
https://doi.org/10.1177/17588359211052417 
https://doi.org/10.1177/17588359211052417

Therapeutic Advances in Medical Oncology

journals.sagepub.com/home/tam 1

Ther Adv Med Oncol

2021, Vol. 13: 1 –12

DOI: 10.1177/ 
17588359211052417

© The Author(s), 2021.  
Article reuse guidelines:  
sagepub.com/journals-
permissions

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License  
(https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission 
provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Introduction
Epstein-Barr virus (EBV) is invariably linked with 
the endemic form of nasopharyngeal carcinoma 

(NPC). In these EBV-associated NPC tumors, 
the virus-encoded genomic region is ubiquitously 
expressed in most tumor cells.1,2 In addition to 
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Abstract
Background: The objective of this study was to construct a risk classification system 
integrating cell-free Epstein-Barr virus (cfEBV) DNA with T- and N- categories for better 
prognostication in nasopharyngeal carcinoma (NPC).
Methods: Clinical records of 10,149 biopsy-proven, non-metastatic NPC were identified from 
two cancer centers; this comprised a training (N = 9,259) and two validation cohorts (N = 890; 
including one randomized controlled phase 3 trial cohort). Adjusted hazard ratio (AHR) method 
using a two-tiered stratification by cfEBV DNA and TN-categories was applied to generate 
the risk model. Primary clinical endpoint was overall survival (OS). Performances of the 
models were compared against American Joint Committee on Cancer/Union for International 
Cancer Control (AJCC/UICC) 8th edition TNM-stage classification and two published recursive 
partitioning analysis (RPA) models, and were validated in the validation cohorts.
Results: We chose a cfEBV DNA cutoff of ⩾2,000 copies for optimal risk discretization of OS, 
disease-free survival (DFS) and distant metastasis-free survival (DMFS) in the training cohort. 
AHR modeling method divided NPC into six risk groups with significantly disparate survival 
(p  < 0.001 for all): AHR1, T1N0; AHR2A, T1N1/T2-3N0 cfEBV DNA  < 2,000 (EBVlow); AHR2B, 
T1N1/T2-3N0 cfEBV DNA ⩾ 2,000 (EBVhigh) and T1-2N2/T2-3N1 EBVlow; AHR3, T1-2N2/T2-
3N1 EBVhigh and T3N2/T4N0 EBVlow; AHR4, T3N2/T4 N0-1 EBVhigh and T1-3N3/T4N1-3 EBVlow; 
AHR5, T1-3N3/T4 N2-3 EBVhigh. Our AHR model outperformed the published RPA models and 
TNM stage with better hazard consistency (1.35 versus 3.98–12.67), hazard discrimination 
(5.29 versus 6.69–13.35), explained variation (0.248 versus 0.164–0.225), balance (0.385 versus 
0.438–0.749) and C-index (0.707 versus 0.662–0.700). In addition, our AHR model was superior 
to the TNM stage for risk stratification of OS in two validation cohorts (p  < 0.001 for both).
Conclusion: Herein, we developed and validated a risk classification system that combines the 
AJCC/UICC 8th edition TN-stage classification and cfEBV DNA for non-metastatic NPC. Our 
new clinicomolecular model provides improved OS prediction over the current staging system.
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the detection of EBV within the tumor, small 
genomic fragments of the virus, which are pre-
sumably released by circulating NPC tumor cells, 
can be detected using ultrasensitive polymerase 
chain reaction (PCR)-based assays. Hence, sev-
eral studies have examined and reported on the 
clinical utility of these circulating cell-free EBV 
DNA (cfEBV DNA) molecular assays for popula-
tion screening of NPC3 and disease surveil-
lance.4,5 Apart from its advantages for early 
detection, quantification of cfEBV DNA load has 
also been investigated as a biomarker of tumor 
burden, and circulating viral load has been shown 
to correlate to clinical stage of disease.6 To this 
point, studies have shown that pretreatment 
cfEBV DNA load is complementary to conven-
tional TNM staging for clinical prognostica-
tion,7,8 which would suggest that this biomarker 
provides additional biological information that is 
not captured by T- and N-classification.

