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Abstract: Electrospinning was successfully used for the one-step fabrication of poly(methyl methacry-
late) (PMMA) fibers loaded with an inorganic photocatalyst—titanium oxide (TiO2). By tuning the
PMMA/TiO2 ratio and the electrospinning conditions (applied voltage, needle tip-to-collector dis-
tance, and flow rates), PMMA/TiO2 composites with selected organic/inorganic ratios, tailored
designs, and targeted properties were obtained. The morphology of the electrospun composites
was affected by the amount of TiO2 incorporated into the PMMA fibers. In addition, the inorganic
photocatalyst had an impact on the wettability, thermal stability, and optical properties of the electro-
spun composites. In particular, the surface wettability of the composites was strongly influenced
by UV light irradiation and from hydrophobic became superhydrophilic. Moreover, PMMA/TiO2

composites had enhanced tensile strength in comparison with those of bare PMMA mats. The electro-
spun PMMA/TiO2 composites showed excellent photocatalytic efficiency against the model organic
pollutant—methylene blue—which is very promising for the future development of membranes that
are highly efficacious for photocatalytic water treatment.

Keywords: electrospinning; poly(methyl methacrylate); TiO2; UV-induced wettability; mechanical
properties; photocatalysis

1. Introduction

The creation of cost-effective and advanced materials for water treatment is an on-
going challenge. Among the various new materials that have been created, electrospun
membranes are considered to be the most versatile candidates for the effective treatment
of water, filtration, and separation because of their high surface area, high porosity, and
light weight [1,2]. In order to improve the applicability and performance of electrospun
membranes for use in water treatment, metal oxide nanoparticles have been incorporated
into membranes [2,3]. Thus, the key challenge in water treatment is to prepare appropriate
electrospun composites with a high efficiency and low environmental impact.

Currently, great attention is being paid to photocatalysis, which is one of the most
effective and ecofriendly techniques for the degradation of many organic pollutants [4–6].
In this regard, one of the most widely reported on and commonly used photocatalysts for
the removal of organic pollutants is TiO2 because of its ability to generate hydroxyl radicals
(HO•) and superoxide radical anions (O2•−) upon UV light irradiation [7]. Furthermore,
TiO2 has found a wide range of applications due to its remarkable physical, electronic,
dielectric, and optical properties, as well as its efficient photoactivity, high stability, low cost,
and friendliness to the environment [7–9]. Various studies have revealed that poly(methyl
methacrylate) (PMMA) is an appropriate host matrix for these photocatalysts because of
its excellent transparency to light, good environmental inertness, chemical and thermal
stability, and relatively low cost [10–12]. This is why PMMA-based composite films have
played a major role in the preparation of light emitting diodes (LED), supercapacitors, opti-
cal lenses, sensors, catalysts, etc. Moreover, PMMA/TiO2 nanocomposites have remained a
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hot research topic for use in multifunctional applications, such as photocatalysts, protective
coatings, and UV shields [13–17].

Electrospinning has emerged as an appropriate technique for preparing polymer com-
posites loaded with inorganic particles. Although electrospun PMMA/TiO2 composites
have been recently reported on [18], to the best of our knowledge there has been no thor-
ough study on the effect of the use of TiO2 nanoparticles as fillers in uniform defect-free
fibers on the properties of electrospun PMMA/TiO2 composites. In the past few years, we
have demonstrated the possibility of the fabrication of multifunctional hybrid materials by
electrospinning [19–21]. Electrospun materials based on poly(3-hydroxybutyrate) and TiO2
with tailored designs have displayed an excellent stability and been shown to be able to
preserve their photocatalytic activity almost completely. In this context, in the present study
commercially available TiO2 nanoparticles were dispersed into PMMA solution in order
to prepare composite PMMA fibers filled with TiO2 in one step through electrospinning.
By varying the TiO2 content (5 and 10 wt. %) in the dispersions and the electrospinning
conditions (applied voltage, needle tip-to-collector distance, and flow rates), optimal con-
ditions were found for the formation of a stable Taylor cone and defect-free composite
fibers. The morphology of the prepared electrospun composites was observed by scan-
ning electron microscopy (SEM). The wettability, surface composition, and thermal and
mechanical properties of the PMMA/TiO2 composites were studied in detail by water
contact angle measurements, X-ray photoelectron spectroscopy (XPS), thermogravimetric
analyses (TGA), and tensile tests. The optical properties, photocatalytic activity when
using methylene blue as a model organic pollutant, and reusability of the composites were
evaluated with respect to targeted application.

