
PNAS Nexus, 2022, 1, 1–14

https://doi.org/10.1093/pnasnexus/pgac260
Advance access publication date: 16 November 2022

Research Report

The effect of competition between health opinions on
epidemic dynamics

Alexandra Teslya a,*, Hendrik Nunner b,c, Vincent Buskens b,c and Mirjam E. Kretzschmar a,c

aJulius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CX Utrecht, The
Netherlands
bDepartment of Sociology/ICS, Utrecht University, Padualaan 14, 3584 CH Utrecht, The Netherlands
cCentre for Complex System Studies (CCSS), Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
∗To whom correspondence should be addressed: Email: a.i.teslya@umcutrecht.nl
Edited By: Sergey Gavrilets

Abstract

Past major epidemic events showed that when an infectious disease is perceived to cause severe health outcomes, individuals modify
health behavior affecting epidemic dynamics. To investigate the effect of this feedback relationship on epidemic dynamics, we devel-
oped a compartmental model that couples a disease spread framework with competition of two mutually exclusive health opinions
(health-positive and health-neutral) associated with different health behaviors. The model is based on the assumption that individ-
uals switch health opinions as a result of exposure to opinions of others through interpersonal communications. To model opinion
switch rates, we considered a family of functions and identified the ones that allow health opinions to coexist. Finally, the model
includes assortative mixing by opinions. In the disease-free population, either the opinions cannot coexist and one of them is always
dominating (mono-opinion equilibrium) or there is at least one stable coexistence of opinions equilibrium. In the latter case, there
is multistability between the coexistence equilibrium and the two mono-opinion equilibria. When two opinions coexist, it depends
on their distribution whether the infection can invade. If presence of the infection leads to increased switching to a health-positive
opinion, the epidemic burden becomes smaller than indicated by the basic reproduction number. Additionally, a feedback between
epidemic dynamics and health opinion dynamics may result in (sustained) oscillatory dynamics and a switch to a different stable
opinion distribution. Our model captures feedback between spread of awareness through social interactions and infection dynamics
and can serve as a basis for more elaborate individual-based models.
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Significance Statement:

Epidemics and opinions about protective behavior spread via social contacts and influence each other. Individuals change health-
related behavior depending on their opinion of suitable practices during an outbreak. To understand the interplay of opinions and
epidemic dynamics, we model the interaction between two opposing opinions and an evolving epidemic. Increasing incidence of
infection leads to higher popularity of the health-protective opinion, reducing infection transmission. The tendency of persons with
the same opinion to connect impacts epidemic and opinion spread. We identified thresholds for shifts from coexisting opinions
to a health-protective opinion taking over the population and the infection going extinct. To reach this, moving through waves of
increasing infection is necessary. These dynamics are important for designing public health interventions.

Introduction
The notion that the relationship between epidemic dynamics and
reactive collective behavior plays an important role in the course
of an outbreak of an infectious disease has been recognized in
theoretical epidemiology (1–5). This notion is supported by data
collected during various outbreaks of infectious diseases, dating
back as far as the Spanish flu pandemic of 1918 (1, 3, 5) to SARS
pandemic (6, 7) and swine flu pandemic (8), and ending with the
ongoing SARS-CoV2 pandemic (9). In total, two types of societal
reactions to an infectious disease outbreak can be distinguished,
namely, centralized top-down and individual-based bottom-up re-
actions. First, governing authorities may impose public health in-

terventions aiming at protecting the most vulnerable groups, and
mitigating the spread of infection. Typical measures are school
closures, limitation of the number of persons in indoor spaces, and
travel restrictions. Second, individuals may change their behav-
ior by self-imposing protective measures such as hygiene mea-
sures or mask wearing in an effort to defend themselves from
infection and its consequences (10). It has been observed that
practicing of self-protective measures increased during outbreaks
of infectious diseases and declined when the disease was elimi-
nated (6–8). Thus, there is an indication for a feedback relation-
ship between epidemic dynamics and uptake of self-protective
measures.
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It was not until the 2000s that the importance of this type
of reaction for epidemic dynamics was recognized and investi-
gated using mathematical modeling (2, 4, 11). Accounting for the
behavior–infection feedback relationships in epidemic models has
helped to explain patterns observed in real world data. Multiple
epidemic peaks and relatively small outbreaks, where much larger
ones were expected, were convincingly shown to be the result of
changes in individual human behavior during an epidemic (4, 5).

Health behaviors are a subject to (health) opinion held. The dy-
namics of circulation of ideas and beliefs in a population is stud-
ied in the field known as sociophysics. Even the simplest socio-
physics models can have rich dynamics where a number of dis-
tinct opinion distributions is possible with a potential for bista-
bility between them (12–14). To understand the effect of the feed-
back loop between disease spread and health opinion circulation
on epidemic dynamics, it is important to understand the role of
assumptions about the propagation of opinions on their distribu-
tion in the population. In this work, we consider the effect of in-
terpersonal communications on the dynamics of health opinion
competition using different functional representations for opin-
ion switch rates. We show that depending on the shape of the
functional response qualitatively different opinion distributions
appear, which in turn affects outlook of an epidemic.

In the context of health-related opinions and the associated
self-imposed preventive behaviors, pro- and antivaccination sen-
timents garnered a lot of attention (11, 15–18), while other in-
vestigations focused on nonpharmaceutical interventions such as
mask wearing and social distancing (2, 4, 9, 19). While, ideally, vac-
cination is a nearly instantaneous event that protects an individ-
ual for a long time, the latter measures only confer protection
while they are being practiced. For emerging infectious diseases
for which pharmaceutical interventions are not available, as was
the case with COVID-19 in 2020, the extent of the outbreak de-
pends on the uptake rate of nonpharmaceutical measures by the
population (20).

Health opinions can fall on a spectrum ranging from health-
promoting, adaptors of which practice self-protective measures
with the aim of protecting their health, to health-indifferent,
whereupon individuals having such opinions do not modify their
behavior. The health belief model (10) posits that adopting health-
promoting measures is motivated by several constructs: (i) per-
ceived susceptibility (risk of contracting a specific health prob-
lem), (ii) perceived severity (estimation of the consequences of
this problem), (iii) perceived barriers (impediments for adopting
a relevant health behavior), (iv) perceived benefits (assessment of
effectiveness in avoiding the health problem if the health behav-
ior is adopted), and (v) cues to action (events that bring on adop-
tion of a specific behavior). If an individual believes the disease
to be a threat, they may modify their health behavior in a num-
ber of ways that affect their susceptibility, the probability of en-
countering an infectious individual, and duration of infection. In
contrast to opinions, which support adoption of health-protective
behaviors, individuals may also be indifferent to health-related
risks. Indifferent individuals may make little to no effort to pro-
tect their health or limit the disease spread. For example, during
the AH1N1/09 (“swine flu”) outbreak in 2009, people who were un-
certain about the disease and felt that the extent and danger of
the outbreak were exaggerated were less likely to change their be-
havior (21).