However, despite its potential prognostic signifi-
cance, the existing American Joint Committee on 
Cancer/Union for International Cancer Control 
(AJCC/UICC) 8th edition TNM-stage classifica-
tion does not consider pretreatment EBV DNA 
for risk stratification. This is related to several fac-
tors, including poor inter-laboratory concordance 
in cfEBV DNA quantification by the PCR assay, 
use of different EBV DNA thresholds for risk dis-
cretization and limited cohort sample sizes for 
robust model development.2,9 On this note, Tang 
et al.7 presented a prognostic nomogram for dis-
ease-free survival (DFS) using several known 
prognostics variables, including cfEBV DNA. In 
their nomogram, cfEBV DNA was considered as a 
continuous variable with an assigned weightage. 
Nonetheless, this is impractical for routine clinical 
use, since the system developed was non-intuitive, 
and it did not seem to impact on the clinical man-
agement of NPC. Recently, two published recur-
sive partitioning analysis (RPA)-based risk 
stratification system classified NPC patients into 
five and four clinicomolecular risk groups using 
cfEBV DNA, T- and N-categories,8,10 but owing 
to the limited sample sizes in both studies (1,529 
cases [training 979 patients, validation 550 
patients]; and 518 cases, respectively), the dis-
cordant models still require validation in larger 
cohorts.

Here, we aimed to construct a robust clinicomo-
lecular model by combining pretreatment cfEBV 
DNA titer with T- and N-categories that is 

superior for risk stratification than the 8th edition 
TNM-stage classification, using a large dataset of 
9,259 patients who were treated at an academic 
center. We also investigated the performance of 
our model in multiple internal (including patients 
from a prospective phase 3 randomized controlled 
trial) and external validation cohorts.

Materials and methods

Patient selection
The study cohort comprised 10,149 patients with 
histologically proven, non-metastatic (M0) NPC 
from two academic institutions. This comprised a 
training cohort (N = 9,259) for model develop-
ment, which was identified from the NPC-specific 
database embedded within the big-data intelli-
gence platform at the Sun Yat-Sen University 
Cancer Center (SYSUCC) (Supplementary 
Materials, online only). An independent prospec-
tive cohort (NCT01245959, Supplementary 
Materials, online only) with 237 patients from the 
same center,11 and an external cohort from the 
Wuzhou Red Cross Hospital (WZRCH, N = 653) 
were enrolled for validation. Overall, the training 
and validation cohorts were diagnosed and treated 
between 2009 and 2015. The inclusion and 
exclusion criteria, and detail procedures of patient 
selections were illustrated in Figure 1. The insti-
tutional ethical review boards of all included hos-
pitals approved this retrospective analysis of 
anonymized data (IRB reference No.: [SYSUCC] 
YB2020-338-01; [WZRCH] LL2019-16). 
Informed consent was obtained for all patients 
from the SYSUCC-TPF trial cohort; while 
requirement for informed consent was waived by 
the ethical review boards for the SYSUCC-
Training and WZRCH cohorts, given the retro-
spective nature of this study.

