
Frontiers in Immunology | www.frontiersin.

Edited by:
Harriet Mayanja-Kizza,

Makerere University, Uganda

Reviewed by:
Katalin A. Wilkinson,

Francis Crick Institute,
United Kingdom

Paulo J. G. Bettencourt,
Catholic University of Portugal,

Portugal

*Correspondence:
Karen E. Kempsell

Karen.Kempsell@phe.gov.uk

Specialty section:
This article was submitted to

Microbial Immunology,
a section of the journal

Frontiers in Immunology

Received: 13 January 2022
Accepted: 28 February 2022

Published: 20 May 2022

Citation:
Garlant HN, Ellappan K, Hewitt M,
Perumal P, Pekeleke S, Wand N,

Southern J, Kumar SV, Belgode H,
Abubakar I, Sinha S, Vasan S,

Joseph NM and Kempsell KE (2022)
Evaluation of Host Protein
Biomarkers by ELISA From

Whole Lysed Peripheral Blood
for Development of Diagnostic
Tests for Active Tuberculosis.
Front. Immunol. 13:854327.

doi: 10.3389/fimmu.2022.854327

ORIGINAL RESEARCH
published: 20 May 2022

doi: 10.3389/fimmu.2022.854327
Evaluation of Host Protein
Biomarkers by ELISA From Whole
Lysed Peripheral Blood for
Development of Diagnostic
Tests for Active Tuberculosis
Harriet N. Garlant1, Kalaiarasan Ellappan2, Matthew Hewitt 1, Prem Perumal1,
Simon Pekeleke1, Nadina Wand1, Jo Southern3, Saka Vinod Kumar2, Harish Belgode2,
Ibrahim Abubakar3, Sanjeev Sinha4, Seshadri Vasan5, Noyal Mariya Joseph2

and Karen E. Kempsell 1*

1 Science Group: Research and Evaluation, UK Health Security Agency, Salisbury, United Kingdom, 2 Department of
Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India, 3 School of Life &
Medical Sciences, Mortimer Market Centre, University College London, London, United Kingdom, 4 Department of Medicine, All
India Institute for Medical Sciences, New Delhi, India, 5 Department of Health Sciences, University of York, York, United Kingdom

Tuberculosis (TB) remains a significant global health crisis and the number one cause of
death for an infectious disease. The health consequences in high-burden countries are
significant. Barriers to TB control and eradication are in part caused by difficulties in
diagnosis. Improvements in diagnosis are required for organisations like the World Health
Organisation (WHO) to meet their ambitious target of reducing the incidence of TB by 50%
by the year 2025, which has become hard to reach due to the COVID-19 pandemic.
Development of new tests for TB are key priorities of the WHO, as defined in their 2014
report for target product profiles (TPPs). Rapid triage and biomarker-based confirmatory
tests would greatly enhance the diagnostic capability for identifying and diagnosing TB-
infected individuals. Protein-based test methods e.g. lateral flow devices (LFDs) have a
significant advantage over other technologies with regard to assay turnaround time
(minutes as opposed to hours) field-ability, ease of use by relatively untrained staff and
without the need for supporting laboratory infrastructure. Here we evaluate the diagnostic
performance of nine biomarkers from our previously published biomarker qPCR validation
study; CALCOCO2, CD274, CD52, GBP1, IFIT3, IFITM3, SAMD9L, SNX10 and
TMEM49, as protein targets assayed by ELISA. This preliminary evaluation study was
conducted to quantify the level of biomarker protein expression across latent, extra-
pulmonary or pulmonary TB groups and negative controls, collected across the UK and
India, in whole lysed blood samples (WLB). We also investigated associative correlations
between the biomarkers and assessed their suitability for ongoing diagnostic test
development, using receiver operating characteristic/area under the curve (ROC)
analyses, singly and in panel combinations. The top performing single biomarkers for
pulmonary TB versus controls were CALCOCO2, SAMD9L, GBP1, IFITM3, IFIT3 and
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SNX10. TMEM49 was also significantly differentially expressed but downregulated in TB
groups. CD52 expression was not highly differentially expressed across most of the
groups but may provide additional patient stratification information and some limited use
for incipient latent TB infection. These show therefore great potential for diagnostic test
development either in minimal configuration panels for rapid triage or more complex
formulations to capture the diversity of disease presentations.
Keywords: biomarker, protein, ELISA, tuberculosis, diagnostic, assay, diagnosis
1 INTRODUCTION

Tuberculosis (TB) continues to be a leading cause of morbidity
and mortality worldwide, accounting for the deaths of an
estimated 1.5 million people each year, including 214,000
among HIV positive people in 2020 (1). This figure is
comparable to the 1.8 million deaths due to COVID-19 alone
during the current pandemic which is also contributing to TB
resurgence (2, 3). India has the highest global TB burden,
accounting for one fifth of the TB incidence worldwide, with
40% of the total Indian population estimated to be infected with
TB (4). In the UK, most TB cases are concentrated in large urban
centres where the incidence can be greater than 1/20,000 - one of
the highest rates of any Western country (5). Most TB cases
(72.8%) occur among non-UK born individuals, who have
emigrated from countries with a high burden of endemic TB
(6). TB presents predominantly as the pulmonary manifestation
(PTB) in the lung, but can affect any organ or tissue, manifesting
as a myriad of presentations termed ‘extra-pulmonary’
tuberculosis [EPTB (7–10)]. This form of the disease is hard to
diagnose using conventional methods, as is quiescent or latent
TB infection [LTBI (4, 11, 12)]. Therefore, despite ongoing
investment in research and development for new diagnostics
and therapeutics, TB eradication has proved challenging (13).

Ending theGlobal TB epidemic by 2030 is a priority in the newly
adopted WHO Sustainable Development Goals (14). Rapid non-
sputum-based tests for detecting TB and community-based triage
tests for identifying suspected TB infected individuals are key
priorities for the World Health Organization target product
profiles (TPPs), set out in their 2014 report (15). Additionally, a
test able to diagnose LTBI or incipient active TB (iATB) would
greatly improve early diagnosis, assist with patient management
programs, reduce disease dissemination and the current socio-
economic disease burden (16–18). There is therefore clearly an
urgent need for the development of rapid, inexpensive and accurate
tests for diagnosis of TB particularly in the point of care (POC) and
remote settings (19–23). A biomarker protein-based, non-sputum
diagnostic test such as an LFD would fulfil these criteria. The
development of multiplex LFDs able to detect large numbers of
analytes simultaneously has recently been achieved (24), however
LFDs with two to three analytes aremore commonly reported (25).
Therefore, in order to configure LFDs for TB triage diagnosis,
minimal analyte configurations are most likely required.
Multianalyte configurations could be useful in more complex
assay formats, e.g. ELISA in the laboratory setting and amenable
to confirmatory test application.
org 2
Host immune biomarkers which are specifically and
differentially expressed during exposure or infection have
become an attractive prospect for the detection and diagnosis
of TB (11). There have now been a large number of studies
conducted to identify and validate high performing, TB disease-
specific biomarkers as RNA targets, which have shown potential
for use in identifying individuals with exposure or infection with
MTB in all its varying presentations, viz. PTB, EPTB and LTBI.
Diagnostic and prognostic biomarkers, which are predictive of
adequate responsiveness to treatment and of risk of developing
active TB in LTBI are also major goals for TB investigators and
clinicians (3). However, nucleic acid targets are more amenable
to laboratory-based devices and the methodologies have
relatively long processing and turnaround times, even if they
can be rapidly adapted for new or emerging pathogens, strains
and variants (26, 27).