2. Materials and Methods
2.1. Materials

Poly(methyl methacrylate) (PMMA, average molecular weight ~350,000 g/mol) and
titanium (IV) oxide (TiO2 nanopowder, 99.7% anatase) were purchased from Sigma Aldrich.
N,N-dimethylformamide (DMF, p.a.) and methylene blue B (MB) were purchased from
Merck. All reagents were of an analytical grade of purity and were used as received without
further purification.

2.2. Electrospinning

Solutions of PMMA (15% w/v) in DMF were prepared by heating them at 50 ◦C using
a reflux condenser. In order to obtain PMMA/5TiO2 and PMMA/10TiO2 composites, TiO2
nanopowder (5 and 10 wt. % with respect to PMMA) was added to the PMMA solutions.
The obtained dispersions were homogenized by sonication for 1 h in an ultrasonic bath
(Bandelin Sonorex, Berlin, Germany, 160/640 W, 35 kHz).

The experimental electrospinning setup comprised a high-voltage DC power supply,
rotating collector, needle for syringe (i.d. 0.6 mm × o.d. 0.9 mm), and syringe pump
(NE-300 New Era Pump Systems, Inc., Farmingdale, NY, USA) for delivering the spinning
dispersions. The electrospinning of the PMMA solution and PMMA/TiO2 dispersions was
performed at a 15 kV applied voltage with a needle tip-to-collector distance of 10 cm, a
2 mL/h flow rate, and a collector rotation speed of 1200 rpm. These optimal electrospinning
conditions were identified through the testing of various combinations of processing
parameters (applied voltage, flow rate, and needle tip-to-collector distance).

2.3. Characterization

The morphology of the electrospun PMMA/TiO2 composites was observed using
scanning electron microscopy (SEM). Specimens were vacuum-coated with gold in a Jeol
JFC-1200 fine coater and analyzed using a Jeol JSM-5510 instrument (JEOL Co., Ltd.,
Tokyo, Japan). The Image J software was used to measure the average fiber diameter
by measuring at least 15 fibers from each image. Transmission electron spectroscopy
(TEM) observations of the PMMA/TiO2 composites were carried out with a JEM-2100
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instrument (JEOL Co., Ltd., Tokyo, Japan) equipped with selected area electron diffraction
(SAED). Specimens were prepared by depositing on a copper grid. The surface chemical
composition of the PMMA/TiO2 composites was determined quantitatively by X-ray pho-
toelectron spectroscopy (XPS). The measurements were carried out in the UHV chamber
of an ESCALAB-MkII (VG Scientific, Waltham, MA, USA) spectrometer using Mg Ka
excitation with a total instrumental resolution of ~1 eV. Energy calibration was performed,
taking the C1s line at 285 eV as a reference. Surface atomic concentrations were evaluated
using Scofield’s ionization cross-sections with no corrections for λ (the mean free path
of photoelectrons) and the analyzer transmission function. The experimental values for
the element atomic percentages obtained from the XPS analysis were the average of three
independent measurements. Water contact angles (WCA) were measured with a drop
shape analyzer (DSA 20E, Krűss GmbH, Hamburg, Germany) at room temperature. Rect-
angular samples with a 15 mm width and 40 mm length were cut and fixed on glass slides
(75 mm × 25 mm). Contact angles were measured before and after the UV light irradiation
(UV lamp 400F/2, UVASPOT 400/T, Dr. Hönle AG, Gräfelfing, Germany) of the samples
for 30 and 60 min. The distance from the UV lamp to the samples was 30 cm. A sessile
drop of distilled water with a volume of 5 µL controlled by a computer dosing system was
deposited onto the samples. The contact angles were determined by commercial software
(DSA 20E, Krűss GmbH) using the acquired images of the droplet. The data were averages
taken from 10 measurements for each sample.

X-ray diffraction (XRD) analyses were performed using a D8 Bruker Advance diffrac-
tometer with filtered Cu Kα radiation and a LynxEye detector at room temperature. XRD
spectra were recorded in the 2θ range from 5.3◦ to 80◦ with a step size of 0.02◦ and counting
time of 1 s/step. Phase identification was performed using the Diffracplus EVA using
ICDD-PDF2 Database. Thermogravimetric analyses (TGA) were carried out on SetSys
Evolution 2500 (Setaram, Caluire, France) at a heating rate of 10 ◦C/min and an argon flow
of 30 mL/min. Emission spectra were recorded using a Cary Eclipse spectrofluorometer
(Varian, Santa Clara, CA, USA). Rectangular specimens with a 10 mm width and 45 mm
length were cut and their fluorescence spectra were recorded using quartz glass cells with
10 mm path length.

