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Abstract: Cardiovascular diseases (CVDs) present a major social problem worldwide due to their
high incidence and mortality rate. Many pathophysiological mechanisms are involved in CVDs, and
oxidative stress plays a vital mediating role in most of these mechanisms. The ubiquitin–proteasome
system (UPS) is the main machinery responsible for degrading cytosolic proteins in the repair
system, which interacts with the mechanisms regulating endoplasmic reticulum homeostasis. Recent
evidence also points to the role of UPS dysfunction in the development of CVDs. The UPS has
been associated with oxidative stress and regulates reduction–oxidation homeostasis. However, the
mechanisms underlying UPS-mediated oxidative stress’s contribution to CVDs are unclear, especially
the role of these interactions at different disease stages. This review highlights the recent research
progress on the roles of the UPS and oxidative stress, individually and in combination, in CVDs,
focusing on the pathophysiology of key CVDs, including atherosclerosis, ischemia–reperfusion injury,
cardiomyopathy, and heart failure. This synthesis provides new insight for continued research on the
UPS–oxidative stress interaction, in turn suggesting novel targets for the treatment and prevention
of CVDs.
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1. Introduction

Cardiovascular diseases (CVDs) represent significant public health and social chal-
lenges, with the number of cases estimated at 18 million globally, which is predicted to
increase to 23 million [1,2]. CVDs consist of diverse pathologies with numerous origins
and manifestations related to the critical cardiac function of continuously delivering blood
throughout the body for maintaining life as well as to its complex structure [3]. In general,
CVD is a broad disease class comprising stroke, hypertensive heart disease, rheumatic heart
disease, peripheral arterial disease, and other vascular diseases, such as atherosclerosis
and coronary artery disease, as well as other cardiac pathologies, including ischemia–
reperfusion injury and cardiac-remodeling-related defects [4–6]. Given the high incidence,
morbidity, and mortality, more efforts to improve the survival rate of patients and lower the
socioeconomic disease burden are needed, which require a more in-depth understanding
of the underlying pathological mechanisms at the cellular and molecular levels.

Oxidative stress seemingly plays a major role in CVD events associated with atheroscle-
rosis, ischemia–reperfusion, diabetes, hyperlipidemia, high blood pressure, and smoking
exposure [7]. These conditions impose damage to the antioxidant defense system, which
may trigger the excessive production of reactive oxygen species (ROS) and reactive nitrogen
species (RNS) [8]. Accordingly, therapeutic strategies that can maintain the balance be-
tween oxidants and antioxidants via ROS/RNS scavenging or detoxification to counteract
oxidative stress damage could hold promise for preventing and treating CVDs [9]. The
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main three lines of antioxidant defense include antioxidant molecules, such as antioxi-
dant enzymes, and the proteolytic pathways and proteins involved in oxidative damage
repair [10]. The ubiquitin–proteasome system (UPS) is the primary system responsible for
the degradation of cytosolic proteins in the repair system [11]. Accumulating evidence in-
dicates that UPS dysfunction is also involved in the development of CVDs [12,13]. Cardiac
proteins are in a dynamic state of continual degradation and synthesis; they are entirely
replaced within 30 days under physiological conditions [14]. Thus, the UPS regulates this
turnover and further plays a role in the cellular response to oxidative stress; consequently,
the reduction–oxidation (redox) state may fine-tune the activity of the UPS under certain
conditions (Figure 1) [15].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 2 of 14 
 

 

reactive nitrogen species (RNS) [8]. Accordingly, therapeutic strategies that can maintain 

the balance between oxidants and antioxidants via ROS/RNS scavenging or detoxification 

to counteract oxidative stress damage could hold promise for preventing and treating 

CVDs [9]. The main three lines of antioxidant defense include antioxidant molecules, such 

as antioxidant enzymes, and the proteolytic pathways and proteins involved in oxidative 

damage repair [10]. The ubiquitin–proteasome system (UPS) is the primary system re-

sponsible for the degradation of cytosolic proteins in the repair system [11]. Accumulating 

evidence indicates that UPS dysfunction is also involved in the development of CVDs 

[12,13]. Cardiac proteins are in a dynamic state of continual degradation and synthesis; 

they are entirely replaced within 30 days under physiological conditions [14]. Thus, the 

UPS regulates this turnover and further plays a role in the cellular response to oxidative 

stress; consequently, the reduction–oxidation (redox) state may fine-tune the activity of 

the UPS under certain conditions (Figure 1) [15]. 