Diagnosis, treatment, and follow-up
All 10,149 patients were diagnosed, treated, and 
followed-up according to the respective institu-
tional guidelines for NPC in the academic centers 
(Supplementary Materials, online only). All 
patients in each cohort were restaged by two radi-
ation oncologists (GQZ and YS [SYSUCC-
Training, SYSUCC-TPF]; JHL and TSG 
[WZRCH]) who are specialized in head and neck 
cancer in accordance with the AJCC/UICC 8th 
edition TNM-staging system,12 with discordance 
resolved by consensus.
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Statistical analysis
The primary endpoint was overall survival (OS), 
which was calculated from start of treatment to 
date of death from any cause, or date of last fol-
low-up visit. Secondary endpoints were DFS, 
locoregionally recurrence-free survival (LRFS) 
and distant metastasis-free survival (DMFS), cal-
culated from start of treatment to date of first 
relapse, locoregional recurrence, and distant 
metastasis, respectively. Patients who were alive 
at end of study period were censored at the date 
of last follow-up visit. Survival analyses were per-
formed using the Kaplan–Meier method and 
compared by the log-rank test. Cox proportional 
hazards regression was used for hazard ratio (HR) 
estimation in the multivariable analyses.

Determination of cfEBV DNA cutoff for risk 
discretization, and combinatorial cfEBV DNA 
and TN-category model construction
The relationship between cfEBV DNA titer and 
outcomes was calculated using Cox proportional 
hazards regression model through restricted cubic 
splines (RCS).13–15 RCS allows threshold identifi-
cation of cfEBV DNA on outcomes as described 
in previous studies.14,15 Adjusted hazard ratios 
(AHRs) method was used to derive the risk clas-
sification model combining TN-status and cfEBV 
DNA. The performance of the AHR model in 
predicting OS was assessed and compared against 
the AJCC/UICC 8th edition TNM-stage classifi-
cation and two published RPA models.8,10,16 

Detailed information on these processes is 
described in the Supplementary Materials.

Validation of proposed clinicomolecular  
risk stratification system in three  
independent cohorts
Validation of the proposed clinicomolecular risk 
stratification model (TN + cfEBV DNA) was per-
formed in the SYSUCC-TPF and WZRCH 
cohorts by evaluating the performances of this 
model for prognostication of OS. The area under 
the receiver operating characteristic (ROC) curve 
(AUC) was used to evaluate the accuracy of AHR 
model for survival prediction against AJCC/
UICC 8th edition TNM-staging system. Decision 
curve analysis (DCA) was used to compare the 
efficacy of survival prediction between AHR 
model and TNM-stage classification.

All statistical tests were two-sided, and a p value 
of <0.05 was considered significant. Statistical 
analyses were performed in R version 3.4.4 
(http://www.r-project.org/), Stata 14.2 software 
(StataCorp, College Station, TX), and SPSS 
23.0 software (SPSS Inc, IL).

Results

Patient characteristics and treatment outcomes
The characteristics of patients from the training 
and validation cohorts are shown in Table 1. 

Figure 1. Flowchart showing the study design and patient selection process.
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Table 1. General characteristics of patients with nasopharyngeal carcinoma in the training and validation 
cohorts.

Training cohort Validation cohorts

 SYSUCC-training
(n = 9,259)

SYSUCC-TPF
(n = 237)

WZRCH
(n = 653)

Age (years)

 Median 45 41 48

 IQR 38–53 35–48 42–56

Sex, n (%)

 Male 6,784 (73.3) 193 (81.4) 467 (71.5)

 Female 2,475 (26.7) 44 (18.6) 186 (28.5)

WHO histologic type, n (%)

 Keratinizing 238 (2.6) 0 (0) 45 (6.9)

 Nonkeratinizing 9,021 (97.4) 237 (100) 608 (93.1)

Tumor category, n (%)

 T1 1,533 (16.6) 5 (2.1) 96 (14.7)

 T2 1,508 (16.2) 14 (5.9) 152 (23.3)

 T3 4,294 (46.4) 145 (61.2) 146 (22.4)

 T4 1,924 (20.8) 73 (30.8) 259 (39.6)

Node category, n (%)

 N0 1,449 (15.6) 0 (0) 44 (6.7)

 N1 4,646 (50.2) 129 (54.4) 337 (51.6)

 N2 2,004 (21.6) 91 (38.4) 181 (27.8)

 N3 1,160 (12.5) 17 (7.2) 91 (13.9)

Stage, n (%)