Tensile testing was performed at room temperature with a crosshead speed of
20 mm/min on a single column dynamometer INSTRON 3344 equipped with a 50 N
load cell. Rectangular specimens with 20 mm widths and 60 mm lengths were cut in the
collector rotation direction (0◦). The thickness of each specimen was measured before the
tensile test using a digital thickness gauge FD 50 (Käfer GmbH, Villingen-Schwenningen,
Germany). The average values for the tensile strength (σ, MPa), elongation at break (εB, %),
and Young’s modulus (E, MPa) were determined based on the regression of the linear part
of the stress–strain curves from at least 10 tested specimens of each electrospun material.

2.4. Photocatalytic Activity

The photocatalytic activity of the prepared electrospun materials was evaluated by
the degradation of a model pollutant—methylene blue B (MB). A stock solution of MB
(2 × 10−5 mol/L) in distilled water was prepared and used for a photodegradation analysis.
Electrospun samples with a size of 10 mm × 10 mm were cut and then immersed in 10 mL
of the MB solution. In order to reach an adsorption–desorption equilibrium, samples
were kept in the dark for 60 min and were then irradiated by UV light (UV lamp 400F/2,
UVASPOT 400/T, Dr. Hönle AG, Ilmenau, Germany) for 3 h. The photocatalytic degra-
dation of MB was monitored spectrophotometrically by recording the intensity decrease
in the MB absorbance at 660 nm with the irradiation time. UV–vis spectra were recorded
with a DU800 spectrophotometer (Beckman Coulter Inc., Brea, CA, USA).

The reusability potential of the composed materials was also studied. For that purpose,
after the first 3 h run the electrospun samples were again reused in two subsequent cycles
by immersing them in a fresh MB solution. This procedure was repeated three times for
3 h using the same electrospun samples. After each cycle, the materials were washed and
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placed in fresh MB solution for the subsequent irradiation cycle. The photodegradation
efficiency (PDE, %) was calculated from the following equation:

PDE (%) = (C0 − Ct)/C0 × 100,

where C0 and Ct are the initial MB concentration and the concentration at time t, respectively.

3. Results and Discussion

The focus of the present work was on the fabrication of PMMA fibers filled with
significant amounts of TiO2 and studying the effect of the inorganic photocatalyst on
the properties of the obtained electrospun PMMA/TiO2 composites with respect to their
targeted application. Koysuren et al. reported the synthesis of TiO2 particles by the sol–gel
process, their calcination and immobilization in PMMA fibers by electrospinning [18]. How-
ever, the results show that the appropriate conditions for obtaining defect-free fibers have
not been found, which calls into question the results of the research conducted. Moreover,
the crystal phase of the synthesized TiO2 particles was not studied, and the presented FTIR
spectra proved the presence of an unreacted titanium isopropoxide precursor. In addition,
the amount of calcinated TiO2 particles incorporated into the PMMA fibers was very low,
this is why only 20% of the methylene blue was degraded after 180 min of UV irradiation.

In the present study, in order to avoid all of these disadvantages, commercially
available TiO2 (anatase) nanopowder was used. Furthermore, preliminary experiments
were performed and by varying the electrospinning conditions (applied voltage, needle
tip-to-collector distance and flow rates), optimal terms for the formation of defect-free
composite PMMA fibers were found. Moreover, besides the electrospinning conditions,
the TiO2 content in the dispersions was also varied toward the fabrication of PMMA fibers
filled with a significant amount of TiO2. It was determined that the incorporation of the
maximum amount of 10% of TiO2 nanopowder (with respect to PMMA) into the PMMA
solution did not hamper the process of electrospinning and resulted in the preparation
of continuous fibers. The effect of TiO2 on the properties of electrospun PMMA/TiO2
composites as a filler in PMMA fibers was studied in detail and the composition–structure–
property dependence was determined.