Individuals may form and change their opinions when being
exposed to communications by a.o. health officials, newscasts, so-
cial media, and interpersonal interactions. Ideally, communica-
tions by health officials provide accurate information about an
epidemic outbreak and possible self-protective measures that in-

dividuals can adopt. On the other hand, social media and in-
terpersonal communications can be carriers of misinformation
and opinions that may downplay or exaggerate the risks of ac-
quiring infection. Individuals may feel a pressure to conform
to their social environment and may adopt an opinion even if
it contradicts available evidence or information distributed by
health authorities (13). Moreover, by means of digital social me-
dia, interpersonal communications can spread more widely and
rapidly than through the physical contact network, such that the
propagation may be stimulated by ongoing communication in
media (22).

Here, we focus on a health opinion switching process that arises
due to interpersonal communication. To investigate the effect of
interpersonal communication on the competition of health opin-
ions in the population, we developed a deterministic compart-
mental model that stratifies the population by opinions. To im-
prove the analytic tractability of the mathematical model, we re-
strict ourselves to the case of two mutually exclusive opinions,
namely health-positive and health-neutral. While health opinions
in reality can range on a continuous scale between health aware-
ness and indifference (23), our choice can also be justified by the
argument that health-related behavior is either practiced or not.
So, we assume that holding the health-positive opinion invariably
leads to adoption of health-protective measures in the face of an
outbreak (e.g., mask wearing, increased hands washing, and keep-
ing a distance of 1.5 m from others), while individuals holding
the health-neutral opinion will not take these measures. We note
that there are studies that considered continuous health opin-
ions, for example (17) where authors used an individual-based
model, which captured probability of individuals vaccinating pro-
portional to their vaccinating opinion.

In some of earlier modeling work, sustained circulation of two
mutually exclusive health opinions required the presence of an
outbreak (2, 4, 24, 25). However, frequently, the opinions persist
without the disease being present. In this case, the opinion switch-
ing rates depend on the number/proportion of the carriers of these
opinions. A number of studies considered models, which allowed
sustained circulation of opposing opinions without the disease
present (26–28). The functional definition of the opinion switch-
ing rate is an important consideration in modeling opinion dy-
namics. Often it is captured by a mass-action term (2, 4, 14, 19, 26,
27) that may not necessarily reflect the reality. We address both
of these considerations. In our model, individuals switch between
opinions as a result of communication with individuals of the op-
posing opinion, with a switch rate that is a positive nondecreas-
ing function of the proportion of individuals holding the opposing
opinion. Here, we consider a broad family of functions to describe
the rate of switching, which includes linear, saturating, and sig-
moidal functions. The model we consider is conceptually close to
what is known as the generalized voter model on networks (29).
In these models, each individual has one of two mutually exclu-
sive opinions, which they can dynamically switch depending on
the opinion of neighbors in the network. We couple opinion dy-
namics with an epidemic model by allowing the rate of switch-
ing to the health-positive opinion to depend on the disease preva-
lence. With respiratory diseases such as influenza or COVID-19 in
mind, we consider a population that mixes assortatively by opin-
ions. In the models without opinion dynamics, assortativity was
shown to lead to epidemic growth (30). However, if assortativity
also affects opinion dynamics, its effect on infection transmis-
sion is less clear. While models exist that consider effect of (1)
possibility of coexistence of opinions without the disease present
(26–28), (2) dynamic coupling between infection transmission and
opinion dynamics (2, 4, 24, 25), and (3) assortative mixing by opin-
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ion (27) on epidemic dynamics separately, here we investigate the
effect of their combination on epidemic dynamics. Understanding
the combined effect of these three dynamical features can assist
in developing information intervention in the public health do-
main.

Using bifurcation and stability analysis, we investigate the
opinion distribution landscape in the absence of disease. The dy-
namics in a disease-free state both highlight the key considera-
tions for the design of information intervention prior to the out-
break, as well as set the stage for epidemic dynamics in case an
infectious disease enters the population. We analyze for which
distributions of opinions in the population an outbreak of an in-
fectious disease can occur, i.e., how the distribution of opinions
impacts the basic reproduction number of the infection. We then
explore the coupled opinion–epidemic dynamics using numeri-
cal bifurcation analysis. Finally, we describe parameter regions,
for which damped/sustained oscillatory dynamics may appear,
and give conditions under which a disease can be eradicated even
when the basic reproduction number is above 1.

Results
A model for competing opinions
In the context of an infectious disease, we consider a scenario
where two relevant mutually exclusive health opinions, + and
−, circulate in a population. We denote with + a health-positive
opinion, whereupon an individual holding it adapts measures that
reduce the probability of contracting the disease, and − denotes
a health-neutral opinion such that its holder does not modify
their behavior and, therefore, has higher susceptibility to infec-
tion then a holder of the health-positive opinion. We assume that
the protective behavior adapted by individuals holding health-
positive opinion does not diminish their transmission potential
as compared to individuals holding health-neutral opinion. Thus,
the population is split into individuals who hold opinion +, N+ and
those who hold opinion −, N−. The proportion of population that
holds opinion + is denoted by n+, while the proportion of popula-
tion who holds opinion − is n−.

We assume that individuals regardless of their opinion have on
average c social contacts per week. We use the term “social con-
tacts” to denote interactions that may lead to switching of opin-
ions. Additionally, we consider the possibility of assortative pref-
erence to mix with individuals of the same opinion. The degree
of assortative mixing is denoted by ω, 0 ≤ ω ≤ 1, with ω equal to 0
describing the situation where individuals interact without regard
about the opinion held (fully proportionate mixing) and ω equal to
1 denotes fully assortative mixing where individuals only mix with
individuals which share their opinion. For 0 ≤ ω ≤ 1, ω indicates
the proportion of contacts that occur only with individuals shar-
ing the same opinion, while 1 − ω fraction of contacts occur with
holders of each opinion, proportionate to the proportion of respec-
tive population. For simplicity, we assume that physical contacts
relevant to infection and social contact (whereupon individuals
exchange information) are completely independent, i.e., change
in one does not cause change in the other. This is a limiting case
of a more general situation whereupon change in physical con-
tacts affects social contacts to a certain degree. On the other hand,
we assume that assortative mixing affects both types of contacts
in the same degree, therefore, we apply the same constant, ω, to
model assortativity in both processes.

Individuals Nl̄ , l̄ ∈ {+,−} may change their opinion upon con-
tact with individuals with the opposing opinion, Nl, l ∈ { +, −},
l �= l̄. The rate of switching is described by a proportion-dependent

function fl(nl), multiplied by social contact rate c, and the likeli-
hood of mixing with individuals regardless of their opinion, 1 − ω.
We assume the switch rate functions fl(nl) to be positive, continu-
ous and increasing, and define

fl (nl ) = plnk
l

1 + θlnk
l

, l ∈ {+,−}, (1)

where pl, 0 ≤ pl ≤ 1 is the per contact probability of switching from
opinion l̄ to opinion l, l ∈ { +, −}. Parameters θl̄ , θ l ≥ 0, and k, k
≥ 1 specify the shape of the response function. Observe that the
switch rate to an opinion is zero, if there are no individuals with
that opinion in the population.