 I 514 (5.6) 0 (0) 22 (3.4)

 II 1,644 (17.8) 0 (0) 156 (23.9)

 III 4,249 (45.9) 152 (64.1) 161 (24.7)

 IVA 2,852 (30.8) 85 (35.9) 314 (48.1)

cfEBV DNA, copy/mL

 Median 2,050 5,630 500

 IQR 0–17,000 652–33,200 <500–2,195

Chemotherapy, n (%)

 None 1,250 (13.5) 0 (0) 40 (6.1)

 NACT ± ACT 906 (9.8) 0 (0) 53 (8.1)

 CCRT ± ACT 3,412 (36.9) 122 (51.5) 263 (40.3)

 NACT + CCRT ± ACT 3,691 (39.9) 115 (48.5) 297 (45.5)

ACT, adjuvant chemotherapy; CCRT, concurrent chemoradiotherapy; cfEBV DNA, cell-free Epstein-Barr virus DNA; IQR, 
interquartile range; NACT, neoadjuvant chemotherapy; SYSUCC, Sun Yat-Sen University Cancer Center; TPF, docetaxel/
cisplatin/fluorouracil chemotherapy regimen; WHO, World Health Organization; WZRCH, Wuzhou Red Cross Hospital.

https://journals.sagepub.com/home/tam


F-P Chen, L Lin et al.

journals.sagepub.com/home/tam 5

Median follow-up of these cohorts was 66.1 
(interquartile range: 53.6–81.5) months, 82.1 
(71.2–89.8) months, and 60.9 (47.0–67.8) 
months, respectively. The breakdown of the sites 
of relapses of these cohorts is detailed in 
Supplementary Table 1 (online only). Estimated 
5-year OS rates were 86.1% (95% confidence 
interval [CI] 85.7%–86.5%) for SYSUCC-
Training cohort, 81.4% (95% CI 78.9%–83.2%) 
for SYSUCC-TPF, 78.7% (77.0%–80.4%) for 
WZRCH cohort, respectively.

Prognostic effect of cfEBV DNA on survivals
We observed a consistent relationship between 
cfEBV DNA (log-scale) and OS, DFS, and DMFS 
(Supplementary Figure 1, online only), but not for 
LRFS in cfEBV DNA higher than 2,000 copies 
(log[cfEBV DNA) 3.32–3.34). This may be 
explained by the fact that our cohort was exclu-
sively treated using intensity-modulated radiother-
apy (IMRT), and thus lessened the association of 
conventional clinical prognostic variables with 
LRFS.17,18 We also performed a sensitivity analysis 
to determine the optimal cutoff value for cfEBV 
DNA by testing for association with survival out-
comes in subgroups dichotomized by 2,000, 
20,000, 200,000, and 2,000,000 copies of cfEBV 
DNA (per 10-fold increase). Stable HRs were 
observed for OS, DFS, and DMFS with the differ-
ent cfEBV DNA titers cutoffs (HROS 2.36 [2,000 
copies] versus 2.33 [20,000], 2.33 [200,000], 2.88 
[2,000,000] HRDFS 2.17 versus 2.10, 2.09, 2.49; 
HRDMFS 2.54 versus 2.44, 2.48, 2.68; Supplementary 
Figure 1, online only). We therefore conclude that 
cfEBV DNA of 2,000 copies is a stable and robust 
cutoff for risk stratification in non-metastatic NPC. 
This threshold was demonstrated to be valid for 
prognostication on multivariable analyses 
(Supplementary Table 2 and 3, online only).

Prognostic performance of current  
8th edition TNM stage
The performance of the 8th edition TNM stage for 
prognostication in the training cohort is illustrated 
in Supplementary Figure 2 (online only); we tested 
the intra-group consistency of each TN-category 
in the SYSUCC-Training cohort by splitting the 
patients using TN-category and cfEBV DNA 
titers. Interestingly, we observed significant heter-
ogeneity among patients with stage II to IVA NPC 
(p < 0.001 for all comparisons; Supplementary 
Figure 2, online only). In particular, stages III and 
IVA patients harbored the widest heterogeneity for 

OS between the subgroups, and thus we deduced 
that the current 8th edition TN-categories can be 
subdivided into finer groupings with improved 
homogeneity of OS within each risk group.