There have been fewer reports of biomarker indicators
assayed as proteins for TB, but some studies have been
conducted using saliva, serum and plasma samples (28–34).
Protein biomarkers are predicted to be most useful target for
simple, fast and cost-effective ‘point of care’ tests (35) required to
improve diagnosis rates in resource-limited settings (36, 37). The
upfront work required to develop protein assay reagents is
significantly more laborious and time consuming than for
nucleic acid targets (24). The rewards with respect to cost and
assay turnaround time are significantly higher compared to
nucleic acid-based methodologies (38–41).

Here we present a preliminary evaluation study to assess the
diagnostic performance of nine of our previously identified,
published mRNA biomarkers (13) as protein targets; CALCOCO2,
CD274, CD52, GBP1, IFIT3, IFITM3, SAMD9L, SNX10 and
TMEM49. Expression was assessed using commercial ELISA
assays, these were then analysed individually and in combination
panels to establish best candidates for future progression in
developing protein-based TB diagnostic POC tests. Expression
correlation matrix analyses were also conducted to gain an
understanding of their inter-target relationships/influences,
biological functional significance and potential for TB disease sub-
type stratification.
2 METHODOLOGY

2.1 Sample Collection
A total of 452 peripheral blood samples were collected from three
cohorts of TB patients – with pulmonary TB (PTB) or extra-
May 2022 | Volume 13 | Article 854327

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Garlant et al. TB Host Protein Biomarker Expression
pulmonary TB (EPTB) collected at two geographically distant areas
in Northern and Southern India, at AIIMS, NewDelhi (A-EPTB) or
JIPMER, Puducherry (J-EPTB); latent TB (LTBI) and control
groups (P-CNTRL), collected as part of the PREDICT TB study
and two other control groups collected at the partner site AIIMS in
New Delhi (A-CNTRL) or in the UK [UK-CNTRL (First Link Ltd.,
Wolverhampton, UK)]. All TB patients included in the study from
Indiawere > 16 years of age. PTBpatientswere recruited on the basis
of sputum Ziehl Neelsen stain (ZN) positivity for acid-fast bacilli
(AFB) and eventual culture positivity for TB. EPTB patients were
recruited on the basis of ZN positivity for acid-fast bacilli (AFB) and
eventual culture positivity for TB, sampled at a body site other than
the lung. A description of recruitment and inclusion criteria of
individuals to the PREDICT-TB study has been described previously
elsewhere (42, 43). Details of individuals from the PREDICT-TB
study in the LTBI group, who progressed to active TB disease have
been published recently by Gupta et al. (44). Median time to TB
disease among the progressors was 188 days (interquartile range,
76–488 d). Controls collected at all sites were > 16 years of age and
recruited on the basis on no outward signs of respiratory disease or
other infectious disease conditions (asymptomatic). UK-CNTRLs
were less than 55 years of age and certified non-reactive to human
immunodeficiency (HIV), Hepatitis B andC by approved antigen or
antibody enzyme-linked immunosorbent assay (ELISA) methods.
The UK-CNTRL and the A-CNTRL control group were not tested
for TB. P-CNTRLs were negative for interferon-g release assay
(IGRA); QuantiFERON® TB Gold In-Tube [(QFT-GIT)
QIAGEN GmbH, Hilden, Germany], T-SPOT®.TB [(T.SPOT)
Oxford Immunotec Ltd, Oxford, UK)] and tuberculin skin test
(TST) (43). LTBI samples were identified as being variably positive
for all three tests. All patient and control sample details are given in
detail in Supplementary Information S1, Table S1.1 and
summarised in Table 1 and study details in Figure 1. All ethical
approvals for the study were in place prior to sample collection, as
described previously (13). Blood samples were collected by
venepuncture in lithium heparin tubes and stored at -80°C prior
to use.

2.2 Sample Processing
TB infected blood samples were processed at Containment Level
3 and control samples at Containment Level 2 in laboratories at
UKHSA, Porton UK or JIPMER, India. In short, whole blood
samples were thawed at room temperature, 2 ml aliquots were
then transferred to tubes containing 8ml of Invitrogen Cell
Extraction Buffer (Life Technologies, UK). These were mixed
Frontiers in Immunology | www.frontiersin.org 3
by inversion and placed on ice for 30 minutes to lyse. All blood
lysates were filtered through Millex GP 0.22 um syringe filters,
aliquoted and stored at -80°C prior to further use.

2.3 ELISA Assays
Quantification of nine candidate protein biomarkers was
conducted using commercially available ELISA assay kits
(MyBioSource, USA). The detection range of each assay was as
follows; CALCOCO2 (0.78-100ng/ml), CD274 (0.156 -10ng/ml),
CD52 (39-5000ng/ml), GBP1 (12.5-1600pg/ml), IFIT3 (0.78-
100ng/ml), SAMD9L (1.56-200ng/ml), and TMEM49 (31.2-
1000 pg/ml), IFITM3 (3.125-100ng/ml) and SNX10 (6.25-
200ng/ml) respectively. All lysed blood samples tested were
diluted 1/5 in sample dilution buffer, except for CD52 and
GBP1 ELISAs which were tested undiluted. Out of range
(high) samples were diluted appropriately in PBS and re-tested.
TABLE 1 | Summary of the number of patients per group for all patient and control samples and affiliations with collaborating site in the study.

Sample Group Description Region of origin Number of samples (n)

UK-CNTRL UK Negative Controls First Link Ltd., Wolverhampton, UK (low incidence region) 50
P-CNTRL PREDICT TB Controls London, UK (PREDICT TB study) 109
LTBI PREDICT TB Latent TB London, UK (PREDICT TB Study) 111
A-CNTRL AIIMS Negative Controls AIIMS, New Delhi, India

(High incidence region)
50

A-EPTB AIIMS Extra Pulmonary TB AIIMS, New Delhi, India 50
J-EPTB JIPMER Extra Pulmonary TB JIPMER, Puducherry, India 32
PTB AIIMS Pulmonary TB AIIMS, New Delhi, India 49
May 2022 | Vo
FIGURE 1 | Flowchart of patient and control cohort used in the study.
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ELISA results were read using a FLUOStar Omega plate reader
(BMG Labtech) at UKHSA Porton Down and a FLUOStar
Optima plate reader (BMG Labtech) at JIPMER. Raw data
were exported using FLUOStar OMEGA MARS analysis
software in Excel format, prior to further analysis (given in
Supplementary Information S1, Table S1.2).

