%), and measuring time (8:00 am–18:30 pm). The other stage was choos-
ing the right experimental parameters. We took out the subsamples from the fridge two hours in advance before 
testing and each subsample was placed in a dark space for 30 min in order to decrease the interference from 
ambient stray light. Since the UWL signal of wheat subsample was not strong enough, the sampling interval was 
set to 10 s so as to collect enough counts of photons. In order to better reflect the properties of the UWL signals 
of two types of wheat samples, the total sampling time was extended over 15,000 s. Furthermore, we reserved 
the rest of samples into a fridge at the temperature of 4 °C while finishing measurement on that very day so as to 
minimize the influences caused by external factors.

Results
Photon data analysis. Before measuring the UWL signals of two types of wheat subsamples, we took a 
“blank” measurement in order to obtain the average background noise of analyzer. After several measurements, 
we calculated the average background noise of the analyzer is 238 counts/10 s, and then we adopted the sub-
traction background mode in the following measurements, namely, the UWL signals of all wheat subsamples 
we measured were subtracted this average background noise from each initial UWL signal. The UWL signals 
of the healthy and the moldy wheat subsamples were measured separately according to the above-mentioned 
processes. Subsequently, we calculated the average value of UWL signals of each type of wheat subsamples, and 
the results were shown in Fig. 3. Seen from the Fig. 3, it was obviously observed that the previous segment of 
UWL signal (within 10,000 s) exhibited a delayed luminescence characteristics. Thus, in order to obtain a more 
accurate data of UWL, we took advantage of the posterior segment of UWL signal from 10,010 to 15,000 s. 
Table 1 showed three statistic parameters of UWL data of two types of wheat, and they were mean, variance and 
standard deviation successively. Seen from the Table 1, the mean of UWL signal of moldy wheat was larger than 
that of healthy wheat, which illustrated that the Aspergillus fungi carried by moldy wheat kernels had stronger 
metabolism and respiration functions. Simultaneously, the stronger UWL signal of moldy wheat provided a 
convincing explanation, which coincided with a physiological regularity that the higher grade of an organism is, 
the stronger UWL signal it radiates.

To effectively classify the healthy and the moldy wheat based on UWL signals, we take advantage of the 
approximate entropy (ApEn) as one of the classification features. Due to the strong relativity between variance 
and standard deviation, we finally choose the mean, standard deviation and ApEn value as the main classification 
features, which is shown in Fig. 4. Subsequently, a detailed introduction about multiscale approximate entropy 
(MApEn) algorithm can be seen in the following part.

Dark chamber

HV supply and pulse counter

PMT housing

Figure 2.  Ultra weak luminescence measurement instrument used in the experiment.
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Figure 3.  Average UWL data of the healthy and the moldy wheat subsamples.

Table 1.  Three statistic parameters of UWL data of two types of wheat subsamples.

Healthy wheat kernels in 2019 Moldy wheat kernels in 2019

Mean 38.92 82.24

Variance 636.61 1033.83

Standard deviation 25.23 32.15
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Figure 4.  ApEn value of the healthy and the moldy wheat under different statistical parameters.
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Multiscale approximate entropy. ApEn algorithm was proposed by the scholar Pincus for the sake of 
measuring the characteristics of random  series18. The more complex an initial time series is, the larger its cor-
responding ApEn value shows. The ApEn algorithm is suitable to analyze the UWL signals of wheat because of 
its robust performance. Two striking advantages of the ApEn algorithm are its lower dependency on the length 
of the initial time series and strong resistance to the noise existed in the original data. Since the computation 
process of ApEn was quite complex, Bo et al.19 proposed a type of fast ApEn algorithm that shortened the com-
puting time by nearly 5 times and the main steps were as follows:

First step: the distance matrix D(N × N) of the initial N points time sequence is computed, and the element 
in the ith row and jth column is denoted as dij . The rules of calculating dij are based on the following formula:

Second step: assuming the dimension m = 2 , we can easily obtain the values of C2
i (r) and C3

i (r) using Eqs. (2) 
and (3).