Development of a clinicomolecular risk 
stratification system using T- and N-categories 
and pretreatment cfEBV DNA titer
To this end, we constructed a new risk grouping 
model combining cfEBV DNA titer status and 
AJCC/UICC 8th edition TN-categories using the 
AHR modeling method. Figure 2 presents AHRs 
for OS by T- and N-categories with (Figure 2(a)) 
and without (Figure 2(b)) the inclusion of cfEBV 
DNA as a parameter, adjusted for age and gender. 
Overall, we observed an interaction between 
TN-categories and cfEBV DNA on AHROS; cfEBV 
DNA had a significant effect on risk of death across 
all the TN-categories, with the exception of T1N0. 
Next, we applied both the AHR values of each 
TN-category and the disease trajectories of the dif-
ferent stages of NPC to derive the final risk group-
ings. As a case in point, T1N1 tumors with EBV 
DNA ⩾ 2,000 copies (AHR 7.598) would not be 
binned in a higher risk group than T1N2 tumors 
with EBV DNA < 2,000 copies (AHR 3.022) and 
EBV DNA ⩾ 2,000 copies (AHR 5.37), even 
though the AHR value of the former is higher. 
Using this logic, we were able to develop an AHR 
risk classification system that contains six risk 
groups (AHR1, 2A, 2B, 3, 4, and 5), with each 
TN-category being upgraded to a higher AHR risk 
based on EBV DNA ⩾ 2,000 copies, except for 
T1N0 and T4N1. Our AHR model improved risk 
stratification of OS than the AJCC/UICC 8th edi-
tion TNM-stage classification (Figure 2(c)); 5-year 
OS was 98.9% (AHR1), 96.1% (AHR2A), 91.7% 
(AHR2B), 87.7% (AHR3), 78.5% (AHR4), and 
72.3% (AHR5) (p < 0.001, Figure 2(d)), compared 
with that for stage I to stage IVA of 98.9%, 92.5%, 
88.3%, and 76.6%, respectively (p < 0.001, Figure 
2(e)). Importantly, our AHR risk classification sys-
tem achieved good intra-group consistency among 
the subgroups for AHR1 to AHR5, except for the 
most unfavorable T4 N3 and cfEBV DNA ⩾ 2,000 
copies subgroup (Supplementary Figure 3).

Performances of clinicomolecular risk 
stratification system against 8th edition  
TNM and published RPA models
Next, we compared the AHR model against the 
AJCC/UICC 8th edition TNM-stage classifica-
tion and two published RPA models.8,10 Table 2 
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summarizes the performance of all the models in 
the SYSUCC-Training cohort. The AHR model 
was the most superior among all the different 
methods in terms of hazard consistency, hazard 
discrimination, explained variation, balance, 
C-index, Somers’D, Akaike information crite-
rion, and Bayesian information criteria. The HRs 
for risk of death of the four risk classifications are 
presented in Supplementary Table 4 (online 
only); our AHR model outperformed TNM-stage 
classification and the published RPA models for 

prognostication. We therefore selected our AHR 
model for validation.