2.4 Data Analysis and Normalisation
Numeric absorbance values from the standard curve, derived
from known concentrations of antigen supplied with each ELISA
kit, were used to plot 5-parameter logistic curves, from which
protein concentrations were interpolated. These were then
corrected for dilution factor, as required. Standard curves run
on individual plates were cross compared to determine inter-
assay variation. Data outputs between plates were normalised
using the y-midpoint intersection value, extrapolated from each
plate’s standard curve. In short, the midpoint was calculated
using the highest and lowest data points on the y-axis of each
standard curve. A value (c) was calculated by division of the y-
midpoint value of the first assay plate standard curve and the y-
midpoint values of each subsequent standard curve respectively.
Raw test data output values were then corrected by
multiplication using the c value (given in Supplementary
Table File S1: Table S1.2).

2.5 Data Analyses
2.5.1 Statistical Analyses
Transformed data values were further analysed using Microsoft
Excel for Microsoft 365 MSO (Excel 365), Sigmaplot version 20
(SP20), GraphPad PRISM version 9.0 (GPP9), the statistics
software package ‘R’ x 64 3.4.0 Software (‘R’), or the
bioinformatics software package GeneSpring™ 14.9 ((GX14.9)
Agilent). Summary statistics analyses and boxplot graphical
outputs depicting median, min/max and interquartile ranges
were generated using SP20. T-Tests between paired groups
(two-tailed with unequal variance) and graphical outputs
depicting average values and standard error were conducted
using Excel 365. Correlation coefficients were calculated using
the correlation matrix from multiple variable analyses function
(non-parametric spearman correlation, 2-tailed) using GPP9.
Normalised data were imported into GX14.9 with no further
modification for multivariate analysis of variance (MANOVA),
using Benjamini [Hochberg false discovery rate correction (BH
FDR p ≤ 0.05)], T Test (unpaired, unequal variance, no FDR
correction) and fold-change analyses.

2.5.2 Random Forest Modelling and ROC
Curve Analyses
The performance of each candidate biomarker for discriminating
between control and TB disease groups, was determined according
to ROC ‘area under the curve’ (AUC) values, calculated using the
‘ROCR’ package function in ‘R’ and the ROC analysis tool of SP20.
Cut-off values were predicted by measuring the optimal accuracy
of the curve, from which sensitivity and specificity values were
calculated. Identification of best performing biomarker panel
combinations were predicted by Random Forest modelling using
the randomForest package in ‘R’. Models were performed to
Frontiers in Immunology | www.frontiersin.org 4
classify all controls from Active TB (classifying PTB and EPTB
as separate groups) and all controls from PTB. Data were split
(75% training set, 25% testing set), with samples missing data
excluded from the analysis. For biomarker combination selections,
variables were ranked on decrease in Gini scores. Composite panel
scores were calculated from simple additive algorithms consisting
of panels of best performing biomarkers from which composite
ROC curve analyses were performed to determine optimal best
performing panels of biomarkers. Diagnostic performance of these
algorithms was also assessed using Sensitivity, Specificity, Cut-off
values and Likelihood ratios.
3 RESULTS

3.1 Evaluation of Individual Protein
Biomarker ELISA Data
Individual protein biomarker expression within each control and
TB disease group was analysed using the summary statistics
function in SP20 (Supplementary Information File S1, Table
S1.3; UK-CNTRL, Table S1.4; P-CNTRL, Table S1.5; A-
CNTRL, Table S1.6; A-EPTB, Table S1.7; J-EPTB, Table S1.8;
LTBI, Table S1.9; PTB). The performance of the assays was
generally good, although there are some missing replicates from
assay failures. Assay Coefficients of Variability (%CVs) were
generally low, although they varied with respect to the biomarker
targets and groups, which may reflect either innate or disease-
associated expression variation between group individuals.

3.2 Statistical Analysis of Individual Protein
Biomarker Expression Profiles
Median, min max and interquartile range expression values are
given in boxplot format in Figure 1 (with a summary of the
numeric values given in Supplementary Information Table File
S1 and Table S1.10 and mean/standard error graphical
depictions given in Supplementary Information Figure File
S1 and Figures S1.1, S1.2). Good protein expression was
observed for most of the biomarker targets, with increased
expression for most of the targets in the active TB groups
except for TMEM49 and CD52 (which were generally lover in
the TB disease groups compared with controls). The A-CNTRL
group exhibited higher expression of most of the protein targets
assayed than the other control groups. MANOVA analysis across
all biomarker targets and groups determined that all nine
biomarkers SAMD9L, CALCOCO2, GBP1, IFITM3, SNX10,
IFIT3, CD52, CD274 and TMEM49 in the study were
significantly differentially-expressed across the groups
(Table 2). Fold-change analysis using the A-CNTRL group as
baseline, revealed the relative differences in expression between
this and the other groups. This group was selected as comparator
since this is the most likely group reflecting a baseline level of
expression against which patients in regions of high endemic TB
would be assessed. This analysis also highlighted differences
between this control group and the UK-CNTRL, P-CNTRL
and LTBI groups, with lower expression of most biomarkers in
these groups compared with the A-CNTRL group, except for
May 2022 | Volume 13 | Article 854327
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TMEM49. Pairwise statistical analysis between groups confirmed
these expression differences (Supplementary Information File
S1 and Table S1.11), with varied expression observed across
groups (Figure 1 and Supplementary Information File S1 and
Table S1.11).

Significant up-regulation of most biomarkers was observed
for the active disease groups, when compared with the UK-
CNTRL and P-CNTRL groups, but this was somewhat reduced
in comparison with the A-CNTRL group. High average
expression of SAMD9L, CALCOCO2, GBP1, IFITM3 and
SNX10 was observed in the PTB group compared to the EPTB
and other groups, in contrast IFIT3 expression was higher in the
EPTB groups. There were significant differences in expression
between the two EPTB groups, for SAMD9L, GBP1, SNX10 and
TMEM49 expression. Average CD52 expression was higher in
the UK-CNTRL and A-CNTRL controls compared with active
disease groups. Overall protein expression was significantly
lower in the LTBI than all control and Active TB groups for all
targets. LTBI as a combined group exhibited significant
differences from the UK-CNTRL control group for SAMD9L,
GBP1, IFITM3 and SNX10, for IFIT3 with its equivalent control
group P-CNTRL and all biomarkers with the A-CNTRL group
(Supplementary Information File S1 and Table S1.11).

During study follow up, several individuals (8/106) from the
LTBI group were found to have progressed to active disease
(LTBI_PR), consistent with the 5-10% lifetime risk of
reactivation of TB for an individual with documented LTBI,
with the majority developing TB disease within the first five years
Frontiers in Immunology | www.frontiersin.org 5
after initial infection (45). These were separated from LTBI non-
progressors (LTBI_NPR) and analysed as a discrete group. T
tests revealed expression differences between the LTBI_PR
group, the LTBI_NPR and matched P-CNTRL groups for
IFITM3, IFIT3 and CD52 (Supplementary Information File
S1 and Table S1.12), particularly for CD52 which was
approximately two-fold lower in expression in the LTBI_PR
group compared with both the LTBI_NPR and P-CNTRL groups
(Supplementary Information File S2 and Figure S2.2). A near
significant expression difference was observed for CD274
between the P-CNTRL and the LTBI_PR groups.