Depending on parameters k and θ , three types of response func-
tions can be distinguished (Fig. 1A): (1) for k = 1 and θ+ = θ− = 0
the switch rate function is linear; (2) for k = 1 and θ+,θ− > 0 the
switch rate function is saturating for large densities; and (3) for k
> 1 and θ+,θ− > 0 the switch rate function is sigmoidal. In ecology,
very similar functions have been derived from first principles to
describe the functional response of predator population density
to the density of available prey, and are known as Holling type I,
II, and III functional response (31).

In this work, we investigate long-term opinion dynamics for
each one of these response functions. However, note that, to de-
scribe the diffusion of innovations or opinions in a population, sig-
moidal functions have been used (32). These functions capture the
trend whereupon the spread of an opinion l, l ∈ { +, −} is very slow
as long as only a small proportion of the population holds this
opinion, and slows down again when the proportion of the popu-
lation Nl is large, with fast growth in between. The saturation for
high proportion of individuals holding opinion l, l ∈ { +, −} mimics
the saturation of information effect, whereupon the information
loses its impact once it has been received several times. In our
model, both opinions spread according to a sigmoidal response
function, possibly with different shapes. This leads to a system
in which opinions compete and may either coexist or drive each
other to extinction.

We assume that opinion dynamics are fast compared to the
natural demographic processes, and therefore, do not include de-
mographic processes in the model.

A model coupling opinion dynamics and
epidemic dynamics
We consider a disease that follows a Susceptible–Infected–
Recovered (SIR) or a Susceptible–Infected–Susceptible (SIS) model.
To investigate the effect of feedback between disease dynamics
and opinion dynamics on the course of an epidemic, we couple
the above described framework of opinion competition with a SIR
or SIS infection transmission model (Fig. 1B). For both types of dis-
ease dynamics, individuals become infected and infectious at rate
λ, which depends on the prevalence of infection, i. Infectious in-
dividuals recover with rate γ , either becoming susceptible again
(SIS model) or becoming immune (SIR model).

Each individual has an opinion and an infection status. We
denote the proportion of total population who is susceptible
and hold opinion + with s+, the proportion of total popula-
tion who is infectious and hold the same opinion with i+, and
the proportion of the total population who is recovered with
r+. Similarly, s−, i−, and r− denote the proportions of the to-
tal population with opinion − in the respective epidemiological
states.

Individuals N+ have a lower probability of acquiring infection
than individuals N−, i.e., β+ ≤ β−. We assume that the measures
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Fig. 1. Coupling of opinion dynamics and infection transmission
dynamics. (A) Switch rate function to opinion + depending on proportion
n+. For θ = 0 and k = 1 the switch rate is linear (blue); for θ > 0 and k = 1
the switch rate is saturating (red); and for θ > 0 and k > 1 the switch rate
is sigmoid (yellow and violet). (B) Flowchart of coupled opinion and
infection transmission model for two types of infectious diseases: SIS
model (G = 1) and SIR model (G = 0); black dashed arrows denote
opinion transitions, red solid arrows denote epidemiological transitions.
(C) Per contact probability of switching to opinion + for different values
of m as a function of the proportion of infected individuals, i.

taken by N+ reduce their susceptibility only, and that infectiv-
ity and the recovery rate are the same for the two types of in-
dividuals. Note that the parameters β+, β− implicitly include the
transmission-relevant contact rate, which may differ from the so-
cial contact rate c. We consider the case where assortativity also
applies to infection-relevant contacts, such that in terms of phys-
ical contacts, the individuals can prefer to mix with individuals
who have the same health opinion. Finally, we assume frequency-
dependent infection transmission. Therefore, the rates with which
individuals s+ and s− acquire infection are specified by the follow-

Table 1. Summary of model parameters described by system (6)
and ranges of values used in numerical examples.

Name Description (unit) Value∗

c Social contact rate (individuals/week) 10 [5,105]
ω Degree of assortativity 0 [0,0.95]
p+, p+(0) Probability of switching to opinion + per

contact when no infectious cases exist
0.4 [0.1,1.0]

p+(1) Probability of switching to opinion + per
contact when the whole population is
infectious

1 [0.6,1.0]

p− Probability of switching to opinion − per
contact

0.4 [0.1,0.4]

θ+ Saturation constant in switch rate function
f+

5.0

θ− Saturation constant in switch rate function
f−

5.0

k Switch rate function shape parameter 2.7 [0.0,2.7]
m Constant that controls the growth rate of

the switch probability p+ as the proportion
of infected individuals increases

25, 50, 75†

β+ Infection rate of susceptible individuals
holding opinion + (1/week)

0.8

β− Infection rate of susceptible individuals
holding opinion − (1/week)

2.0 (1.5)§

γ Recovery rate of infectious individuals
(1/week)

1.0

∗Outside the square brackets: default values, intervals within the brackets sam-
pled in bifurcation and sensitivity analyses.
† Used in sensitivity analysis with respect to this parameter.
§ β− = 2 is the default value, except for analysis presented on Fig. 7, where we
used β− =1.5 to obtain parameter space where the dynamics of interest appear.

ing equations:

λ+(t) = β+

(
ω

i+(t)
n+(t)

+ (1 − ω)(i+(t) + i−(t))
)

,

λ−(t) = β−

(
ω

i−(t)
n−(t)

+ (1 − ω)(i+(t) + i−(t))
)

. (2)

The infection status of individuals does not modify the rate
with which they switch their opinion. However, infection spread in
the population can affect opinion dynamics. Here, we consider the
case of individuals obtaining information about disease spread
that is available publicly via media and health authorities. In our
model, with increasing prevalence of infection i = i+ + i−, opin-
ion + gains in popularity, which is represented by an increase in
the probability of switch to opinion + per contact, p+. We assume
that

p+(i) = p+(0) + (p+(1) − p+(0))
(1 + m)i
1 + mi

, (3)

where p+(0) is the switching rate per contact in the disease-free
state, and p+(1) is the switching rate when the entire population
is infected; m is a constant that determines how fast p+ increases
with increasing prevalence (see Fig. 1C). Thus, as prevalence of
infection increases, so does the switch rate to opinion + (Eq. 1).
Probability of switching to opinion − per contact, p−, remains fixed
throughout the outbreak.

The dynamics are described by a flow diagram shown in Fig. 1(B)
and are captured by system of ordinary differential Eq. (6) in the
“Methods” section.

Model parameters are summarized in Table 1. In numerical
analysis, we use the indicated parameter values, unless stated
otherwise. We give the justification for the selection of the val-
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ues later in the text. Most times when parameter values deviate
from the ones stated in the table, the results of this variation are
presented and compared on the same figure.