3.1. PMMA/TiO2 Composites Fabrication and Characterization

Preliminary experiments showed that the electrospinning (15 kV applied voltage,
10 cm needle tip-to-collector distance, and 2 mL/h flow rate) of PMMA spinning solution
in DMF with a concentration of 15% w/v resulted in defect-free PMMA fibers. These
conditions were found to be suitable and were used for the fabrication of defect-free
composite PMMA fibers containing 5 and 10% of TiO2.

The morphology of the fabricated PMMA/TiO2 composites was observed by SEM
(Figure 1). The SEM micrographs clearly show that the selected concentrations and electro-
spinning conditions lead to the fabrication of cylindrical, uniform, and defect-free fibers
with a certain fiber alignment in the direction of the collector rotation. Interestingly, the
surface of the composite fibers was decorated with TiO2 (Figure 1C,E). Moreover, when
the TiO2 concentration in the PMMA fibers was increased, the number of particles on
the fiber surface increased (Figure 1E). This implies that part of the TiO2 loaded into the
fibers aggregates during the electrospinning process and that the optimum photocatalyst
concentration was reached, thus resulting in the particles being arranged not only in the
PMMA fibers but also on their surface. The fiber diameter distribution is also presented in
Figure 1. As expected, the TiO2 incorporation into the PMMA fibers resulted in a slight in-
crease in their average fiber diameters—from 1986 ± 245 nm for PMMA fibers (Figure 1B)
to 2079 ± 257 nm (Figure 1D) and 2104 ± 319 nm (Figure 1F) for PMMA/5TiO2 and
PMMA/10TiO2, respectively. The SEM analyses clearly show that uniform and defect-free
PMMA/TiO2 composite fibers were successfully fabricated in one step by electrospinning
and that their morphologies depend on the TiO2 content in the PMMA fibers.
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The successful inclusion of the TiO2 particles in the PMMA fibers was evidenced
by TEM (Figure S1). As clearly seen, a part of TiO2 formed agglomerates during the
electrospinning process. In confirmation of the SEM observations, TEM analyses also
clearly showed that the surface of the composite fibers was decorated with TiO2. In
addition, the obtained SAED patterns showed strong diffraction spots evidencing the
lattice spacing of the crystals, indexed to the anatase structure of TiO2 (# 96-101-0943) with
the lattice planes.