3.3 Correlation of Biomarker Expression
With QuantiFERON, T-SPOT.TB and
Tuberculin Skin Test in PREDICT TB
Study Samples
Normalised protein target expression data were imported
without further modification into the bioinformatics software
GX14.9. The P-CNTRL and LTBI groups were annotated with
regard to their QFT-GIT, T.SPOT and TST status. Individual T
Test analyses (uncorrected, no FDR) were conducted between
the two groups for differential biomarker target expression
correlating with QFT-GIT, T.SPOT or TST status (significance
p values are given in Supplementary Information File S1 and
Table S1.13). MANOVA analyses could not be conducted
between LTBI_PR and LTBI_NPR groups due to significant
variations in group size. QFT-GIT positivity correlated with
GBP1 (p-value 0.0196) and TMEM49 (p-value 0.0356)
TABLE 2 | p-values from MANOVA analysis and fold-change data (using the A-CNTRL group as baseline control) across all biomarkers and groups fold-change ≥

2.5, fold-change ≥ 1.5, fold-change (white text) ≤ -1.5, ■ fold-change (white text) ≤ -2.5.

Protein
Target

Description MANOVA
corrected
(BH FDR)
p value

All Groups

MANOVA
uncorrected

p value
All Groups

PTB vs
A-CNTRL

Fold Change

J-EPTB vs
A-CNTRL

Fold Change

A-EPTB vs
A-CNTRL

Fold Change

LTBI vs
A-CNTRL

Fold Change

UK CNTRL vs
A-CNTRL

Fold Change

P-CNTRL vs
A-CNTRL

Fold Change

CALCOCO2 calcium binding
and coiled-coil
domain 2

0.00E+00 0.00E+00 3.53 1.20 1.17 -1.42 -1.38 -1.66

SAMD9L sterile alpha motif
domain containing
9 like

0.00E+00 0.00E+00 3.22 1.72 1.08 -2.31 -1.36 -2.13

IFITM3 interferon
induced
transmembrane
protein 3

0.00E+00 0.00E+00 2.65 1.31 1.14 -1.89 -1.47 -1.90

IFIT3 interferon induced
protein with
tetratricopeptide
repeats 3

0.00E+00 0.00E+00 1.97 2.94 2.19 -9.85 -9.19 -16.82

GBP1 guanylate binding
protein 1

3.13E-39 2.09E-39 1.92 -1.22 1.20 -1.92 -1.51 -1.90

SNX10 sorting nexin 10 4.16E-37 3.23E-37 1.69 1.29 -1.03 -1.59 1.07 -1.68

CD274 CD274 molecule 2.81E-42 1.56E-42 1.63 -1.11 -1.01 -1.19 -1.19 -1.19

TMEM49 VMP1 vacuole
membrane
protein 1

1.09E-16 9.68E-17 1.25 1.83 -1.32 1.45 1.97 1.53

CD52 CD52 molecule 3.09E-02 3.09E-02 -1.49 -1.24 -1.56 -1.64 -1.52 -1.50
May 20
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expression and to a lesser degree of significance with IFIT3
(p-value 0.0544) and SNX10 (p-value 0.079). T.SPOT positivity
showed a weak correlation with IFIT3 (p-value 0.095) and TST
with CALCOCO2 (p-value 0.0754).

3.4 Correlation Matrix Analysis of Protein
Biomarker Inter-Relationships
Correlation coefficients were calculated using the ‘correlation
matrix from multiple variable analyses function ’ (non-
parametric 2 tailed, Spearman correlation) using GPP9. These
are given in heatmap image format in Figure 2 and
corresponding correlation and significance p values in
Supplementary Information File S1 and Table S1.14. These
showed complex patterns of interactions, varying across the
control and disease groups. However, some consistent patterns
were observed, with strong correlations between IFITM3 and
SAMD9L, CALCOCO2 and SNX10 in all control groups, with
reduced positive interaction between IFITM3 and SNX10 in the
LTBI, J-EPTB and PTB groups. IFITM3 positive interactions
with SAMD9L, CALCOCO2, GBP1 and SNX10 were very
reduced in the PTB group. There were also increasingly
negative correlations between GBP1 and SNX10, IFIT3 and
TMEM49 in the A-EPTB, J-EPTB and PTB groups, GBP1 and
CD274 in the E-EPTB group and GBP1 and CD52 in the J-EPTB
and PTB groups. Pronounced correlation expression differences
were observed between the LTBI_PR and LTBI_NPR groups,
particularly for CD52, which exhibited a strong negative
correlation with all other biomarkers except CD274 and itself
in the LTBI_PR group. These relationships may correlate with
shifting immune profiles in the transition from control to latent
and then active TB disease states.

3.5 Accuracy of Individual
Biomarkers From Whole Blood for
Detection of TB Infection
Paired ROC curve analyses were conducted between groups for
individual protein biomarkers to determine the relative accuracy
of each candidate for discrimination across infected and
uninfected groups (given in full in Supplementary Information
File S2, Table S2.2 and summarised in Table 3). As well as
comparisons between individual groups, comparisons were made
between all control groups combined (UK-CNTRL/P-CNTRL/A-
CNTRL), all EPTB groups and all Active TB groups (A-EPTB/J-
EPTB/PTB). Seven of the nine biomarkers were able to
discriminate all Active TB from all control groups with good
accuracy (ROC ≥ 0.7). IFIT3, IFITM3 and SAMD9L achieved
excellent discrimination for Active TB when compared to
individual control groups with AUC values between 0.85-1.
CD274 performed well for discriminating Active TB from
UK-CNTRL and P-CNTRL but fared less well for Active TB
from A-CNTRLs. High number of positives were observed in the
A-CNTRL compared with the UK-CNTRL and P-CNTRL groups
for most biomarkers, suggesting that this group may be
heterogeneous and may contain infected or exposed individuals.

Predicted cut-off values were selected to achieve the best
sensitivity and specificity of the individual biomarkers for
Frontiers in Immunology | www.frontiersin.org 6
discriminating infected from non-infected individuals. SAMD9L
was observed to be the best performing biomarker for PTB [ROC
AUC values; PTB vs UK-CNTRL (0.987), P-CNTRL group (0.997),
A-CNTRL (0.911), and combined control groups (0.981)]. IFIT3
consistently achieved the highest AUC values for discrimination of
EPTB from control groups (ROC AUC values; EPTB vs UK-
CNTRL (0.911), P-CNTRL group (1.00) A-CNTRL (0.843) and
combined control groups (0.942). Only CD274 showed any
reasonable performance for the LTBI group using the A-CNTRL
group as comparator (1.00). There appears to be an inverse
correlation with CD52, GBP1, IFIT3, IFITM3, SAMD9L, SNX10
and TMEM49 with the other individual control groups for LTBI.