Accordingly, understanding the interaction and mechanisms underlying the link be-

tween UPS and oxidative stress could inform new treatment strategies and improve out-

comes for patients with CVDs. This review highlights the emerging evidence of the inter-

linked roles of oxidative stress and the UPS as key mediators driving the CVD process. 

We particularly focused on key CVDs and related pathophysiological processes, includ-

ing atherosclerosis, ischemia–reperfusion injury, cardiomyopathy, and heart failure (HF). 

 

Figure 1. General schematic illustration of the relation among the ubiquitin–proteosome system 

(UPS), oxidative stress, and cardiovascular diseases (CVDs). Left: Oxidative phosphorylation pro-

duces ATP and ROS, triggering the UPS to degrade the proteins exposed to oxidative damage along 

with misfolded proteins; thus, mutual regulation mechanisms are at play between the UPS and ox-

idative stress. Right: The function and/or structure of the heart can be affected by gene mutation, 

heredity, infection, environmental exposures, and other factors, leading to a series of pathophysio-

logical changes or protein modifications, including oxidative stress and ubiquitination. UPS can de-

grade the proteins damaged by oxidative stress; however, UPS dysfunction can directly lead to 

CVDs. Ubiquitination of antioxidant-system-related proteins can further upregulate the levels of 

reactive oxygen species (ROS)/reactive nitrogen species (RNS) to aggravate oxidative damage. Oxi-

dative stress can directly damage UPS-related proteins leading to abnormal UPS function. Oxidative 

stress can also overload the UPS, yielding cardiac abnormalities such as atherosclerosis (AS), ische-

mia–reperfusion injury (IRI), cardiomyopathy, and heart failure (HF). 

2. UPS and Oxidative Stress 

2.1. UPS 

Ubiquitin (Ub), first isolated in the 1970s [16], reportedly plays a key role in many 

cellular processes, including DNA damage repair and proteolysis. Ub is a highly con-

served 76-amino acid protein, which acts as a post-translational protein modifier in all 

Figure 1. General schematic illustration of the relation among the ubiquitin–proteosome system (UPS),
oxidative stress, and cardiovascular diseases (CVDs). Left: Oxidative phosphorylation produces
ATP and ROS, triggering the UPS to degrade the proteins exposed to oxidative damage along with
misfolded proteins; thus, mutual regulation mechanisms are at play between the UPS and oxidative
stress. Right: The function and/or structure of the heart can be affected by gene mutation, heredity,
infection, environmental exposures, and other factors, leading to a series of pathophysiological
changes or protein modifications, including oxidative stress and ubiquitination. UPS can degrade
the proteins damaged by oxidative stress; however, UPS dysfunction can directly lead to CVDs.
Ubiquitination of antioxidant-system-related proteins can further upregulate the levels of reactive
oxygen species (ROS)/reactive nitrogen species (RNS) to aggravate oxidative damage. Oxidative
stress can directly damage UPS-related proteins leading to abnormal UPS function. Oxidative stress
can also overload the UPS, yielding cardiac abnormalities such as atherosclerosis (AS), ischemia–
reperfusion injury (IRI), cardiomyopathy, and heart failure (HF).

Accordingly, understanding the interaction and mechanisms underlying the link
between UPS and oxidative stress could inform new treatment strategies and improve
outcomes for patients with CVDs. This review highlights the emerging evidence of the
interlinked roles of oxidative stress and the UPS as key mediators driving the CVD process.
We particularly focused on key CVDs and related pathophysiological processes, including
atherosclerosis, ischemia–reperfusion injury, cardiomyopathy, and heart failure (HF).