The surface chemical composition of the PMMA/TiO2 fibers was evaluated by XPS
analysis (Figure 2) and provided additional evidence regarding the titanium content on
the fibers’ surfaces. In the survey of the XPS spectra of PMMA/TiO2 composite fibers,
photoemission bands corresponding to C1s (285 eV), O1s (532.4 eV), and Ti2p (459 eV) were
observed (Figure 2, left). As expected, in the Ti2p spectrum of PMMA/TiO2 composites,
one major peak was observed at 459 eV with a splitting of 5.7 eV for the Ti2p 3/2 and Ti2p
1/2 components of the doublet (Figure 2, right). The binding energy value is characteristic
of titanium in its normal Ti4+ oxidation state and is in good agreement with the value
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reported in the literature [22]. By calculating the Ti/C atomic ratio, it was determined
that the titanium content on the surface of PMMA/5TiO2 (0.47%) was lower than that on
the PMMA/10TiO2 (0.82%) composites. Therefore, the XPS analysis further verified that
the surface composition of the electrospun PMMA/TiO2 composites was affected by the
amount of TiO2 incorporated in the PMMA fibers.
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The possibility of altering the surface wettability of the PMMA/TiO2 composites
was particularly crucial from a practical point of view. It is well known that UV light
treatment enhances the wettability of different titanium surfaces [7,23]. SEM and XPS
analyses unambiguously proved the presence of TiO2 on the composites’ surfaces. For
that reason, the water contact angles were measured before and after UV light irradiation
in order to study the alteration in surface wettability of the PMMA/TiO2 composites. As
seen in Figure 3, before UV irradiation the PMMA fibers showed water contact angles of
111.5◦ ± 5.17◦ due to their hydrophobic behavior [24]. As expected, the addition of TiO2 led
to the increase in contact angles to 116.7◦ ± 3.75◦ and 122.6◦ ± 4.24◦ for PMMA/5TiO2 and
PMMA/10TiO2, respectively. These results were in accordance with our previous findings
and with the literature data [25,26]. Therefore, before UV irradiation the contact angles
were in the hydrophobic region (above 90◦), which is due to the hydrophobic surface of the
PMMA fibers. The presence of TiO2 on the surfaces of the composites imparted additional
hydrophobicity to the PMMA/TiO2 composites. After 30 min of UV irradiation (Figure 3),
the PMMA fibers remained hydrophobic and showed a water contact angle of 112◦ ± 4.15◦.
In contrast, the contact angles of PMMA/5TiO2 and PMMA/10TiO2 composites decreased
significantly to 93.5◦ ± 3.46◦ and 66.9◦ ± 2.36◦, respectively. It is noteworthy, however, that
after 60 min of UV irradiation (Figure 3) only PMMA fibers preserved their hydrophobicity
with a contact angle of 109.8◦ ± 3.60◦, while the contact angle for both PMMA/5TiO2 and
PMMA/10TiO2 was 0◦. Thus, the change in the wettability of PMMA/TiO2 composites
strongly depends on the fiber surface composition, and a highly hydrophilic surface might
be achieved by UV irradiation.
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The crystal phase of TiO2 in the composite fibers was identified by X-ray diffrac-
tion (XRD) and compared with those of the PMMA fibers (Figure 4). The diffraction
pattern of the PMMA fibers showed a broad diffraction plane at 2θ = 13.7◦ (intensive), as
well at 2θ = 30.0◦ and 42.7◦ (lower intensities), characteristic of its amorphous structure.
In addition to these planes of PMMA, the XRD patterns of PMMA/TiO2 composites exhib-
ited characteristic TiO2 diffraction peaks at 2θ = 25.6◦ (101) and 48.2◦ (200) (Figure 4) for
the anatase crystal phase. These results indicated that the TiO2 incorporated in the PMMA
fibers did not affect the structure of PMMA and that these components did not react during
the electrospinning. The obtained results are in agreement with the TiO2 (anatase) standard
data (ICDD-PDF2 #00-021-1272).
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The effect of TiO2 content on the thermal stability of the PMMA/TiO2 composites
was studied by TGA (Figure 5). Apparently, the thermal decomposition of PMMA and
composites began at 300 ◦C and ended at 400 ◦C due to the decomposition of PMMA.
As can be seen, the thermal stability of the composites was slightly shifted to a higher
decomposition temperature—373 ◦C for PMMA/5TiO2 and 375 ◦C for PMMA/10TiO2—
in comparison to that of PMMA fibers (369 ◦C). These results indicated that the addition of
TiO2 slightly increased the thermal stability of the obtained composites. It is notable that in
thermal decomposition of the PMMA/5TiO2 and PMMA/10TiO2 composites, the presence
of 5.3% and 10.9% residues was observed (Figure 5, red and green lines). These residues
are due to the inorganic TiO2 component, which did not undergo any alteration at these
temperatures. These weight losses were very close to the initial TiO2 amounts added to the
PMMA solutions.
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In order to study the effect of the TiO2 content on the optical properties of PMMA,
the excitation and emission spectra of electrospun materials were recorded and compared
(Figure 6). The excitation spectrum of PMMA fibers had a maximum at 380 nm, which
corresponds to the absorption maximum of the polymer, while its fluorescence maximum
was at 425 nm. Interestingly, the fluorescence intensity was quenched upon the addition of
TiO2, and this quenching depended on the amount of TiO2 added. The same positions of
the maxima in the spectra indicate that TiO2 did not change the structure of the PMMA
matrix. On the other hand, the decrease in the fluorescence intensity can be explained
by the interaction of TiO2 with the lone pairs of oxygen atoms in the structure of PMMA,
which led to a change in its polarization.
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Figure 6. Excitation spectra (left) and the corresponding emission spectra (right) of electrospun
PMMA (blue line), PMMA/5TiO2 (red line), and PMMA/10TiO2 (green line) membranes.

3.2. Tensile Properties of the PMMA/TiO2 Composites

In view of the potential application of these composites, we decided to study their
tensile strength and compare the values obtained with those of PMMA. A serious problem
in the accurate evaluation of the mechanical properties of electrospun materials is the
lack of standardization in conducting tensile tests. Recently, we showed that specimens
cut in the direction of the collector rotation (0◦) have better mechanical properties [27].
For that reason, this already developed standardized methodology was applied for the
tensile testing of the electrospun composites. The average thickness of all specimens was
~0.312 mm.

Stress–strain (σ/ε) curves performed at tension of specimens at a constant rate are
shown in Figure 7. All curves showed a smooth linear increase in the stress with increasing
strain. The curve for PMMA fibers displayed a high deformation at relatively low stress.
As can be seen, the composite fibers had better mechanical properties compared to the
PMMA fibers. Moreover, the addition of TiO2 resulted in a proportional increase in the
stress with increasing strain, which ended with the sample breaking.
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PMMA/10TiO2 (green line) composites.