Validation of AHR model for prognostication  
in three independent cohorts
Figure 3 shows the OS outcomes of our AHR model 
in the two validation cohorts (N = 890); AHR risk 
classification system yielded clear separation for the 
different AHR risk groups in SYSUCC-TPF and 
WZRCH cohorts. This validates the reproducibility 

(a) (b)

(c)

(d) (e)

Figure 2. Development of an adjusted hazard ratio (AHR) risk classification system for M0 nasopharyngeal carcinoma (NPC). (a) AHR 
for overall survival (OS) for the different TN-categories and cfEBV DNA combined subgroups, adjusted for age and gender. (b) AHR 
for OS for the TN-categories alone, adjusted for age and gender. Numbers in parentheses in A and B refer to the sample sizes of 
the respective subgroups. (c) Risk groups derived by the proposed AHR classification system compared against the AJCC/UICC 8th 
edition TNM staging system. (d, e) Kaplan–Meier curves for OS stratified by the AHR risk classifications and TNM stage groups in the 
SYSUCC-Training cohort.

https://journals.sagepub.com/home/tam
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Table 2. Performance evaluation of AHR, RPA, and 8th edition AJCC/UICC TNM stage schema for 
nasopharyngeal carcinoma.

Proposed model Published models

 AHR AJCC 8th RPA_Guo RPA_Lee

Hazard consistency 1.35 8.25 3.98 12.67

 Score 0 0.609 0.232 1

 Rank 1 3 2 4

Hazard discrimination 5.29 6.69 11.90 13.35

 Score 0 0.175 0.821 1

 Rank 1 2 3 4

Explained variation 0.248 0.201 0.225 0.164

 Score 0 0.561 0.275 1

 Rank 1 3 2 4

Likelihood difference 119.33 133.63 131.10 92.37

 Score 0.347 0 0.062 1

 Rank 3 1 2 4

Balance 0.385 0.534 0.438 0.749

 Score 0 0.408 0.146 1

 Rank 1 3 2 4

Overall score 0.347 1.753 1.535 5.000

Overall rank 1 3 2 4

C-indexa 0.707 0.677 0.700 0.662

 Score 0 0.669 0.158 1.000

 Rank 1 3 2 4

Somers’D 0.413 0.353 0.399 0.323

 Score 0 0.669 0.158 1.000

 Rank 1 3 2 4

AIC 25195 25387 25265 25510

 Score 0 0.608 0.223 1

 Rank 1 3 2 4

BIC 25245 25422 25308 25546

 Score 0 0.589066 0.209497 1

 Rank 1 3 2 4

AHR, adjusted hazard ratio; AIC, Akaike information criterion; AJCC, American Joint Committee on Cancer; BIC, Bayesian 
information criteria; RPA, recursive partitioning analysis; UICC, Union for International Cancer Control.
aAdjusted for age and gender.
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of the AHR groupings in external cohorts, with 
independent cfEBV DNA testing and different 
clinical and cfEBV DNA parameters. In addition, 
AHR model achieved superior accuracy for sur-
vival prediction than TNM-staging system in 

SYSUCC-Training (AUCAHR 0.681 [95% CI 
0.668–0.695] versus AUCTNM 0.641 [0.627–0.655]; 
Supplementary Figure 4A), SYSUCC-TPF 
(AUCAHR 0.726 [0.657–0.794] versus AUCTNM 
0.666 [0.590–0.741]; Supplementary Figure 4B), 
and WZRCH (AUCAHR 0.731 [0.689–0.773] versus 
AUCTNM 0.683 [0.643–0.723]; Supplementary 
Figure 4 C), which were also validated by DCA 
analyses (Supplementary Figure 4D-F).

Finally, we present the clinical impact of our 
AHR model against the existing AJCC/UICC 8th 
edition TNM classification (Table 3). Our AHR 
risk stratification system was able to re-classify 
patients from every TN-stage group (other than 
for stage I) in the SYSUCC-Training cohort, 
thereby highlighting the intra-group heterogene-
ity in terms of OS-likelihood by the current stage 
classification system.