2. UPS and Oxidative Stress
2.1. UPS

Ubiquitin (Ub), first isolated in the 1970s [16], reportedly plays a key role in many
cellular processes, including DNA damage repair and proteolysis. Ub is a highly conserved
76-amino acid protein, which acts as a post-translational protein modifier in all eukary-
otes [17]. Covalent attachment of the C-terminal glycine residue of Ub to the lysine residues
of substrate proteins (mainly damaged, misfolded, or other worn-out proteins)—a process
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known as ubiquitination—forms a molecular mark for target proteins or downstream
regulatory interactions [18]. Although Ub harbors seven lysine residues, the Lys 48- or
Lys 11-linked poly-Ub chains are the most common forms of ubiquitination to modify Ub
protein substrates, producing the signal for proteasome degradation [19]. Ubiquitination
is catalyzed by a three-enzyme cascade involving (1) E1 Ub-activating enzyme, (2) E2
Ub-conjugating enzyme, and (3) E3 Ub ligase (hereafter simply referred to as E3) [20]. It
is generally accepted that activated Ub is gradually transferred to its target protein: Ub
attaches to a cysteine residue of E1 Ub-activating enzyme in an ATP-dependent reaction,
and the activated Ub transfers to a cysteine residue of E2 Ub-conjugating enzyme, which
in turn transfers the Ub to a lysine residue of the substrate protein via an E3 ligase. E3
enzymes, as the critical components in the ubiquitination cascade, can be classified into
three main groups according to the presence of the (1) Really Interesting New Gene-finger
(RING) domain (comprising the largest group, which directly catalyzes the transfer of Ub),
(2) homologous to the E6AP carboxyl terminus (HECT) domain (which accepts Ub from
E2 Ub-conjugating enzyme), and (3) RING-in-Between-RING (RBR) E3 ligases (with the
common features of RING and HECT E3 groups) [21]. The structures of these domains
are summarized schematically in Figure 2 [22]. Briefly, RING E3s comprise RING with a
zinc-binding domain or U-box domain, which has the same RING fold but without the
zinc domain; the HECT E3 domain has a bi-lobar architecture in which the N-terminal
lobe tethers with the C-terminal lobe via a flexible hinge; RING1 and RING2 domains are
separated by an in-between-RING domain (Figure 2 dashed box). E3s can be regulated by
neddylation, phosphorylation, and other interactions with proteins or small molecules.
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Figure 2. Depiction of the ubiquitin–proteasome system (UPS). The ubiquitin-activating conjugating
and ligating enzymes are indicated as E1, E2, and E3. The 26S form of the proteasome catalyzes
the degradation of ubiquitylated protein substrates. E3 enzymes are classified into three groups
according to the presence of the HECT, RING, and RBR domains. Ubiquitin is transferred from E2
ligases to HECT or RBR-E3 ligases to ultimately ubiquitinate the substrate or directly ubiquitinate the
substrate via the catalysis of RING-E3 ligases. Deubiquitination enzymes (DUBs) remove ubiquitin
from substrates, which is recycled into cytosolic pools.

Ubiquitinated proteins are degraded after reaching the 26S proteasome (Figure 2) [23].
With two terminal α-subunit rings and two middle β-subunit rings, the 20S proteasome
forms a core complex that combines with the 19S proteosome, a two-cap-like regulated
structure consisting of the ATP-dependent 26S proteasome [21]. The polyubiquitin prote-
olytic signal allows the 26S proteasome to recognize a large variety of protein substrates,
which can realize the function of the UPS [24]. Protein ubiquitination is a dynamic and
reversible process, catalyzed by a series of deubiquitylating enzymes (DUBs); Ub removed
from the substrates can then be sent to an available pool for recycling [19]. Therefore, ma-
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nipulating protein ubiquitination offers considerable prospects for blocking the pathways
contributing to relevant diseases.

2.2. Oxidative Stress

Oxidative stress is exerted by the excessive production of ROS/RNS, resulting in an
imbalance between oxidant and antioxidant processes [25]. ROS include free radicals such
as superoxide (O2•−), hydroxyl (HO•), and peroxynitrite (ONOO•−), as well as non-
radical molecules, including hydrogen peroxide (H2O2), which are mostly derived from
aerobic metabolism via oxygen reduction in the mitochondria [26], endoplasmic reticulum
(ER) [27], and peroxisomes [28]. A series of enzymes, including NADPH oxidase, endothe-
lial nitric oxide synthase, xanthine oxidase, uncoupled arachidonic acid, and metabolic
enzymes such as cytochrome P450 enzymes, lipoxygenase, and cyclooxygenase, mediate
enzyme-catalyzed reactions to continuously produce ROS [29]. ROS are also derived from
non-enzymatic reactions such as the mitochondrial respiratory-chain-related reaction.