To calculate the basic reproduction number R0 for this model,
we used the Next-Generation Matrix method described in (33).
Then R0 is given by the spectral radius of matrix FV−1 with

F =
⎛
⎝n+(0)β+

(
ω

n+ (0) + (1 − ω)
)

n+(0)β+(1 − ω)

n−(0)β−(1 − ω) n−(0)β−
(

ω
n− (0) + (1 − ω)

)
⎞
⎠,

V =
(

γ+ + c(1 − ω) f−(n−(0)) −c(1 − ω) f+(n+(0))
−c(1 − ω) f−(n−(0)) γ− + c(1 − ω) f+(n+(0))

)
. (4)

Here, (n+(0), n−(0)) are given by the opinion distribution at the start
of the outbreak and depend on k, θ+, θ−, p+/p−.

For a population, in which only one of the two opinions is
present (“mono-opinion” population), the epidemic dynamics are
reduced to the basic SIS/SIR dynamics with a basic reproduction
number that is determined by the parameters of the dominating
opinion:

Rl
0 = βl

γl
, l ∈ {+,−}. (5)

Dynamics of competing opinions
To understand the effect of the coupling between the disease
spread and opinion competition on infection transmission, we
first need to consider the dynamics of opinions in the disease-free
population.

The model indicates that when either one of the two opinions
dominates the population (“mono-opinion” population), then this
remains unchanged until individuals of the opposing opinion en-
ter the population from outside. As we are mainly interested in sit-
uations where two opinions compete in the population, we inves-
tigated for which parameter regions a stable coexistence of two
opinions is possible. This coexistence depends on the shape of the
switch rate functions, fl, l ∈ { +, −}, but not on the social contact
rate c or the assortativity parameter ω, as these are assumed to
be the same for both opinions (Supplementary information, Sup-
porting information text).

Linear switch rate function dynamics
For this switch rate functions (Eq. (1), θ l = 0, l ∈ { +, −}, k = 1), the
stable coexistence of opinions is not possible (Figure S1). Due to
impossibility of stable coexistence between opinions in a disease-
free population, we do not consider the dynamics of the model
given the linear switch rate. Full treatment of opinion dynamics
for this shape of opinion switch can be found in the Supplemen-
tary information, section Dynamics of opinion competition with a lin-
ear switch function, Figure S1.

If the switch rate functions are nonlinear (Eq. (1), θ l > 0, l ∈ { +,
−}, k ≥ 1) the opinions can coexist in a steady state (Fig. 2).

Saturating nonsigmoidal switch rate function dynamics
For these switch rate functions (θ l > 0, l ∈ { +, −}, k = 1), either sta-
ble coexistence is possible, or one of the mono-opinion solutions
is stable. It depends on the two switch rate functions, whether
coexistence is possible or not (Fig. 2A, D, and G). Stable coexis-
tence of opinions is possible in the case when the switching func-
tions exhibit saturation at high proportion of an opinion. Subse-
quently, the growth of the switch rate function for the dominant
opinion slows down when the majority of the population is fol-

lowing that opinion. The stable coexistence state is attracting for
all initial situations, in which both opinions are present. The dis-
tribution of opinions at this steady state depends entirely on the
ratio p+/p− and not on p+ and p− separately (Supplementary infor-
mation, Supporting information text). The larger the ratio p+/p−,
the higher is the equilibrium proportion of N+ individuals. If per-
manent coexistence of opinions is impossible, the opinion with
higher switch rate per contact (pl, l ∈ { +, −}) will take over the
population. The interval of p+/p−, in which opinions can coexist,
depends on the saturation constants of the switch rate functions,
θ l, l ∈ { +, −}. The higher these are (i.e., the faster saturation is
achieved) the wider is the p+/p− interval, in which opinions can co-
exist. Intuitively, the faster the switch rate functions become satu-
rated, the larger differences between the probabilities of switching
per contact can be while still allowing stable coexistence of opin-
ions. For mathematical derivations and further elaborations, see
Supplementary information, Supporting information text.

Sigmoidal switch rate function dynamics
If the switch rate functions are sigmoidal (Eq. (1), θ l > 0, l ∈ { +, −},
k > 0), at least one stable coexistence state of opinions is possible
for some parameter regions (Fig. 2B and E). Additionally, mono-
opinion population states are always locally attracting; i.e., if, for
example, the population starts with a sufficiently large majority
believing opinion +, then after some time the entire population
will hold this opinion.

If there is only a single unstable coexistence equilibrium (Fig. 2B
and C), the population always ends up as a mono-opinion popula-
tion, but it depends on the initial distribution of opinions to which
opinion it will converge. The proportions of n+ and n− at this un-
stable steady state depend on the ratio p+/p−. The higher this ra-
tio, the lower is n+. This unstable equilibrium separates the state
space into the basins of attraction of the +-mono-opinion and −-
mono-opinion populations. This implies that the population with
the higher associated switch probability per contact pl, l ∈ { +, −}
requires a smaller proportion of individuals of that opinion to in-
vade. This is illustrated in Fig. 2(G), where p+ is 1.5 times higher
than p−, hence it requires much fewer individuals of opinion + to
take over the population.

If, on the other hand, several steady states are possible, then
their number is odd and at least one of them is locally attrac-
tive. For the interpretation of the model, only locally stable steady
states are of interest as states in which two opinions can coex-
ist. Unstable steady states are relevant as boundaries between
basins of attraction. In our numerical experiments, we observed
at most three different steady states, one of them a stable coexis-
tence state (see Fig. 2B). Our analysis and numerical experiments
indicate that existence of a stable coexistence state of opinions
depends on values of p+/p−, θ+, θ−, and k (Supplementary infor-
mation, Supporting information text).

If there are three steady states, two of them are repelling and
one is attracting, such that the proportion n+ for the attracting
state is between the proportions n+ for the repelling states. There-
fore, the repelling states mark the boundaries of the basins of at-
traction for the attracting states. From the bifurcation diagram
(Fig. 2B), we observe that there are two points where the dynamics
of the system change as p+/p− increases from zero (left and right
edges of the green region on Fig. 2B). These are saddle node bifur-
cation points, which mark the appearance and disappearance of
a pair of steady states. If p+/p− is to the left of the green region,
then in order to take over the population, nearly the whole pop-
ulation should hold opinion +. Stable coexistence of opinions is
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Fig. 2. Opinion competition dynamics for saturating and sigmoidal switch rate functions. The upper row shows bifurcation diagrams of n+ as a
function of p+/p−. For (A) a saturating switch rate function; (B) and (C) sigmoidal switch rate functions. Dashed red lines: unstable equilibria, solid blue
lines: stable equilibria. Orange area: basin of attraction for the equilibrium with opinion—dominating; blue area: basin of attraction for the
equilibrium where opinion + dominates; green area: basin of attraction of a stable coexistence equilibrium. Dotted magenta lines denote parameter
settings used to generate the time series on panels (D)–(I), in respective columns. (D)–(I) Temporal dynamics of n+ for different switch rate functions
and ratios p+/p−. In all panels θ+ = θ− = 5.

impossible. As p+/p− increases and passes the left edge of the
green region, this proportion n+ needed for opinion + to take over
the population declines (Fig. 2B, upper red curve in the green re-
gion). More importantly, stable coexistence with opinion—is now
possible and requires a much smaller initial proportion of n+ for
persistence of +. (Fig. 2B, lower red curve in the green region). As
p+/p− increases past the right edge of the green region, the “inva-
sion” proportion threshold for opinion + further declines. More-
over, as stable coexistence is not possible anymore, it becomes the
threshold for complete taking over of the population by opinion
+.