Discussion
Conventional TNM-stage classification represents 
a sound system for the clinical stratification of 
patients to inform on prognosis for NPC. 
Nonetheless, it is limited by the simplistic consid-
eration of primary tumor extent and regional nodal 
burden, which may not capture the biological 
complexity of NPC.19–21 Novel prognostic tools 
integrating clinical and molecular (cfEBV DNA) 
parameters for NPC are not yet implemented in 

(a) (b)

Figure 3. Validation analyses (overall survival) of the proposed AHR classification system in three independent 
cohorts. WZRCH: Wuzhou Red Cross Hospital. Values of p were derived by the log-rank test. (a) SYSUCC-TPF 
cohort; (b) WZRCH cohort.

Table 3. Distribution of patients in the AHR groups, compared with the 8th 
edition TNM classification system in the training cohort.

8th UICC/AJCC N Risk group

Stage I 514 (5.6%) AHR1: 514 (100%)

Stage II 1,644 (17.8%) AHR2A: 641 (39.0%)

AHR2B: 696 (42.3%)

AHR3: 307 (18.7%)

Stage III 4,249 (45.9%) AHR2A: 415 (9.8%)

AHR2B: 1,527 (35.9%)

AHR3: 1,657 (39.0%)

AHR4: 650 (15.3%)

Stage IVA 2,852 (30.8%) AHR3: 115 (4.0%)

AHR4: 1,461 (51.3%)

AHR5: 1,276 (44.7%)

AHR, adjusted hazard ratio; AJCC, American Joint Committee on Cancer; UICC, 
Union for International Cancer Control.
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the clinic, partly because of model impracticality 
and limited sample size of these studies.7,8,10 To 
address this unmet need, we adopted a big-data 
approach by assembling the largest dataset reported 
to date of 10,149 NPC cases, all of whom had pre-
treatment cfEBV DNA quantification and diag-
nostic staging that were centrally performed. We 
defined a robust cutoff of ⩾2,000 EBV DNA cop-
ies for risk discretization and applied an intuitive 
two-tiered classification schema to integrate cfEBV 
DNA titer and conventional T- and N-categories 
in the SYSUCC-Training cohort of 9,259 NPC 
patients. Apart from using a biostatistical approach 
of classifying patients, we also considered the clini-
cal principles of the disease that underpin the 
development of the current AJCC/UICC 8th edi-
tion TNM-stage classification, and divided patients 
into six risk groupings that are more homogeneous 
in terms of risk of death within each subgroup. We 
identified that the AHR model was most superior 
for prognostication against the published RPA 
models,8,10 and the TNM-stage classification. Our 
proposed AHR risk stratification criteria showed 
comparable performance for prognostication of 
OS in two separate cohorts; this is impressive con-
sidering that these cohorts varied in terms of clini-
cal characteristics and treatment parameters. 
Moreover, the ability to stratify patients in the vali-
dation cohorts was observed, despite using cfEBV 
DNA readings that were derived using assays per-
formed at different institutions (the SYSUCC was 
harmonized with the international standard testing 
method8). Notably, our model was also validated 
in a subset of 237 high-risk patients from a pro-
spective clinical trial of induction TPF that was 
exclusively conducted in high-risk, locoregionally 
advanced NPC patients (5-year OS ranging from 
56.3% [AHR5] to 98.0% [AHR2B]). Based on 
these findings, we have presented a new risk clas-
sification system combining conventional 
TN-categories and baseline cfEBV DNA titer for 
non-metastatic NPC that outperforms the existing 
stage classification system using the largest dataset 
reported to date.

Contrary to cfEBV DNA quantification at the 
mid-point and conclusion of treatment,22 the 
proposition to incorporate pretreatment cfEBV 
DNA for prognostication in NPC is contentious 
for several reasons; this includes the reporting of 
different cutoffs for risk discretization, which is 
further compounded by the possibility of inter-
laboratory variation.2,9,23 To address these issues, 
we relied on a large dataset of 9,259 cases for 
which cfEBV DNA was quantified at a single 