The contribution of an increase in ROS production and their accumulation to CVD
events is widely accepted. The main mechanisms underlying this association include
an increase in nitric oxide (NO) levels, which induces cardiac dysfunction, ROS-induced
(via NADH/NADPH oxidase or cytokine) cardiac apoptosis or necrosis and superoxide-
mediated endothelial dysfunction [7].

2.3. Oxidative Stress Directly Affects the UPS

The direct effect of oxidative stress on UPS has become widely accepted in recent
years [30]. There is no doubt that oxidative stress, related to the production of ROS,
is a major upstream component in the signaling cascade promoting cell proliferation,
adhesion molecule production, and inflammatory responses [31]. An increase in protein
carbonylation occurs during oxidative stress activation, specifically on the 19S regulatory
S6 subunit ATPase, considered an oxidation-sensitive protein. The increased oxidative
modification of S6 ATPase was observed in H2O2-treated cells [31]. As a superoxide
generator, paraquat reportedly induces the accumulation of ubiquitinated proteins [32].
Indeed, the 26S proteasome reversibly disassembles to the 20S core and 19S regulatory
structure upon exposure to moderate oxidative stress [33].

Kelch-like ECH-associated protein 1 (Keap1) was reported to act as an E3 ligase of the
transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which is essential for
the protection of cells against oxidative stress, and its function is modified by ROS [34].
Without the binding of Keap1, Nrf2 is not modified by ubiquitin. It thus remains in
a stable state, resulting in increased levels of Nrf2 targets, such as NAD(P)H quinone
dehydrogenase (NQO-1), glutathione S-transferase (GST), superoxide dismutase 1 (SOD1),
and hemoxygenase-1 (HO-1), which play a role in the repair and response to oxidative
injury [35]. Moreover, ROS activate redox-sensitive proteolytic ligases (such as MuRF1 and
atrogin-1) of the UPS [36]. The degradation susceptibility of extensively oxidized proteins
decreases due to the formation of protein aggregates [37]. Moreover, all of the components
of the UPS, including DUBs, can be impaired by extensive or chronic oxidative stress,
which induces the dissociation of the 20S core particle from the 19S regulatory particle
of the 26S proteasome in eukaryotic cells, leading to impaired 26S proteasome activity
and the consequent accumulation of ubiquitinated proteins [38]. Thus, the UPS could
be an important target of oxidative stress, although the detailed mechanism remains to
be elucidated.

2.4. Role of the UPS in Oxidative Stress

The UPS is considered the third line of antioxidant defense, which may alleviate
the damage caused by ROS, regulating the oxidative stress status [11]. Oxidative stress
predisposes proteins to misfolding and toxic aggregation, which can be prevented by the
protein quality control system, including the UPS [39]. Thus, dysfunction of the UPS
results in the accumulation of oxidative-stress-damaged proteins and a further increase in
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ROS, forming a vicious cycle that exacerbates oxidative stress [40]. The UPS also directly
affects the degradation of some key enzymes in oxidative stress, including the Nrf2-Keap1
interaction, an important oxidative stress sensor, as described above. When redox processes
are in equilibrium, Nrf2 translocates from the nucleus to the cytoplasm, where it is degraded
by ubiquitination; thus, a dysfunctional UPS would disrupt the redox balance [41]. Silent
mating type information regulation 2 homolog 3 (SIRT3), a mitochondrial deacetylase that
can eliminate excessive ROS, was found to be degraded by ubiquitination to induce cell
death [42], representing yet another example by which the UPS interacts with oxidative
stress, controlling most cellular and disease processes. Indeed, proteasome activity may be
increased under low-level oxidative stress but may be inhibited under high-level oxidative
stress. In addition, the anti-oxidative ability of endothelial cells can be enhanced by low-
level proteasome inhibition, whereas oxidative stress may be initiated under high-level
proteasome inhibition [43].

3. Interaction of the UPS and Oxidative Stress in CVDs
3.1. Atherosclerosis

Atherosclerosis is a complex progressive disease affecting larger- and medium-sized
arteries, contributing to many types of CVDs, including myocardial infarction and ischemic
HF [44]. A consensus has been reached that atherosclerosis consists of three main phases:
(1) a long asymptomatic initial stage with fatty streaks; (2) a progression stage characterized
by the formation of atheromatous plaques over several decades; and (3) plaques-related
complications, including plaque erosion or rupture, thrombus formation, and complete or
near-complete vascular occlusion [43]. Atherosclerosis mainly results from pathophysiology
linked to oxidative stress, lipid metabolism alterations, and inflammation, which are
associated with several molecules such as NO, adhesion molecules, and nuclear factor-
kappa B (NF-κB). Accumulating evidence also points to an important role of UPS in all
three stages of atherosclerosis [43].