Third step: calculate the logarithm of Cm
i (r) , and then obtain its mean using Eq. (4). Here, the mean is labeled 

as Hm(r).

By increasing the dimension from m to m+ 1 and repeating  steps 2–4, and then Hm+1(r) can be obtained.
Fourth step: since N is finite, the ApEn can be described as:

In order to improve the robust performance of ApEn algorithm, the multiscale approximate entropy (MApEn) 
algorithm has been introduced in this paper. Interestingly, compared with only one feature obtained by ApEn 
algorithm, MApEn algorithm are able to offer a cluster of classification features to train the detection model. The 
detailed computation steps of the MApEn algorithm are as  follows20:

(1) Assume the initial time series is X = {x(i), i = 1, 2, . . . ,N} , and its length is N.
(2) Construct a coarse time series {z(τ )} , where τ represents the scale factor, and then the scaling time series 

can be expressed as:

Equation (6) is the same as the original sequence provided that the scale factor τ= 1 . Furthermore, each 
coarse-graining series can be regarded as evenly dividing the original series, and the length of each segment is τ.

By combining multiscales with approximate entropy, MApEn algorithm is able to characterize the nonlinear 
information of series more effectively. Figure 5 shows the detailed flowchart of the MApEn algorithm.

The performance of MApEn algorithm. Parameter selection. There exist four parameters in MApEn 
algorithm: the length of the initial UWL signal N , the dimension of the pattern vector m , the similar tolerance 
threshold value r , and the time scale factor τ . To the ApEn algorithm, selecting the right parameters is of extreme 
importance.

After several tests, we finally selected N = 500, m = 2, r = 0.12× SDx as the experimental parameters, 
where SDx represented the standard deviation of initial time series. The ApEn values of the UWL signals of the 
two types of wheat at different tolerance thresholds were simulated by Matlab 2018a, and the results were shown 
in Fig. 6. As shown in Fig. 6, the ApEn values of the two types of wheat varied depending on different tolerance 
thresholds r . Especially, while r value was from 0.1× SDx to 0.15× SDx , the differences of ApEn values between 
the healthy and the moldy wheat were obvious. In addition, another conclusion from the experimental results 
is that the lager ApEn value of the moldy wheat reflects that the activities of Aspergillus fungi are more irregular 
and intensive, and thus, the ApEn value can be used as an effective index to feature them.

(1)dij =

{

1 |x(i)− x(j)| < r
0 |x(i)− x(j)| ≥ r

i = 1 ∼ N; j = 1 ∼ N; i �= j

(2)C2
i (r) =

N−1
∑

j=1

dij ∩ d(i+1)(j+1)

(3)C3
i (r) =

N−2
∑

j=1

dij ∩ d(i+1)(j+1) ∩ d(i+2)(j+2)

(4)Hm(r) =
1

N −m+ 1

N−m+1
∑

i=1

lnCm
i (r)

(5)ApEn(m, r,N) = Hm(r)−H(m+1)(r)

(6)zτ (j) =
1

τ

jτ
∑

i=(j−1)τ+1

x(i) 1 ≤ j ≤ N/τ
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Discussions
Performance analysis of the MApEn algorithm. The ApEn algorithm only offers one classification 
feature; therefore, in order to overcome this shortcoming and obtain more classification features, the MApEn 
algorithm is introduced in this paper. To the ApEn algorithm, the parameters N = 500, m = 2, r = 0.12× STD 
are finally chosen and simulated through experiments. Besides three parameters mentioned above, the scale 
factor τ is a decisive factor to the performance of the MApEn algorithm. Due to the limited length of the initial 
time series, τ is usually taken a value from 2 to 10. The MApEn values of UWL signals of two types of wheat with 
different scale factors are shown in Fig. 7.