Epidemic dynamics in a population with
competing opinions
For the purposes of analysis of the feedback between opinion com-
petition and infection dynamics, we are mainly interested in the
situation where health-positive and health-neutral opinions can
coexist in a steady state and the mono-opinion population steady
states are locally stable. We, therefore, focus our attention on sig-
moidal opinion switch rate functions and on the parameter region
where stable coexistence of opinions is possible. We assume that

an infectious disease invades a population, in which the two opin-
ions coexist at the stable steady state.

The opinion switch rate-related parameters are fixed at k = 1.6,
θ+ = θ− = 5. Thus, the switch rates for both opinions are sigmoidal
functions. We fix p− = 0.4. For most of the simulations p+ and
p+(0) are fixed to 0.4, thus p+/p− = 1 and the stable coexistence
of opinion equilibrium has 50/50 distribution of health-positive
and health-neutral individuals. Probability of switching to opin-
ion + per contact when the whole population is infectious p+(1) is
bounded by the largest possible value it can have, 1. Assortativity
degree ω is varied on the largest biologically meaningful interval
[0,0.95] to recover full range of qualitative dynamics.

Social contact rate c was selected for some of the simulations
to be equal to 10 individuals per week. We assumed this baseline
value since the social contact rate describes interactions that can
lead to opinion switching and we assume that such exchanges are
much rarer than standardly reported number of close-proximity
contacts per week (98 contacts for the Netherlands per POLYMOD
study (34)). We explored sensitivity of the outcomes to this pa-
rameter by considering a larger ranges of 5 to 100 individuals per
week.
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Fig. 3. Impact of mixing patterns on basic reproduction number R0. (A), (B), and (C) show contour maps of R0 as a function of the social contact rate c
and the assortativity ω. (A) For p+/p− = 0.8 the initial distribution of opinions is (s+(0), s−(0)) = (0.35, 0.65). (B) For p+/p− = 1 we have (s+(0), s−(0)) = (0.5,
0.5). (C) For p+/p− = 1.25 we have (s+(0), s−(0)) = (0.65, 0.35). The infection rate of susceptible individuals holding opinion—is fixed β− = 2, the value
used to investigate the dynamics for the SIR system. For the same set of figures with β− = 1.5, the value used to investigate the dynamics of the SIS
model, see Figure S2.

We consider the dynamics of a respiratory nonfatal infectious
disease whose transmission dynamics and stages of infection
course are similar to flu. We assume that the infectious period
lasts on average a week, thus we fixed γ + = γ − = 1 per week.
Furthermore, we assume that in a population where opinion +
is dominant, the infection cannot spread because the health-
positive opinion leads to protective behavior that prevents an out-
break of the infection. In a population, where opinion—dominates,
this health-neutral opinion enables the infection to spread. The
transmission parameters are set as follows. The infection rate of
susceptible individuals holding the health-positive opinion + is
fixed β+ = 0.8 per week, and the infection rate for individuals hold-
ing the health-positive opinion—is fixed β− = 2 per week for SIR
model and β− = 1.5 per week for SIS model. This difference of val-
ues was necessary, since in the case of SIS the pool of susceptible
individuals is being constantly replenished. These settings imply
that R+

0 = 0.8 < 1 and R−
0 = 2 > 1.

Basic reproduction number
In a situation where both opinions are present at the time the in-
fectious disease comes into the population, the basic reproduction
number R0 depends on the proportions n+ and n−. We assume that
these proportions are at steady state at the moment of onset of an
epidemic. Recall that c and ω do not influence this steady state dis-
tribution of opinions, so the initial situation is the same for all val-
ues of those parameters. We, therefore, can investigate how social
contact rate c and degree of assortativity ω impact the epidemic
dynamics without changing the initial steady state of the system.
By varying c and ω, we change the way the population can adapt
to an emerging outbreak by communicating about health-positive
behavior. With increasing c, opinions can spread faster, while with
increasing ω, opinions are more restricted to their subpopulation.

In Fig. 3, we investigated how the basic reproduction number
R0 changes with changing social contact rate c and assortativity
degree ω for three settings of the ratio p+/p−: 0.8, 1, and 1.25.

For all three settings of ratio p+/p−, the basic reproduction num-
ber increases as assortativity ω increases, and decreases as the
social contact rate (c) increases. As the ratio p+/p− increases, the
basic reproduction number decreases. We note that for high as-
sortativity, the effect of increasing c is smaller than for low assor-

tativity. Overall, we conclude that increasing assortativity slows
down the spread of opinions and therefore leads to higher values
of R0. Conversely, increasing social contact rate c leads to faster
opinion spread and, therefore, to lower R0. Therefore, strong as-
sortative mixing by opinions can facilitate the outbreak of an in-
fectious disease. For sensitivity analysis of the basic reproduction
number to changes in the infection rates of N+ and N− individuals
by type of infection (SIR and SIS) see Figure S3.

SIR model with opinion competition
In this section, we consider the dynamics beyond the start of an
outbreak for an SIR-type disease and investigate how it depends
on c and ω. We fixed p+(0)/p− = 1 and p+(1)/pb = 2.5 and used the
respective stable coexistence distribution (n+ = 0.5, n− = 0.5) as
the initial state of the population. We seeded infection by setting
i−(0) = 6 × 10−8 and s−(0) = n−(0) − i−(0).

We start by investigating the effect of the feedback between
opinion competition and infection dynamics on the epidemic peak
and on the peak proportion of the population holding opinion +,
n+ during and after the outbreak. We used three settings for pa-
rameter m, which affects the sensitivity of the population to the
growth in prevalence of infection. As the prevalence increases, p+
now increases, and this can be slower (m = 25) or faster (m = 75)
(Fig. 4).

For all three scenarios, the peak prevalence is higher for lower
contact rates and higher assortativity. The higher is the sensitivity
of the population m, the lower is the prevalence peak.