The UPS regulates Nrf2 and hypoxia-inducible factor 1 (HIF-1) as the major regulators
of oxygen homeostasis [38]. HO-1 and SOD1, as the targets of Nrf2, were shown to have
anti-atherogenic protection effects, which are also regulated by the UPS [38,45]. Binding
to antioxidant response elements in the nucleus promotes the transcription of antioxidant
genes, including Nrf2/Keap1, as one of the most powerful intracellular antioxidative
pathways. In addition to atherosclerosis, many other CVDs (described in detail below) are
also promoted by the dysfunction of Nrf2/Keap1 [41]. Under physiological conditions,
as an E3 ubiquitin ligase, Hippel–Lindau tumor suppressor protein (pVHL) ubiquitinates
hydroxylated HIF-1α [46], which generates a state of low HIF-1α abundance after its rapid
proteasomal degradation [47]. However, this process is inhibited under hypoxic conditions,
in which HIF-1α translocates to the nucleus and combines with HIF-1β to ultimately
promote the adaptation of cells to hypoxia. Notably, ROS and some pro-inflammatory
factors, such as NF-κB, can also activate HIF-1α [38]. Two of the NF-κB family members,
p50 and p65, are normally distributed in the cytosol of healthy vessels, whereas the complex
remains in the nucleus in the atherosclerosis disease state [48]. Interestingly, the proteasome
was shown to regulate nuclear NF-κB signaling through the degradation of the NF-κB
inhibitor (IκBα) in the canonical activation pathway [49]. The proteasome also mediates
the removal of p50/p65 via its proteolytic activity in the non-canonical pathway, which is
activated by oxidative stress [50,51].

The endothelial injury initiated by oxidative stress contributes to the development of
atherosclerosis and other CVDs. A recent study confirmed that WWP2, a HECT-type E3
ubiquitin ligase, interacts with Septin4, a known endothelial injury factor [52], to promote
Septin4 degradation via the UPS, thereby preventing endothelial injury and vascular
remodeling. This counteraction was disturbed by the decreased expression of WWP2
under oxidative stress and angiotensin II-induced endothelial injury [53]. Aggregated
low-density lipoproteins (LDLs) reportedly induced the ovine E2 ubiquitin-conjugating
enzyme E2–25K, followed by the promotion of p53 degradation, which may suppress the
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apoptosis of foam cells [54]. Interestingly, oxidized LDL (Ox-LDL) was found to induce the
apoptosis of macrophages via inhibiting proteasomal activity [55]. Ox-LDL also induces
endothelial dysfunction to cause atherosclerosis through the increased ubiquitination of
sirtuin 1 (SIRT1), an anti-inflammatory and anti-autophagy cytokine, under the regulation
of cytoplasmic polyadenylation element-binding protein 1 (CPEB1) that, in turn, reduces
the expression of lectin-like Ox-LDL receptor-1 (LOX-1), consequently regulating ROS
production [56]. In addition, Ox-LDL levels were elevated in a patient with diabetes due
to the production of mitochondrial ROS promoted by intracellular hyperglycemia, which
ultimately intensified atherosclerosis [57].

Increasing evidence indicates that the major risk factors for atherosclerosis, including
diabetes, obesity, hypertension, and aging, are closely related to oxidative stress. One study
emphasized that increased oxidative stress decreased the activity of the UPS in the context
of atherosclerosis progression [37]. Moreover, the role of deubiquitination is particularly
relevant in many of these processes. As a dynamic organ secreting adipocytokines and
affecting vascular function, the adipose tissue that accumulates in obesity transforms the
vascular-protective or anti-atherogenic environment to a pro-atherogenic phenotype [58].
For instance, wingless-related integration site 5A (WNT5A) could induce oxidative stress
and interact with the deubiquitinating enzyme ubiquitin-specific protease 17 (USP17) to
play a key role in activating the redox-sensitive migration of vascular smooth muscle
cells [59]. In addition, UPS inhibitors were reported to reduce oxidative stress and alleviate
atherosclerosis [38]. These conflicting observations highlight the complicated mechanisms
underlying the contributions of UPS and oxidative stress to atherosclerosis (Figure 3).
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Figure 3. Three main pathways linking the ubiquitin–proteosome system (UPS) and oxidative stress
in atherosclerosis (AS) progression. The red dotted line indicates inhibition or alleviation, and the
solid blue line indicates promotion or activation. Ub, ubiquitin; ROS, reactive oxygen species; LDL,
low-density lipoprotein.