3.6 Improved Performance Combination
Biomarker Panels
Single biomarkers were observed to show good performance
across all individual groups. However due to the heterogeneity of
expression across all TB disease presentations, combined panels
using best performing biomarkers were investigated to increase
diagnostic performance for all forms of Active TB (including
EPTB) and PTB. CALCOCO2, GBP1, IFIT3, IFITM3, SAMD9L
and SNX10 were selected for further combinatorial analysis.
CD52 and TMEM49 were excluded due to their poor
individual ROC curve performances. CD274 was also excluded,
as despite its good ROC curve performance for some
presentations, its fold-change expression range was very low.

Random forest modelling was performed using the
randomForest ‘R’ package to classify both control and Active TB
groups and control and PTB only. Data were randomly split for
analysis (75% training and 25% testing), with samples missing data
excluded from the analysis. For classification of Controls, EPTB
and PTB, the randomForest model showed an Out-Of-Bag (OOB)
estimate of error rate of 10.98% with 3 variables tried at each split.
SAMD9L, IFITM3 and IFIT3 were ranked highest in importance
for the classification of these groups individually [Figure 4A (I);
Supplementary Information S2 Table S2.1 (I)]. For classification
of PTB from controls only, the randomForest showed an OOB
estimate of error 3.11% with SAMD9L, IFITM3 and CALCOCO2
revealed as variables of most importance with 3 variables tried at
each split [Figure 4A (II); Supplementary Information S2 Table
S2.1 (II)].

Composite panel scores were calculated using simple additive
algorithms consisting of the predicted top performing biomarkers
to determine in which combination they best discriminated (1)
all active TB groups from all control groups and (b) PTB from
all control groups (Supplementary Information File S2 and
Table S2.3).
One panel combination using a simple additive algorithm of all 6
biomarkers showed superior performance for discrimination of
all controls from all active TB;

(300� IFIT3)� (3� SAMD9L) + GBP1 + IFITM3 + SNX10

+ CALCOCO2

Figure 5 shows composite box and dotplots of (A) all
combined controls vs all combined active TB, (B) all individual
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FIGURE 2 | Graphical boxplot depiction of biomarker expression across all control and patient groups (displaying median, minimum, maximum and interquartile
expression range) (A) SAMD9L (B) CALCOCO2 (C) GBP1 (D) SNX10 (E) IFITM3 (F) IFIT3 (G) CD52 (H) TMEM49 (I) CD274.
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control groups vs all individual active TB groups. ROC curve
analyses demonstrated the high performance of this combination
for PTB (ROC = 0.9885) compared with the A-EPTB and J-EPTB
groups [Figure 4B (I)]. Reduced performance was observed for all
combined controls vs all combined active TB (ROC = 0.9552).

A refined, simplified panel of these six markers also
exemplified all controls from PTB;

CALCOCO2 + SAMD9L + IFITM3

Figure 6 shows composite box and dotplots of (A) all
combined control groups vs PTB, (B) all individual control
groups vs PTB. ROC curve analysis demonstrated the high
performance of this combination for PTB (ROC = 0.9894)
compared with the A-EPTB and J-EPTB groups (Figure 4B
(II)). Reduced performance was also observed for all combined
controls vs all combined active TB (ROC = 0.9079).

Calculated sensitivity, specificity and positive and negative
predictive values for the panels were compared with the
Frontiers in Immunology | www.frontiersin.org 8
minimum and optimum technology product profiles for the
TB triage test (minimum; 90% Sensitivity/70% Specificity,
optimum; 95% Sensitivity/80% Specificity), given in
Supplementary Information File S2 and Table S2.4 and the
TB confirmatory test (minimum; 65% Sensitivity/98%
Specificity, optimum; (i) sputum positive PTB 98% Sensitivity/
98% Specificity (ii) EPTB 80% Sensitivity/98% Specificity), given
in Supplementary Information File S2 and Table S2.5. These
results demonstrated that the panels meet the minimum
performance criteria for the combined controls vs all active TB
groups, with variation in performance observed across the
different individual control groups and subtypes of disease.
The optimum performance criteria for the triage test was
achieved using both panels for many of these latter pairwise
comparisons, but the optimum performance criteria was only
met for EPTB group comparisons (because of the reduced
sensitivity performance level (80%) for EPTB). The minimum
requirements were met for the confirmatory test for most of the
TABLE 3 | Summary of ROC curve values for biomarker expression for all control and TB disease group combinations ROC curve value ≥ 0.9, ROC curve value ≥

0.8, ROC curve value ≥ 0.7, ■ ROC curve value (white text) ≤ 0.3.