From Fig. 4, it follows that as a consequence of the feedback
between the disease and infection dynamics, the proportion of in-
dividuals who hold opinion + temporarily increases, with even-
tual return of the population to the preoutbreak opinion distribu-
tion. However, for some parameters settings, the population may
switch completely to opinion +, thereby preserving the memory
of the past outbreak. We investigated the parametric region, in
which this conversion to + occurs (Fig. 4 and Figure S5). From
these figures, it follows that high sensitivity of the population to
rise in prevalence of infection, as reflected in parameters p+(1) and
m and a high social contact enable conversion to opinion +. In ad-
dition, a high degree of assortativity also enables opinion + to be-
come dominant (dark blue region in Fig. 4(A)–(C) and in Figure S6a
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Fig. 4. Impact of social contact rate and assortativity on epidemic dynamics. We consider the dynamics of the SIR system for three scenarios for the
sensitivity of the population to increasing prevalence of infection as denoted by parameter m, m = 25 for (A) and (D), m = 50 for (B) and (E), and m = 75
for (C) and (F). (A), (B), and (C) show heat maps of the peak proportion of the individuals with opinion +, n+ population; in the dark blue region the
population switches to opinion +. (D), (E), and (F) show contour maps of the peak prevalence.
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Fig. 5. Regions of multiple epidemic peaks resulting from feedback between disease dynamics and opinion dynamics. We consider the dynamics of the
SIR model. (A), (B), and (C) are contour plots of the number of prevalence peaks for different values of infection rates β+ and β− for different sensitivity
m of the population to increasing prevalence: (A) m = 25, (B) m = 50, and (C) m = 75. The social contact rate is fixed at c = 40, and the probability of
switch to opinion + per contact when the entire population is infected is fixed p+(1) = 1, and the assortativity degree is fixed ω = 0. The area above the
red curve denotes the outcome where the population switched to opinion +. As m increases this region expands.

and S6b). This is unexpected, since high assortativity slows down
opinion exchange. However, since high assortativity also leads to
a large R0, it leads to a rise in prevalence, and therefore, increases
the probability of switching to opinion +. For a technical explana-
tion of the opinion switch, see section Effect of opinion competition
on population opinion switch during epidemic, Figure S7.

We conclude this section by discussing effect of the feedback
dynamics on transient dynamics of an SIR model and the role of
parameter space in their appearance. In contrast with the stan-
dard SIR epidemic, whose dynamics display a single peak only,
in a situation with feedback between the disease dynamics and
opinions dynamics multiple epidemic peaks may appear (Fig. 5).



Teslya et al. | 9

0 20 40
0

0.002

0.004

0.006

0.008

0.01

0

0.2

0.4

0.6

0.8

1
A

0 20 40
0

0.002

0.004

0.006

0.008

0.01

0

0.2

0.4

0.6

0.8

1
B

0 10 20 30 40 50
0

0.002

0.004

0.006

0.008

0.01

0

0.2

0.4

0.6

0.8

1
C

0 20 40
0

0.002

0.004

0.006

0.008

0.01

0

0.2

0.4

0.6

0.8

1
D

Fig. 6. Temporal dynamics with multiple epidemic peaks resulting from feedback between disease dynamics and opinion dynamics. We consider the
dynamics of the SIR system. Panels show time series of infection prevalence, and of the proportion of individuals holding opinion +, n+, n+ for different
values of infection rate β+. The social contact rate was fixed at c = 40, the upper bound of the probability of switching to opinion + was set to p+(1) = 1,
the sensitivity parameter m was set to m = 75, the infection rate of N− individuals was set to β− = 4.15, and the assortativity degree is fixed ω = 0.

Our numerical analyses indicate that in order for multiple epi-
demic peaks to appear there should be a pronounced difference
between population N+ and N− in terms of the preventative mea-
sures they adapt (as reflected in parameters β+ and β−). The upper
boundary of the region in β+ − β− subspace where multiple peaks
appear marks the region where the population switches to opin-
ion + (red curve). Therefore, for a fixed β− as β+ increases multi-
ple peaks appear as the population moves to the +-mono-opinion
state (Fig. 6). The number of peaks grows as β+ moves closer to the
boundary. Note that in our analyses, we considered a local maxi-
mum of prevalence to be a peak if it exceeded 10−8.

Moreover, the more sensitive the population is to increases
in the prevalence of infection (as reflected by parameter m), the
larger is the number of peaks that will appear in the region adja-
cent to the boundary where switch of the population to opinion +
occurs, see Fig. 5 and Figure S5. Finally, if the probability of switch
to opinion + in the population without infection, p+(0) is signifi-
cantly smaller than the probability of switch to opinion −, p− the
region in β+ − β− space where multiple peaks exist is larger (see
Figure S4).

In summary, for SIR-dynamics we find that feedback be-
tween opinion dynamics and epidemic dynamics can substan-
tially change the epidemic outcomes. The basic reproduction
number R0 and the peak of an outbreak can be higher if there is as-
sortative mixing by opinion. In addition, multiple epidemic peaks
can occur and the response to an epidemic can lead to a shift of
the population to a state, in which only the health-positive opin-
ion is circulating.

SIS model with opinion competition
Similarly, for a SIS-infection, coupling between opinion competi-
tion and disease dynamics can lead to opinion + taking over the
population (Fig. 7), and to the appearance of oscillatory epidemic
dynamics (Fig. 8). For the SIS epidemic, these oscillatory dynamics
can be sustained epidemic cycles instead of damped oscillations.

We start by investigating combination of conditions that may
lead to switching of the whole population to opinion + and sub-
sequently to lead to the disease to go extinct even when R0 > 1
for the opinion coexistence state. Our results indicate that higher
sensitivity of the population to increasing prevalence, as reflected
in high values of m and p+(1), will result in higher average densi-
ties of n+, and for some regions n+ = 1 (Fig. 7 and Figure S8). The
higher is the value of m the lower is the threshold value of p+(1)
above which the population switches to opinion +. Moreover, if
p+ is larger than a threshold value, the state n+ = 1 occurs for a
wide range of sensitivity of the population to the prevalence, m.
Should p+(1) exceed the threshold value significantly, the preva-
lence reduces considerably. Finally, high degree of assortativity in

the population, on the one hand, leads to higher endemic preva-
lence. On the other hand, high assortativity leads to increase in
the p+(1) − m subspace where the population switches to opin-
ion +. We hypothesize that this is attributed to the positive effect
assortativity has on infection transmission.

Next, we investigate the conditions when the feedback between
opinions competition and disease spread can induce sustained
oscillatory epidemic dynamics (Fig. 8). We investigated the con-
ditions under which this may happen. We discovered that oscil-
latory dynamics mostly require a pronounced difference in epi-
demiological properties between individuals N+ and N−, such that
when the whole population holds opinion +, the disease becomes
extinct and if the whole population holds opinion—the disease
persists. To show this, we plotted the amplitude of the epidemic
cycle, its period and average value across an interval of infection
rates values for two different sensitivities of the population reac-
tion to the prevalence of infectious cases.

For a fixed value of infection rate of N− individuals, β− = 5.5, as
infection rate of N+ individuals β+ increases initially, the endemic
prevalence of infectious cases is constant in time, with the preva-
lence level increasing (Fig. 9A). Once β+ increases past a threshold
value, the constant endemic state is replaced by oscillatory dy-
namics, such that the average prevalence decreases as compared
to the constant level it replaces (Fig. 9B). As β+ increase further, the
average prevalence, magnitude, and period of the cycle increase
(Fig. 9C). This pattern continues until the prevalence pushes the
population to switch to opinion +, at which point the prevalence
becomes zero and oscillatory dynamics disappear (Fig. 9D).