3.2. Ischemia–Reperfusion Injury

The erosion and rupture of coronary atheromatous plaques and vascular occlusion
result in severe myocardial infarction and ischemia, with the pathology characterized
by impaired function of the myocardium and enhanced cardiomyocyte apoptosis [60].
This combination prevents the possibility of repair and regeneration of the damaged my-
ocardium owing to the insufficient proliferation capacity of cardiomyocytes [61]. Although
timely reperfusion following an injury can delay the negative outcomes of ischemia and
suppress cell death, the inevitable damage to both cardiomyocytes and the myocardium
caused by reperfusion itself, known as ischemia–reperfusion injury (IRI), also results in
hypoxia and microvascular or myocardial dysfunction [62]. Ischemia–reperfusion injury
is inevitable in the course of several surgical procedures, including organ transplantation,
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cardiothoracic surgery, and general surgery, due to an imbalanced metabolism [61]. A dys-
functional microvasculature, cell death, activated leukocytes, and accumulated chemokines
and ROS are the main pathophysiologic mechanisms of IRI [63].

Indeed, ROS and cardiac inflammation form a vicious cycle, in which ROS initiate a
cascade reaction of phosphorylation/dephosphorylation and inflammation, which further
fuels ROS production, ultimately promoting IRI [62,63]. Many cytokines, including HIF-1,
tumor necrosis factor (TNF), interleukins (ILs), and NF-κB, are involved in the inflammatory
reactions in response to oxidative stress in ischemia [64]. Moreover, the levels of several
antioxidant factors, such as GST and SOD, which eliminate ROS under physiological
conditions, were reportedly decreased in rat ischemic hearts and other organs. Their
reduction was also found under reperfusion in contrast to expectations [65,66]. Oxidative
stress thus provides a strong foundation for IRI progression.

Considering the relationship among IRI, oxidative stress, and cardiac inflammation, it
is rational to focus on the function of the UPS in this mechanism, considering its critical
role in the regulation of inflammatory processes and the degradation of misfolded or
damaged proteins. Accordingly, substantial research focusing on IRI therapy in the last
two decades has examined whether inhibition of the UPS can alleviate the associated
inflammation or oxidative stress, even the injury itself, demonstrating promising results for
clinical applications.

Inhibition of the NLRP3 inflammasome was shown to ameliorate adverse cardiac
remodeling and decrease the infarct size in an IRI animal model [67], whereas excessive ROS
activated the NLRP3 inflammasome [68]. Once the Keap1-Nrf2 interaction was blocked,
the Nrf2 signaling pathway was activated and the NLRP3 inflammasome was inhibited,
subsequently leading to a reduction in IRI [69]. LDL receptor-related protein 6 (LRP6), a
Wnt co-receptor [70], interferes with the interaction between HSF1 and glycogen synthase
kinase 3β (GSK3β), a Ser/Thr protein kinase inactivated by phosphorylation, resulting
in the inhibition of HSF-1 ubiquitylation under oxidative stress following myocardial
ischemia–reperfusion by reducing apoptosis and promoting nucleus stabilization [71].

Increasing research has demonstrated that several UPS inhibitors, including MG132,
epoxomicin, bortezomib, PR-39, and PR-11, have a protective effect on the heart during
IRI [72], providing strong evidence of the role of UPS on the pathological process. Notably,
the activation of IRI has also been shown to result in UPS dysfunction [73]. Blocking of
the degradation of IκB, an NF-κB inhibitor, by the proteasome inhibitors PR-39 and PR-11
caused the translocation of NF-κB to the nucleus, which ultimately prevented the release of
inflammatory factors in an IRI rat model [74]. Moreover, as ROS can directly activate the NF-
κB pathway and thus promote the production of inflammatory cytokines [75], antioxidant
therapy and alleviating cardiac inflammation are considered effective strategies to lessen
IRI. Direct blockage of the UPS has also been explored as a potentially effective therapy
direction for IRI given the effects on alleviating inflammation and oxidative stress [72],
although further investigation is needed to establish the safety of this treatment.