From the stress–strain curves, the values of the modulus of elasticity (E, MPa), tensile
strength (σ, MPa), and elongation at break (εB, %) were determined; these are presented
in Table 1. It is obvious that the composite materials had a higher modulus of elasticity
and tensile strength compared to the PMMA fibers. Furthermore, the tensile strength of
the composites increased almost twice as the TiO2 amount increasing. In contrary, the
elongation at break of the PMMA fibers was more than three times greater than that of
the composites. These results indicate that the addition of TiO2 improved the elasticity of
the composites and contributed to reducing their brittleness. In addition, the composites
provided a higher loading.

Table 1. The mechanical characteristics of electrospun materials.

Samples Young’s Modulus
(E, MPa)

Tensile Strength
(σ, MPa)

Elongation at Break
(εB, %)

PMMA 82.4 0.50 1.95
PMMA/5TiO2 237.4 0.61 0.50
PMMA/10TiO2 251.9 1.19 0.56

3.3. Photocatalytic Degradation of MB and Reusability of PMMA/TiO2 Composites

The photocatalytic activity of the composites was studied in the presence of the
model organic pollutant—methylene blue (MB)—and monitored spectrophotometrically at
660 nm. The obtained results show a decrease in MB absorption as a function of irradiation
time (Figure 8). It can be seen that PMMA/5TiO2 composites degrade ca. 20% of the dye
after 30 min of irradiation, while after 60 min they degrade approximately 50%. Clearly, in
the presence of PMMA/10TiO2 composites, 50% of the dye degraded after 30 min—i.e.,
composites containing large amounts of TiO2 were more effective. This effect was expected,
because the amount of TiO2 particles is higher on the surface of PMMA/10TiO2 composites,
which accelerates the photocatalytic action.
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Schematic representation of the photocatalytic degradation of MB in the presence of
PMMA/TiO2 composites is shown in Scheme 1.
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Scheme 1. Representation of the photocatalytic degradation of MB in the presence of PMMA/TiO2

composites.

The photocatalytic activity of the composites during three irradiation cycles was
also measured in order to evaluate their activity during repeated use (Figure 9). The
reaction of a blank sample (PMMA fibers) was monitored as well. As can be seen, in
the presence of PMMA fibers, MB preserved its stability and a very slight discoloration
under UV irradiation was observed (Figure 9, blue line). After 9 h of irradiation, the
calculated photodegradation efficiency was only 11.5%. Thus, the photocatalytic activity
of the composites was determined to be due to the embedded TiO2. Undoubtedly, the
composites exhibited excellent stability—at the end of the third cycle, the calculated PDEs
were 95.8% and 99.1% in the presence of PMMA/5TiO2 and PMMA/10TiO2, respectively.
These results prove that the composites maintain their photocatalytic activity even after
three uses.
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Figure 9. Three consecutive cycles of MB degradation at 660 nm under UV light irradiation in the
presence of electrospun PMMA (blue line), PMMA/5TiO2 (red line), and PMMA/10TiO2 (green
line) composites.

4. Conclusions

In the present study, PMMA/TiO2 composites were successfully fabricated in one
step by electrospinning. Besides the electrospinning conditions, the TiO2 content in the
PMMA solution was varied in order to fabricate PMMA fibers filled with significant
amounts of TiO2. It was shown that the incorporation of a maximum of 10% TiO2 into the
PMMA solution did not hamper the electrospinning and resulted in the preparation of
continuous and defect-free composite fibers. Clearly, the morphology and surface chemical
composition of electrospun PMMA/TiO2 fibers depends on the TiO2 content. Contact angle
measurements revealed that the wettability of the composites might be easily changed from
hydrophobic to superhydrophilic after 1 h of UV light irradiation. In particular, TiO2 had a
slight impact on the thermal stability and optical properties of the composites. However, the
incorporation of the inorganic component resulted in a significant increase in the modulus
of elasticity and tensile strength and a decrease in elongation at break. Furthermore,
PMMA/TiO2 composites preserve their photocatalytic activity almost completely after
three uses in the presence of a model organic pollutant. Thus, the proposed original
and simple approach is very promising for the future development of highly efficient
membranes for the degradation of organic pollutants.
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