clinical laboratory. Our PCR-based assay had 
high sensitivity (>90% detection at 500 copies) 
and limited within-run (<10%) and between-day 
(<20%) variation, and was recently validated 
under the premise of a global harmonization 
effort.8 Next, we observed a similar linear dose 
(cfEBV DNA load)-response relationship for 
HROS, HRDFS, HRDMFS, and coincidentally 
derived comparable cutoffs of 3.32–3.34 lg(cfEBV 
DNA) for HR  > 1.0 for the respective endpoints. 
The choice of 2,000 copies as a threshold is fur-
ther corroborated by our sensitivity analysis show-
ing the stability of HROS (2.33–2.88) when using 
cutoffs ranging from 2,000 to 2,000,000 copies. 
Taken together, our data addressed the perennial 
issues that hinder the mainstream incorporation of 
pretreatment cfEBV DNA for prognostication.

Ultimately, our work begs the question regarding 
the implications of our new and more refined risk 
classification system on the treatment of NPC 
patients. Currently, the National Comprehensive 
Cancer Network (NCCN) guidelines propose con-
current chemoradiotherapy (CCRT), CCRT +  
adjuvant chemotherapy (ACT) or neoadjuvant 
chemotherapy (NACT) + CCRT as reasonable 
treatment options for TNM stage II to IVA patients, 
but the choice of appropriate chemotherapy inten-
sity to combine with RT remains contentious.24–27 
While it extends beyond the scope of our study 
findings, we propose that the new system using 
cfEBV DNA and TNM stage potentially helps to 
optimize clinical trial design and patient recruit-
ment to better streamline treatment recommenda-
tion for NPC patients. Here, we proposed clinical 
trials to compare efficacy of RT alone versus CCRT 
for patients with AHR 2A to establish an optimal 
treatment strategy for this low-risk subgroup to 
avoid over-treatment, while considering trials com-
paring CCRT versus NACT + CCRT/CCRT +  
ACT among patients with AHR 2B and AHR 3 to 
ensure adequate intensity of treatment for this inter-
mediate-risk subgroup. In addition, it is notable that 
the survival of patients with AHR 4 and AHR5 
remains unsatisfactory; we propose conducting of 
clinical trials for investigations of new drugs or ther-
apies to improve the prognosis of these patients.

Several caveats of our findings ought to be high-
lighted. Foremost, treatment regimens were not 
included as covariates for AHR model construc-
tion. This was because interventions are not base-
line attributes, and there was no control over the 
allocation of interventions (such as randomization), 
which would confound any comparative analyses 
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between the different AHR groups. It is also based 
on this reasoning that we did not investigate the 
association of our AHR risk groups with treatment 
efficacy. This analysis is beyond the scope of our 
study, especially given the potential treatment 
biases. Prospective clinical trials are needed to 
investigate the appropriate treatment strategy for 
each AHR risk group. Next, we acknowledged the 
clinical heterogeneity between our training and val-
idation cohorts. Of note, the cfEBV DNA levels in 
the WZRCH cohort were lower than the levels 
observed in the SYSUCC-Training cohort (median 
cfEBV DNA: 500 copies versus 2,050 copies). This 
variation could be explained by protocol variations 
between laboratories, but regardless, we were able 
to show that the cutoff of 2,000 copies was still able 
to identify two risk groups with disparate survival in 
the WZRCH cohort (Supplementary Figure 5A–D). 
This indirectly supports the robustness of our pro-
posed cfEBV DNA cutoff of 2,000 copies, even 
with different cfEBV DNA molecular assays.

In conclusion, we successfully defined an optimal 
cfEBV DNA cutoff at baseline and combined the 
biomarker with conventional TN-categories to 
construct a new AHR risk classification system for 
M0 NPC. Our model stratifies patients into six 
risk groups with improved intra-group homogene-
ity for OS compared with the existing AJCC/UICC 
8th edition TNM-staging system. This new system 
could be the basis for future strategies of clinical 
trial designing and patient recruitment for better 
streamlining treatments in NPC patients.
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