3.3. Cardiomyopathy

Cardiomyopathies can be divided into primary (genetic, acquired, or mixed) and sec-
ondary categories, including hypertrophic cardiomyopathy (HCM), dilated cardiomyopa-
thy (DCM), and restrictive cardiomyopathy (RCM). Cardiomyopathies can also be classified
according to their secondary causes, including ischemic, metabolic, auto-immunogenic,
infectious, toxic, and neuromuscular [76]. UPS dysfunction has been widely suggested as a
key pathogenic factor contributing to the development of cardiomyopathies [77], with ROS
production regarded as the cause underpinning this impairment.

Despite this clear link, the interaction of ROS and the UPS has not been a focus of
the majority of research on cardiomyopathies, although many studies have focused on
one of these factors (ROS or UPS) or their combination with other mechanisms (such
as apoptosis or ferroptosis) [76,78,79]. The first examination of the proteasome function
in human HCM concluded that UPS dysfunction in HCM resulted from mutations in
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sarcomere proteins [80], including cardiac troponin T (TnT), myosin heavy chain (MHC),
and cardiac myosin binding protein C (cMyBP-C) [77], which are linked to more than
half of the cases of familial HCM. The research suggested that ATP could promote the
assembly of a damaged 19S proteasome to the 20S core [80] and that oxidation may be
an important mechanism involved in UPS dysfunction in human cardiomyopathy or HF.
Higher levels of ubiquitinated and oxidized proteins, which may be related to a reduction
in proteasome activity, were found in the heart of a murine model with a TnT mutation. In
addition, mutated cells exhibited an accelerated energy-produced pattern, which may lead
to increased ROS. These oxidated proteins damaged the proteasome subunits and were
degraded [81].

Proteasome levels and oxidative stress also appear to be increased in patients with
DCM, and the oxidative stress-induced increased 26S proteasome levels might be a com-
pensatory mechanism [82]. UPS proteins co-localizing with oxidation-induced modifier
molecules in cardiomyocytes were also suggested to be related to the pathophysiology of
DCM. Another mutation of TnT was suggested as a causal mutation of HCM, which was
associated with an impaired proteasome, increased ATP production, and elevated levels of
stress-related proteins in mice [83]. ITCH (a ubiquitin E3 ligase Itchy homolog) controls
the ubiquitin–proteasome degradation of thioredoxin-interacting protein and ameliorated
ROS-induced cardiotoxicity in a doxorubicin-induced cardiomyopathy model, ultimately
attenuating cardiac hypertrophy [84]. Conditional cardiac-specific HUWE1 (a ubiquitin
E3 ligase) knockout mice developed cardiac hypertrophy, accompanied by impaired mi-
tochondrial energy metabolism and ROS defense [85]. The reversal of murine double
minute 2 (MDM2), a p53-specific E3 ubiquitin ligase, and SIRT1 reduced the activity of the
apoptosis factor p53 through SIRT1-mediated p53 deacetylation and MDM2-mediated p53
ubiquitination, which alleviated oxidative stress and cell apoptosis in the tissues and cells
of a cardiomyopathy model induced by adriamycin [86].

The mutation of folliculin-interacting protein 1 (FNIP1) was also reported as a causal
mutation of HCM [87]. A recent study [88] demonstrated that CUL2FEM1B (a ubiquitin E3
ligase) targets reduced FNIP1, which alleviates the reductive stress caused by excessive
antioxidative processes and could supplement the physiological ROS [89]. Mitochondrial
ROS production is regulated by degraded or stabilized FNIP1 to maintain the balance
of redox reactions [90]. The transcription factor forkhead box protein O 1 (FoxO1) is
related to cardiac hypertrophy, and SIRT3, activated by oxidative stress, can combine
with FoxO1 to activate its deacetylation, promoting the expression of the downstream
molecules Muscle-RING-finger-1 (MuRF1) and Muscle-Atrophy-F-box (MAFbx/atrogin-1,
an E3 ubiquitin ligase), ultimately alleviating myocardial hypertrophy [91]. Interestingly,
another study found that LncDACH1 facilitated the degradation of SIRT3 by ubiquitination,
promoting mitochondrial oxidative injury and cell apoptosis in the heart of a diabetic
mouse model [79]. In addition, by promoting phosphatase and tensin homolog (PTEN),
proteasomal degradation was found to be an effective therapy to reduce oxidative stress
and injury by disrupting downstream FoxO3 function in diabetic cardiomyopathy [92].