GROUP COMPARISON CALCOCO2 CD274 CD52 GBP1 IFIT3 IFITM3 SAMD9L SNX10 TMEM49

UK-CNTRL vs Active TB 0.859 0.988 0.520 0.727 0.907 0.889 0.907 0.611 0.206

UK-CNTRL vs A-EPTB 0.762 0.978 0.477 0.764 0.906 0.770 0.860 0.444 0.137

UK-CNTRL vs All EPTB 0.781 0.982 0.520 0.727 0.911 0.850 0.787 0.500 0.241

UK-CNTRL vs J-EPTB 0.809 0.987 0.590 0.618 0.921 0.976 0.974 0.590 0.404

UK-CNTRL vs LTBI 0.519 0.534 0.437 0.368 0.492 0.271 0.190 0.138 0.272

UK-CNTRL vs PTB 0.987 0.997 0.497 0.900 0.901 0.953 0.987 0.798 0.148

P-CNTRL vs Active TB 0.853 0.990 0.561 0.826 1.000 0.932 0.970 0.838 0.436

P-CNTRL vs A-EPTB 0.767 0.987 0.489 0.861 1.000 0.870 0.928 0.743 0.248

P-CNTRL vs All EPTB 0.779 0.986 0.561 0.826 1.000 0.906 0.955 0.780 0.412

P-CNTRL vs J-EPTB 0.797 0.985 0.678 0.725 1.000 0.962 0.997 0.841 0.669

P-CNTRL vs LTBI 0.567 0.515 0.452 0.496 0.585 0.504 0.454 0.513 0.484

P-CNTRL vs PTB 0.976 0.997 0.535 0.968 1.000 0.976 0.997 0.937 0.476

A-CNTRL vs Active TB 0.736 0.489 0.339 0.537 0.817 0.737 0.793 0.626 0.585

A-CNTRL vs A-EPTB 0.587 0.674 0.337 0.537 0.810 0.568 0.593 0.477 0.363

A-CNTRL vs All EPTB 0.587 0.681 0.339 0.580 0.843 0.622 0.705 0.527 0.554

A-CNTRL vs J-EPTB 0.637 0.690 0.342 0.411 0.897 0.707 0.879 0.608 0.851

A-CNTRL vs LTBI 0.360 1.000 0.292 0.224 0.103 0.127 0.087 0.191 0.600

A-CNTRL vs PTB 0.950 0.178 0.321 0.727 0.775 0.930 0.941 0.793 0.637

ALL CNTRLS vs Active TB 0.826 0.875 0.497 0.733 0.935 0.874 0.913 0.733 0.421

ALL CNTRLS vs A-EPTB 0.723 0.826 0.448 0.770 0.933 0.774 0.813 0.608 0.251

ALL CNTRLS vs All EPTB 0.738 0.827 0.497 0.733 0.942 0.822 0.872 0.653 0.408

ALL CNTRLS vs J-EPTB 0.762 0.827 0.575 0.624 0.957 0.897 0.963 0.725 0.654

ALL CNTRLS vs LTBI 0.506 0.396 0.409 0.400 0.449 0.368 0.302 0.346 0.465

ALL CNTRLS vs PTB 0.972 0.955 0.473 0.893 0.923 0.960 0.981 0.869 0.442

LTBI vs ACTIVE TB 0.711 1.000 0.583 0.850 0.932 0.937 0.934 0.872 0.448

LTBI vs A-EPTB 0.721 1.000 0.523 670.67 0.929 0.875 0.996 0.770 0.251

LTBI VS J-EPTB 0.974 1.000 0.690 0.951 0.945 0.976 0.998 0.880 0.693

LTBI vs PTB 0.812 1.000 0.573 0.845 0.926 0.976 0.973 0.972 0.490
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pairwise comparisons, but the optimum requirements only for a
few using the P-CNTRL or UK-CNTRL groups as comparators
e.g. P-CNTRL or UK-CNTRL vs PTB for the simplified panel.
4 DISCUSSION

Here we describe a pilot study to assay select, previously-
validated, TB-associated immune mRNA biomarkers
CALCOCO2, CD274, CD52, GBP1, IFIT3, IFITM3, SAMD9L,
SNX10 and TMEM49 from our previous study (13), as protein
targets. These were assayed using commercial ELISA assays at
Frontiers in Immunology | www.frontiersin.org 9
UKHSA, Porton UK and JIPMER, Puducherry, India, using
whole lysed blood samples from individuals with suspected
LTBI or ATB infection and three groups of controls. Most of
the proteins showed expression in the hg/ml range except GBP1
and TMEM49 which were in the rg/ml range. Mean and median
analyses of the protein biomarkers showed increasing,
incremental expression patterns from the P-CNTRL, UK-
CNTRL and the A-CNTRL groups through to the EPTB and
PTB groups. Higher than expected biomarker expression was
also seen in some individuals in the control groups. The A-
CNTRL group showed greater number of individuals expressing
higher levels of these protein biomarker targets than the other
A B
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G H

C

FIGURE 3 | Correlation matrix analysis of protein biomarker inter-relationships in all control and TB disease groups (A) UK-CNTRL (B) P-CNTRL (C) A-CNTRL (D)
LTBI non-progressors (E) LTBI progressors (F) J-EPTB (G) A-EPTB (H) PTB.
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two control groups. Expression in the P-CNTRL and LTBI
groups were low for most of the biomarkers and they were
highly similar to one another. Few differences were seen between
these two groups except with expression of IFIT3, for which
Frontiers in Immunology | www.frontiersin.org 10
there was no recorded expression in the P-CNTRL group, in the
dynamic range of the assay. IFIT3 expression in the combined
LTBI group exhibited weak statistical correlation with T.SPOT
and QFT-GIT but not TST positivity. GBP1 and TMEM49
A

B

FIGURE 4 | (A) Variable Importance Plot of decrease in Gini scores as measured by Random Forest for (I) classification of All Controls, EPTB and PTB (II)
Classification of All Controls and PTB. (B) ROC curves of composite panel scores generated from (I) the complex 6-plex panel for discrimination of individual TB
groups and combined Active TB from All controls (II) the simple 3-plex panel for the discrimination of individual TB groups and combined Active TB from All controls.
All controls vs A-EPTB ───, all controls vs J-EPTB ─ ─, all controls vs PTB ─ ─ ─, all controls vs all combined active TB ─ ─ ─ ─.
A B

FIGURE 5 | (A) Combined box and scatter plot graphical depictions of composite panel score of the complex 6-plex biomarker panel between all controls and all active TB
groups combined, displaying the cut-off value y=22361 for discrimination of all active TB groups from all controls with 90.1% sensitivity and 85.7% specificity (B) Combined
box and scatter plot graphical depictions of expression of the complex 6-plex biomarker panel between individual control and active TB groups displaying the cut-off value
y=19698 for discrimination of all active TB groups from all controls with 95.4% sensitivity and 81.3% specificity.
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exhibited significant correlation with QFT-GIT positivity and to
a lesser extent SNX10. Expression of IFIT3 appears to correlate
with the LTBI_NPR group and not the LTBI_PR group.
CALCOCO2 appeared to show weak correlation with TST.
These may reflect diversity in the functionality between the
assays and this is reflected in the positivity profiles within the
LTBI group (Supplementary Information S1 and Table S1.1).
Abubakar et al. noted that combination strategies including all
three tests were significantly superior predictors of progression
in LTBI patients (43), implying that the use of individual tests
gave mixed results. They concluded that multi-testing strategies
showed superior performance. The results presented here may
imply that the three different tests may demonstrate
immunological bias.

Expression levels of SAMD9L CALCOCO2, GBP1, SNX10,
IFITM3 and IFIT3 were good and correlated well with TB disease.
TMEM49 and CD274 showed more modest expression and
appeared more variable in their expression profiles. IFIT3
expression levels were generally low but showed a high degree of
specificity to TB disease groups and also some expression in
individuals in the A-CNTRL group. As these control samples
were collected from a high incidence region of TB infection where
the carriage rate of infection is expected to be ≥ 40%, it is
postulated that this group could be a heterogeneous population
containing a proportion of previously-unidentified TB-exposed or
infected individuals. This may highlight issues in discrimination of
uninfected and infected individuals from high TB burden regions.
However, individuals with increased biomarker abundance above
calculated thresholds would be likely candidates for follow-up for
suspected TB infection, even if asymptomatic.

Expression differences between the groups were confirmed
using MANOVA and pairwise T-tests for nearly all of the
biomarkers except CD52, which showed differences between the
A-CNTRL, J-EPTB and PTB groups only. Overall, SAMD9L,
CALCOCO2, GBP1, IFITM3, IFIT3 and SNX10 showed the
most significant expression increase in all the ATB compared to
all control groups, with very high expression in the PTB group.
Expression differences were observed between the two EPTB
Frontiers in Immunology | www.frontiersin.org 11
groups for SAMD9L, GBP1, SNX10 and TMEM49, suggesting
regional variations between these groups. The A-EPTB group
showed higher expression of CALCOCO2, GBP1 and IFITM3
than the J-EPTB group, which in contrast exhibited higher
expression of SAMD9L, SNX10, IFIT3 and TMEM49. CD274
expression was similar in both groups. CALCOCO2, IFITM3 and
CD274 show the most significant expression differences between
the PTB group and the two EPTB groups. IFIT3 is elevated in all
three disease groups, but is slightly higher in the EPTB groups.
These former three biomarkers may be correlated with disease
progression and/or severity and could be used to discriminate
between these two subtypes of disease, in conjunction with IFIT3
which is expressed in all subtypes of TB. We were able to
distinguish LTBI from active TB and high Incidence region
controls using most biomarkers but were unable to discriminate
LTBI from the matched P-CNTRL control group. Differences in
expression for CD52 were seen between the LTBI non-progressors
and progressors, this biomarker was significantly downregulated
in the latter. These results showed promised for further analysis to
determine best performing characteristics or diagnostic purposes.