To summarize, given a disease that follows SIS framework,
adaptive behavior can lead to a number of qualitatively different
outcomes. It can lead to the reduction of infection prevalence, ap-
pearance of sustained epidemic cycles, and complete eradication
of the infection in conditions where the basic reproduction num-
ber would indicate that the infection will persist. Moreover, as the
degree of assortativity increases, and therefore, the basic repro-
ductive number increases, the parametric region where opinion
+ becomes dominant becomes wider. Similar to the SIR model,
the parameter region where oscillations arise is adjacent to the
region where opinion + becomes the dominant opinion.

Discussion
Using a model that couples opinion competition and infection
spread, we investigated the effects of feedback between the two
on epidemic dynamics. Our main findings were that the opinion
distribution landscape can significantly influence the outcome of
an epidemic. On the one hand, epidemic peaks can be reduced,
and a population can be completely shifted into a health-positive
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Fig. 7. Impact of social contact rate and assortativity on the average endemic prevalence of infectious cases and average long-term opinion
distribution. We consider the dynamics of the SIS system. (A), (B), and (C) show heat maps of the long-term average proportion of the population
holding opinion +. (D), (E), and (F) show heat maps of the long-term average infection prevalence. If the epidemic dynamics are periodic, then the
average is taken over the period. (A) and (D) show scenarios with sensitivity of reaction to prevalence given by m = 25. (B) and (E) show scenarios with
sensitivity of reaction to prevalence given by m = 50. (C) and (F) show scenarios with sensitivity of reaction to prevalence given by m = 75. The dark
blue region in the top row and dark blue region in the bottom row denote the outcome where the population switched to opinion + and the disease
becomes extinct. The infection rate of N− individuals was set β− = 1.5.

state. The appearance of this epidemic transition as the result of
the opinion and infection feedback is reminiscent of the dynamics
observed by Velásquez-Rojas and Vazquez (35) in a epidemiologi-
cal model, which coupled SIS disease with a voter opinion dynam-
ics model. On the other hand, damped or sustained oscillations
of prevalence can appear as transmissibility of the infection in-
creases. Parameters related to socializing dynamics such as social
contact rate and degree of the assortative mixing by opinion were
among the most important factors leading to the appearance of
the above phenomena.

Social contact rate was shown to have inverse relationships
with epidemic peak size. For SIR-type of the disease, increase in
social contact rate promoted decrease in the peak size of the epi-
demic. For SIS-type of the disease, if the feedback dynamics be-
tween opinion and transmission did not drive the population to
adapt the health-positive opinion, increase in the social contact
rate caused decrease in prevalence. However, for a high enough
contact rate, the possibility of the health-positive opinion taking
over disappeared. This unexpected result is in line with findings
of Silva et al. (25) and Velásquez-Rojas et al. (36). More specifically,
Velásquez-Rojas et al. (36) showed that increasing the speed of in-
formation process has the effect of increasing the prevalence for
an SIS-type of the disease.

The influence of assortative mixing is 2-fold. On the one hand,
assortative mixing slows down the switching of opinions and,

therefore, the possible reaction of the population to an epidemic.
On the other hand, as the basic reproduction number increases as
the assortative mixing increases, higher assortative mixing leads
to higher incidence and, therefore, to a stronger reaction of the
population, eventually even pushing the population into a state
where the health-positive opinion is dominating. However, if as-
sortativity is too high, its promoting effect on prevalence is not
sufficient to help spread the health-protective opinion, and the
population will experience a large epidemic peak. This effect on
opinion spread is mitigated if the social contact rate is high.

Our model differs from some of the earlier work incorporating
awareness into epidemic modeling (2, 4) in that we consider both
opinions as possibly equally attractive under certain conditions,
such that a health-positive individuals may switch to a health-
neutral opinion through contact with others who hold that opin-
ion. This switching, which leads individuals to adopt a more risky
health behavior, can therefore, spread in the same way as health-
positive behavior. This approach was previously considered to
model concurrent spread of the fear of a disease and spread of the
vaccination in the presence of infection (37). In the papers (2, 4),
awareness for the risks of infection decayed, when the infection
was not present in the population, eventually leading to a com-
pletely unaware population. In contrast, in our model both opin-
ions can coexist in a steady state, also in a disease-free situation.
The possibility of this outcome depends on the shape of opinion
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Fig. 8. Impact of assortativity and sensitivity of reaction to the
prevalence of infectious cases on the appearance of periodic epidemic
dynamics. We consider the dynamics of the SIS system. (A) and (B) show
heat maps of the average prevalence. If the epidemic dynamics are
periodic, then the average is taken over the period. (C) and (D) show heat
maps of the period of the epidemic cycle. The period is equal to zero if
the dynamics are stationary. (E) and (F) show heat maps of the
amplitude of epidemic cycle. The amplitude is zero if the dynamics are
stationary. (A), (C), and (E) show scenarios with sensitivity of reaction to
prevalence given by m = 50. (B), (D), and (F) show scenarios with
sensitivity of reaction to prevalence given by m = 75. The dark blue
region above the red line denotes the outcome where the population
switched to opinion + and the disease becomes extinct. The probability
of switch to opinion + when no infectious cases are present is fixed p+(0)
= 0.28, the probability of switch to opinion + when the whole population
is infected is fixed to p+(1) = 0.6. Social contact rate is fixed c = 10.

switch rate function. The potential of a stable coexistence of the
two opinions implies that the impact of a new epidemic depends
on the initial proportion of individuals with a health-positive opin-
ion. Such an initial situation can be influenced, e.g., by educational
interventions or other types of communication about future epi-
demic risks.

Appearance of oscillatory epidemic dynamics due to the feed-
back between health opinion dynamics and disease spread was
observed both in the analysis of real world data (1, 5) and simu-
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Fig. 9. Sustained oscillatory dynamics resulting from feedback between
disease dynamics and opinion dynamics. We consider the dynamics of
the SIS system. Panels show time series for the prevalence of infectious
cases and for proportion of individuals with opinion +, n+, for different
values of infection rate of N+ population, β+. The contact rate for
information exchange is fixed c = 10, the probability of switch to opinion
+ when no infectious cases are present is fixed p+(0) = 0.28, the
probability of switch to opinion + per contact when the whole
population is infected is fixed p+(1) = 0.6, the constant that controls the
growth of the switch rate to opinion + is fixed m = 75, and the infection
rate of N− individuals is fixed to β− = 5.5.

lated trajectories produced by socio-epidemiological models (38–
44). In the present work, by means of considering changes in the
dynamics across the parameter landscape, we gained insights into
which properties of the system cause the appearance of oscilla-
tions. Pronounced difference between the carriers of two opin-
ions in terms of infection rates as well as high average infection
rate is one of the conditions for which oscillatory dynamics arise.
Another important factor for the appearance of oscillations is a
high rate of opinion exchange (as captured by the social contact
rate) and high sensitivity of the population to prevalence. This lat-
ter result falls in line with findings by Glaubitz and Fu (40), who
found that increased sensitivity (responsiveness) to the epidemic
decreases amplitude of oscillations, but increases the duration of
oscillatory dynamics. These two factors also contribute to the pos-
sibility of the population switching to the health positive opinion.
In our experiments, the parametric regions where these two phe-
nomena take place always appeared adjacent to each other. In our
work, the increase in switch to health-positive opinion depends on
prevalence of infectious cases, which means that prevalence is in-
stantaneously translated to change in popularity of the opinion.
However, if as is the case with COVID-19, popularity of health-
positive opinion depends on another statistics (such as hospital-
izations or death), then there appears to be a lag between appear-
ance of new cases and update of public awareness of the disease.
Weitz et al. (41) showed that this lag can lead to appearance of
oscillatory dynamics.