As mentioned above, proteasome inhibitors can alleviate the IRI, and a study in
healthy pigs further showed that proteasome inhibition caused cardiac dysfunction; indeed,
patients using a proteasome inhibitor for cancer therapy have a higher incidence of HF [77].
Although many studies failed to elucidate the detailed link between UPS and oxidative
stress, owing to the complexity of these processes, further study is warranted in this regard
to best exploit the therapeutic potential.

3.4. Heart Failure

HF is a progressive disease and the final stage of CVD, involving myocardial cell loss,
IRI, and the structural remodeling of the myocardium (including cardiomyopathy); thus,
the UPS is expected to play a pathophysiological role in HF [93]. Moreover, ROS production
has been revealed as a key factor in HF development [94].
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Recently, many studies have revealed the mechanisms underlying the interaction
between the UPS and oxidative stress, with some showing that the UPS plays a bidi-
rectional role in response to oxidative stress. The E3 ligase tripartite motif-containing
protein 16 (TRIM16) was demonstrated to act as a suppressor of pathological cardiac hy-
pertrophy (relieve peroxiredoxin 1 (PRDX1) phosphorylation and oxidative stress) and
indicated that targeting the TRIM16–PRDX1 axis is a promising therapeutic strategy for
hypertrophy-related HF [95]. However, the ubiquitin E3 ligase TRIM21 suppressed the p62-
Keap1-Nrf2 antioxidant pathway in a doxorubicin-induced cardiac dysfunction model, and
Trim21 knockout mice were protected from HF [96]. P21-activated kinase 2 (PAK2) targets
Nrf2/Keap1 ubiquitination by mediating 3-hydroxy-3-methylglutaryl reductase degrada-
tion 1 (HRD1) expression, thereby alleviating detrimental ER stress and HF, offering another
potential therapeutic strategy for HF [97]. Moreover, in a rat model of chronic HF, miR-
129-5p was found to target Smad ubiquitin regulatory factor 1 (SMURF1) and repress the
ubiquitination of PTEN to improve cardiac function [98]. MiR-454 impaired the expression
of neural precursor cells, developmentally downregulated the 4-2 (NEDD4-2)/tropomyosin
receptor kinase A (TRKA)/cAMP axis in cardiomyocytes injured by oxidative stress, and
its expression was found to be downregulated in a rat HF model [99]. Furthermore, aerobic
exercise training reportedly reduces poly-ubiquitinated protein levels in the failing heart,
although the mechanism remains unknown [100,101].

Oxidative stress can also activate ubiquitination to contribute to HF pathology. The
level of La ribonucleoprotein domain family member 7 (LARP7), a regulator of the DNA
damage response linked to ROS, was found to be reduced in the heart under the conditions
of HF; accumulated ROS promoted LARP7 ubiquitination and degradation, and reduced
sirtuin1 (SIRT1) stability and deacetylase activity, ultimately impairing oxidative phos-
phorylation and cardiac function [102]. In addition, pVHL expression was upregulated
in a DCM mouse model, and oxidative stress induced phospholamban degradation in
an in vitro HF model [103]. Moreover, sodium sulfide was found to attenuate ischemic-
induced HF by enhancing UPS function in an Nrf2-dependent manner [104].

Collectively, these studies highlight a promising prospect for UPS–oxidative-stress-
derived therapies. As an end stage of heart disease, all of these mechanisms associated
with other CVDs could be valuable directions in HF research.

4. Conclusions

CVDs continue to represent major threats to human life, and the UPS is emerging
as a key regulatory pathway in CVD pathology, especially with respect to its role in the
regulation of and response to oxidative stress. Cardiomyocyte death and myocardial
remodeling are the primary pathological hallmarks of CVDs, which are accelerated by
impairment in the cellular redox process and UPS. The UPS appears to play different roles
in the different stages of CVDs, contributing to disease development in some cases and
improving oxidative stress to delay disease progression in others. Thus, it is important to
contextualize the interplay between the UPS and the redox process. Although therapeutic
targets for preventing or delaying the progression of CVDs are currently scarce, further
research on the UPS–oxidative stress interaction shows promise in this regard.
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