Correlation coefficient analyses showed somewhat complex
patterns of interactions; however, several features were
noteworthy. There were strong positive correlations between
SAMD9L, CALCOCO2, SNX10 and IFITM3 in all the control
groups. These interactions appear lessened in the LTBI and J-
EPTB groups and the interaction between IFITM3 and these
biomarkers s is severely reduced in PTB. GBP1 and TMEM49
show increasing negative interactions in all three disease groups,
A-EPTB, J-EPTB and PTB. There was also a strong negative
interaction between GBP1 and CD52 in the J-EPTB and PTB
groups. This implies that increasing expression of GBP1 may
correlate with disease progression and may be negatively
influencing CD52 and TMEM49 expression which appears to
be interconnected. CD52 expression was down two-fold in the
LTBI_PR group and this appeared to have a negative effect on all
other biomarkers except CD274. This implies functional
impairment or loss of T-cells in the periphery at an early stage
of incipient TB progression by mechanisms unknown, but which
A B

FIGURE 6 | (A) Combined box and scatter plot graphical depictions of composite panel score of the simple 3-plex biomarker panel between all controls and PTB,
displaying the cut-off value y= 10389 for discrimination of PTB from all controls with 95.9% sensitivity and 98.6% specificity. (B) Combined box and scatter plot
graphical depictions of expression of the simple 3-plex biomarker panel between individual control and PTB displaying the cut-off value y= 10389 for discrimination of
PTB from all controls with 95.9% sensitivity and 98.6% specificity.
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could include trafficking of antigen-specific T-cells to an
emerging site of active infection, inhibition or networked cell
death (46, 47). All of these proteins are involved in macro-
autophagy, particle uptake, trafficking and digestion through
phago-lysosomal pathways and are involved in alternate killing
of intracellular pathogens.

SAMD9L is a myeloid tumour suppressor gene, which has been
shown to involved in the innate response to viral infection (48) and
also plays a role in regulating the response to type I interferons in
haematopoietic cells and other cell types e.g. T-cells (49). Studies in
mice have shown it controls endocytosis of receptors, homotypic
fusion of endosomes, and lysosomal activation (50). Other studies
have shown SAMD9L to be upregulated in active TB as compared
to LTBI infection (51), it may therefore play a role in intracellular
uptake and trafficking of TB bacilli. CALCOCO2 plays a similar
role in that it functions as a receptor for ubiquitin-coated bacteria
and plays an important role in innate immunity by mediating
macro-autophagy (52–54). This suggests a role in targeting TB
bacilli for degradation by the innate immune system (54–56),
which TB has evolved strategies to evade (57, 58). However,
increased CALCOCO2 expression may be a double-edged sword
as it also targets the signalling adaptor MAVS for ubiquitination
and autophagic degradation, hence inhibiting DDX58-mediated
type I interferon signalling through a negative feedback loop (59).
SNX10 is also involved in intracellular trafficking and may play a
role in regulating endosome homeostasis (60, 61). Therefore, these
proteins are intimately inter-related functionally and their
dysregulation may have consequences for intracellular bacterial
trafficking, bactericidal killing mechanisms and have subsequent
deleterious downstream effects on interferon-driven adaptive
immune responses.

GBP1, IFIT3 and IFITM3 are also interferon-regulated genes
and their upregulation in TB disease groups is significant. Both
IFIT3 and GBP1 have been implemented in other previously-
published TB diagnostic panels (13). Guanylate binding proteins
(GBP) like GBP1 are a large family of IFN-induced hydrolases
which are necessary for mediation of host innate immune
responses (62, 63). GBP1 functions to elicit divergent host cell
death programs in response to infection with intracellular
pathogens (64), and increases access to PAMPs. IFIT3
functions to inhibit the function of TLR3 (65), which is
involved in recognition of cytoplasmic PAMPS like ‘foreign’
double stranded RNA (66). IFITM3 is a key mediator of the
early innate cellular response, however it functions to inhibit
phagocytosis, which is beneficial in viral infections, but not with
intracellular bacterial pathogens like Listeria which have evolved
strategies to exploit its function to avoid phagocyte killing (67).
Therefore, upregulation of IFITM3 may inhibit bacterial uptake,
but upregulation of GBP1 and parallel downregulation of IFIT3,
may lead to GBP-mediated bacterial killing mechanisms and an
increase in TLR3-directed immune responses. It is interesting to
note the impact of GBP1 on TMEM49 and CD52 and IFITM3 on
SAMD9L, CALCOCO2 and SNX10 protein inter-relationships
in the PTB group.

SAMD9L, CALCOCO2, SNX10, GBP1, IFIT3, IFITM3 and
were all significantly expressed in the active disease groups,
Frontiers in Immunology | www.frontiersin.org 12
making them good candidates for formulation of panels for TB
diagnosis. Random Forest modelling and empirical evaluation of
many different combinations led to selection of a complex panel,
used in combination with the algorithm (300 × IFIT3) × (3 ×
SAMD9L) + GBP1 + IFITM3 + SNX10 + CALCOCO2), which
showed good performance for discrimination of all TB disease
groups from all controls (ROC = 0.9552, % sensitivity = 90.43, %
specificity = 83.97). This was further evaluated against individual
disease groups and demonstrated superior performance for
discrimination of the PTB disease group (ROC = 0.9885, %
sensitivity = 95.22, % specificity = 97.96, at a cut-off value of
28032) and the J-EPTB group from all controls (ROC = 0.9522,
% sensitivity = 95.22, % specificity = 81.25, at a cut-off value of
28032). The panel also met the optimum TPP requirements for
all controls vs the combined EPTB groups and the A-EPTB and
J-EPTB groups individually, at the reduced requirement for the
confirmatory test (80% Sensitivity and 98% Specificity) and all
controls vs all combined TB disease and vs the PTB group for the
minimum requirements for the confirmatory test (65%
Sensitivity and 98% Specificity). The likely platform for this
panel is a laboratory-based device, due to its larger, more
complex biomarker configuration, however there are groups
working on multi-analyte LFD devices which may enable
future configuration of this larger panel in LFD format (68–
70). It would be useful for diagnosis of smear-positive PTB under
the minimum TPP requirements (≥ 65% sensitivity) but not
optimum requirements (≥ 98% sensitivity), but for diagnosis of
smear-negative PTB (optimal requirements ≥ 68% sensitivity)
and EPTB (optimal requirements ≥ 80% sensitivity) at the
optimum requirements. We were unable to distinguish a panel
to identify LTBI from appropriate demographically-matched
control groups.