Shown by Fig. 7, the following conclusions can be obtained:

(1) Compared with ApEn values (when τ = 1 ), the MApEn values (when τ ≥ 2 ) of UWL signals of the two 
types of wheat sample obviously enlarge their differences;

Figure 5.  Flowchart of multiscale approximate entropy algorithm.
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Figure 6.  ApEn values of UWL signals of the healthy and the moldy wheat with different tolerance thresholds.
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(2) MApEn algorithm can provide several classification features at the same time that can be used to feature 
the original UWL signal rather than only one feature offered by ApEn algorithm.

Bi‑classification and performance assessment by SVM. To solve the classification problem between 
healthy and moldy wheat, SVM classifier has been introduced in this paper. SVM, proposed by Cortes and 
 Vapnik21, is a type of linear classifier based on classification boundaries. Computationally, the striking points of 
SVM classifier are how to choose kernel functions, and the kernel functions map the nonlinear transformation 
of the input feature space from a lower-dimensional space into a higher-dimensional space. In other words, this 
problem can be considered as an optimization problem in which we seek to help the kernel function to find out 
the optimal plane, by which we can carry out linear classification through a nonlinear  transformation22. Even if 
the training dataset are not large enough, SVM classifier can achieve a good classification  performance23. Up to 
now, the SVM has become one of most widely used classifiers, which has been applied in various classification 
research  fields24,25.

To ApEn algorithm, we extracted two statistics parameters (mean and standard deviation) in Table 1 and 
ApEn value as the feature vector to represent the UWL signal of each wheat subsample, among which 120 groups 
were selected as the training group and the other 120 groups were used as the testing group. To MApEn algo-
rithm, we extracted the same statistics parameters but using MApEn values instead of ApEn value to construct 
the feature vector. Subsequently, we resorted to SVM classifier to establish the finial classification model, and the 
main parameters of the SVM were set as follows. The type of kernel function was a radial basis function, and 
the error value that terminated the iteration was 0.001. The receiver operating characteristic (ROC) curve was 
shown in Fig. 8, where the blue and the red curve represented the classification performance of the ApEn and 
the MApEn algorithm respectively.

Based on the ROC curves in Fig. 8, Tables 2 and 3 gave four indices to assess the classification performance, 
where AUC, S.E., C.I., and PA represented the area under the curve, the standard error of the area, the confidence 
interval and the performance of the classifier separately. Through comparing the indices in Table 2 with those in 
Table 3, we observed that the classification accuracy rate based on MApEn algorithm was improved obviously 
and the standard error was decreased by introducing the MApEn algorithm. The experimental results validated 
that the MApEn values were able to act as a cluster of main classification features to classify the healthy wheat 
and the moldy wheat subsamples infected by 50% AFB1.

Conclusions
UWL signals of wheat kernels under different conditions can reflect their inner physiological and pathological 
changes; therefore, it offers us a new thought to assess their quality states based on the UWL signals.

MApEn algorithm was introduced to feature the UWL signals in this paper. Subsequently, we established the 
classification model based on the SVM classifier. The experimental results showed that the MApEn algorithm 
was efficient and practical in featuring UWL signals. One main deficiency was that we only established a bi-
classification model in this paper due to the limited training dataset. Furthermore, since detecting moldy wheat 
kernels is a continuous process during the storage period, establishing a multi-classification model to classify 
the degree of moldy wheat is of extreme significance, which requires further research to improve the detection 
performance of the established model.

 As UWL signal of wheat subsample is so sensitive to environmental factors, further studies and experi-
ments seeking to minimize these influences and improving the efficiency of measuring UWL signal need to 
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Figure 7.  MApEn values of UWL signals of two types of wheat with different scale factors.
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be conducted. Moreover, extensive research beyond the scope of this paper needs to be carried out to set up a 
detection model based on the delayed luminescence signals of wheat subsamples.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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