The model can be extended to address present-day epidemic
concerns, such as dynamics of infectious vaccine-preventable dis-
eases. Vaccine uptake rate for well-known infectious diseases
(e.g., measles and influenza) as well as for emerging ones (e.g.,
COVID-19) is fraught by reluctance of the part of the popula-
tion to vaccinate (45–49). While circulation of vaccine uptake-
endorsing opinions is subject to both communication from pub-
lic health authorities as well as to interpersonal exchanges (46,
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50, 51), the circulation of antivaccination sentiment depends on
social norms within the local network and interpersonal com-
munications within the network (50–52). The models that consid-
ered the role of interpersonal communications on the vaccination
uptake and its effect on epidemic dynamics (38, 39), while cou-
pling vaccination strategies with the population epidemic state,
modeled the growth of the vaccinating population contingent on
the presence of the disease, while its opposite, nonvaccinating
sentiment, did not depend on the population state. Our frame-
work, which allows for symmetric treatment of health-positive
and health-neutral sentiments is well-suited for investigation of
vaccination opinion dynamics with or without the disease.

Out of consideration for transparency of presentation and to fo-
cus on the feedback effect, we developed our model using ordinary
differential equations and thus, assumed a mass-action mecha-
nism. However, for many infectious diseases (e.g., sexually trans-
mitted infections), representation of population as a multiplex
network will be more accurate. Our model can serve as a basis for
such models. A large body of work exists using individual-based
models to investigate effect of social and physical interaction net-
works on dynamics of competing processes, such that spread of
one affects spread of another (36, 53–57).

Another use for disease-behavior coupled individual based
frameworks is to investigate spatial spread of an infection, espe-
cially in the case where aware individuals modify their contact
patterns as a response to perceived danger from contracting the
disease (58). Similar to our findings, and findings of Perra and col-
leagues (4), Epstein and colleagues (58) observed that if individu-
als can recover from the aware state, the epidemic dynamics may
include several waves.

Our framework can bring interesting qualitative insights for the
dynamics of a vaccine preventable disease characterized by wan-
ing immunity (e.g., measles, pertussis, and influenza). In the con-
ditions of waning immunity, it is highly important to keep up con-
sistently high vaccination uptake rate if not to eradicate the dis-
ease, at least to avoid the overcrowding of the health care system.
Another important consideration, in the context of infectious dis-
eases characterized by waning immunity, is the process of waning
and boosting of immunity which can cause pronounced oscilla-
tion dynamics (59). Therefore, for infectious diseases character-
ized by waning and boosting of immunity, presence of adaptive
behavior with respect to vaccination, can give rise to rich dynam-
ics highly relevant for the efforts of health authorities.

In this work, we made a number of simplifying assumptions.
First, we assumed that the social exchange does not necessarily
require physical contacts (interactions that have a probability of
infection transmission), i.e., in a situation where the physical con-
tact may decrease, the information exchange and thus, opinion
dynamic will proceed unimpeded. However, in real life, at least
some of the social contacts will terminate if the physical contact
rate is reduced. Thus, if health-positive individuals practice social
distancing then opinion dynamics and subsequently epidemic dy-
namics will be altered in a number of ways that may not necessar-
ily benefit the population. For example, given a reduction of social
contact rate for the health-positive individuals, it may be neces-
sary they are present at a higher proportion, in order to maintain
steady presence in the population. Second simplifying assump-
tion that we made is that assortativity in social contacts is equal to
assortativity in physical contacts, while the former can be greater
than the latter. The result of the relaxation of the equal assortativ-
ity assumption is not straightforwardly apparent and represents
an avenue for future investigation. Finally, we assumed that the
effect of holding the health-positive opinion manifests itself as

the adoption of measures designed to reduce susceptibility (e.g.,
washing hands and influenza). This assumption had a distinct ef-
fect on the dependence of the force of infection term on the pro-
portion of infectious individuals. If, for example, individuals hold-
ing the health-positive opinion have also adopted measures that
reduce their infectivity (e.g., mask wearing, stayig at home while
sick), then the infection force term would have to account for the
reduction in potential to infect as well. Note, that it was shown in
(20) that when the health-positive opinion spreads fast, different
prevention measures (that affect either susceptibility or infectiv-
ity or both), produce similar result if their efficacies are the same.
Moreover, the effect of several such measures being adopted is
additive.

Our simple model has rich dynamics, appearance of which
depends on the functional responses and parameter values. For
example, as our analyses have shown, the shape of the func-
tional response plays a key role in the dynamics of health opin-
ions/behaviors and subsequently in epidemic dynamics. There-
fore, to be able to use the model for qualitative and quantitative
predictions it is paramount to accurately identify functional rep-
resentations for the opinion switch rates and for behavioral re-
sponse to the epidemic spread. Having these at hand will enable
the design of information interventions to be well-tailored to the
specific time frame of the epidemic.

Materials and Methods
The system of ordinary Eq. (6) describes the coupled dynamics of
infection spread and opinion competition.

ds+(t)
dt

= −s+(t)c(1 − ω) f−(n−(t)) + s−(t)c(1 − ω) f+(n+(t))

− s+λ+(t) + Gγ+i+(t)

di+(t)
dt

= −i+(t)c(1 − ω) f−(n−(t)) + i−(t)c(1 − ω) f+(n+(t))

+ s+λ+(t) − γ+i+(t)

dr+(t)
dt

= −r+(t)c(1 − ω) f−(n−(t)) + r−(t)c(1 − ω) f+(n+(t))

+ (1 − G) γ+i+(t)

ds−(t)
dt

= s+(t)c(1 − ω) f−(n−(t)) − s−(t)c(1 − ω) f+(n+(t))

− s−λ−(t) + Gγ−i−(t)

di−(t)
dt

= i+(t)c(1 − ω) f−(n−(t)) − i−(t)c(1 − ω) f+(n+(t))

+ s−λ−(t) − γ−i−(t)

dr−(t)
dt

= r+(t)c(1 − ω) f−(n−(t)) − r−(t)c(1 − ω) f+(n+(t))

+ (1 − G) γ−i−(t), (6)

where

G =
{

1 for a SIS model,
0 for a SIR model,

(7)

and λ+ and λ− are specified by Eq. (2).
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