Ideally a biomarker test should be easy to perform and interpret
in a health care setting on point of care devices e.g. lateral flow
devices. Evaluation of a reduced, simplified panel (CALCOCO2 +
SAMD9L+ IFITM3)more suitable for configuration in this current
format was conducted. This showed good performance for
discrimination of all TB disease groups from all controls (ROC =
0.9079, %sensitivity = 90.43, %specificity = 76.34), but individually
only for the PTB (ROC= 95.22% sensitivity = 95.22, % specificity =
97.96, at a cut-off value of 7574 or ROC = 0.9894% sensitivity =
98.56, % specificity = 95.92, at a cut-off value of 10389) and J-EPTB
groups (ROC= 0.933, % sensitivity = 90.43, % specificity = 78.13, at
a cut-off value of 6201). It therefore demonstrated useful
performance for discrimination of the PTB disease group at both
the minimum and optimal WHO triage TPP requirements, for the
J-EPTB group at theminimumWHO triage TPP requirement only
and the minimum confirmatory test requirement for both. Cut-off
thresholds could be adjusted to bias/maximise either the sensitivity
or the specificity of the test for PTB diagnosis. Thisminimumpanel
showspotential,mainly asa triage test forPTB,butmayadditionally
pickuphighCALCOCO2,SAMD9Land IFITM3expressingEPTB.

Other groups have conducted a recent systematic review of
TB Biomarkers and multiple biomarker signatures: MacLean
et al. evaluated the quality of biomarker studies and identified
most promising biomarkers of active TB for development of
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POC tests (71). Eleven host protein, blood-based studies were
found to meet theWHO’s TPP criteria. However, it was observed
that most studies were of insufficient size or did not include a
clinically relevant control population, resulting in over-inflated
diagnostic performances. Competing blood-based biomarker
signatures with potential for development often consisted of
multiplex panels of more than 6 biomarkers, currently
suboptimal for development of low cost POC triage tests.
Jacobs et al. published a 6-host biomarker signature able to
diagnose TB disease with a sensitivity of 100% and specificity of
89.3% (34). This 6-host biomarker signature included acute
phase proteins CRP, ferritin and PCT typically associated with
general inflammation. Although promising, the authors
recognised the limitations of the size of the study. A larger
cohort of patients was later published with a 7-host biomarker
blood-based signature (72), however this study did not include
extra-pulmonary TB patients. A similar study has recently been
published by Garay-Baquero et al. (30), who identified a 5-panel
plasma protein biomarker panel, which could distinguish TB
from healthy controls (AUC = 0.93) and other respiratory
diseases with a good degree of accuracy (AUC = 0.81).

In the study by Garay-Baquero et al. they state that ‘Current
limitations to mainstream serum or plasma proteomics pipelines
partly stem from the predominance in protein mass (>95%) of the
top 20 most abundant proteins. These high-abundance proteins
either mask the presence of or are noncovalently bound to lower
abundance proteins with potential clinical relevance. In an effort to
overcome this limitation, an initial serum/plasma depletion step to
remove such high-abundance proteins is typically employed before
the mass spectrometry–based analysis. This plasma proteome
analysis strategy has been used in samples from patients with TB.
However, this approach will result in the inadvertent loss of a wide
spectrum of physiologically important proteins, including those
typically encountered in lipid microvesicles, such as exosomes,
proteases and their cleavage products, and native peptides such as
hormones. These workers adopted a multidimensional or
orthogonal liquid chromatographic separation combined with
high-definition mass spectrometry analysis, to enable discovery
of low–molecular weight sub-proteome protein targets.

This and many previously published protein target studies
have used plasma or serum as sample type. This analytical
approach is unlikely to detect peripheral blood, cell-bound
targets, unless from lysed cells or if found free in soluble form.
Many proteins are likely to be removed during the centrifugation
procedure used to generate plasma and serum including cell-
associated or cell-bound targets. In this study the sample type
used was whole lysed blood. The results presented here may
reflect an alternate cell-associated proteome, which is not easily
assayed using other methods e.g. mass spectrometry. Cross-
comparison of our results with other studies is likely therefore
to be discordant, due to these differences in sample type and
preparation and analytical methodology.

However, the targets identified in the Garay-Baquero study
after validation using ELISA or Luminex assays are observed to
exhibit expression levels in a similar concentration range to the
protein targets presented in this study (high rg to hg/ml
Frontiers in Immunology | www.frontiersin.org 13
concentration range). There may be therefore synergies between
different experimental approaches which could be optimised to
facilitate future TB diagnostic assay development, particularly for
development of a confirmatory test which meets all WHO
optimum performance criteria for sputum positive TB (whose
stringent criteria no panel has met so far). Further work is required
to assess the reproducibility of the protein targets in this study
prior to ongoing assay development, however the blood sampling
and lysis technology is likely to fit well with POC or LFD-type
technologies and assist with assay turnaround time and ease of use.

In summary, we have evaluated 9 biomarkers identified in our
previous qPCR study for protein expression in whole lysed blood
of TB patients and controls. Our 6-marker panel is showing
promise for use for diagnosis of all forms of ATB in a laboratory
setting e.g. on based multiplex immunoassays such as Luminex,
Fireplex or ELISA or potentially future multianalyte LFDs.
Utility of a simplified protein biomarker panel for use on POC
devices e.g. current lower-complexity LFDs, showed limited
potential for PTB and high expression EPTB patients only. No
biomarker panel was identified which showed usefulness for
discrimination of LTBI from demographically appropriately
matched controls, although a significant difference in CD52
expression was observed in LTBI progressor. However this is
unlikely to be useful in regions with a high background of
endemic HIV. Further work is required to develop these panels
further on suitable platforms and devices.
6 STUDY LIMITATIONS

Amajor limitation of this study was the logistics relating to ELISA
assay procurement, shipping and experimental evaluation in two
different laboratory settings, with different ambient environments
and equipment, leading to some assay replicate failures. Future
studies should also include samples from confirmed non-TB
mycobacterial infectious or inflammatory diseases such as
pneumonia due to other bacterial infectious agents e.g. group A
Streptococci, sarcoidosis and other similar systemic inflammatory
disorders as well as uninfected groups, to ascertain the specificity
of the diagnostic panels for TB. The number of LTBI individuals
progressing to active disease was also relatively small and this
limited the power of the analysis, as they could not be analysed as a
separate group with some of the statistical methods used. Limited
demographic information was available for the control volunteers
and patients included in the study including age and sex, for the
patients HIV, Hepatitis B and C and CMV status and for the
control groups incomplete verification of TB, HIV, Hepatitis B
and C and CMV status. Future studies would be planned to
address these issues and capture this information.
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