
INTRODUCTION

The inflammatory response following acute ischemic stroke 
is a well-known and widely studied phenomenon. Pathological 
features of ischemia such as necrotic cells, cell death debris, and 
increased reactive oxygen species (ROS) can induce neuro
inflammatory by activating resident microglia and astrocytes as 
well as attracting infiltrating leukocytes from circulating blood. 
The recruitment of both brain and peripheral immune cell types 
in post-ischemic tissue can accelerate and expand an infarct 

initiated by ischemic insult.
The first-line responders to central nervous system (CNS) 

injury are microglia and astrocytes. Microglia are the resident 
macrophages of the brain and a key modulator of immunologic 
responses after ischemic stroke [1, 2]. Microglia constitute 15% of 
the total glial cell population in the adult murine brain (16.6% in 
humans) and are primarily found in brain gray matter [3]. Once 
activated by extracellular signals, they function to sweep debris 
and toxic substances by phagocytosis, thereby helping maintain 
normal cellular homeostasis in the brain [4, 5]. Activated microglia 
also increase secretion of cytokines and leukocyte adhesion 
molecules within cerebral vasculature, all within 24 hours of the 
ischemic insult [6, 7]. Astrocytes are the most abundant cells in the 
brain. In uninjured brain tissues, astrocytes provide structural and 
nutritive support for neurons. After ischemic stroke, astrocytes 
play an important role in wound healing and repair by mediating 
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reactive gliosis and glial scar formation [8]. Both astrocytes and 
microglia may also produce inflammatory cytokines and toxic 
mediators such as excitotoxic glutamate.

Within a couple days to a week after ischemic stroke, peripheral 
circulating leukocytes are also recruited to the injury response. 
Neutrophils, monocytes, and lymphocytes infiltrate the CNS 
by binding to adhesion molecules on activated endothelial 
cells. Activated endothelia further enhance adhesion binding of 
circulating leukocytes by causing microvascular occlusion and 
infiltration of immune cells into the brain parenchyma [9, 10]. 
Once in the CNS, leukocytes release inflammatory cytokines 
at the site of injury such as tumor necrosis factor-α (TNF-α), 
interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) [11]. Several 
studies have shown that mechanism of leukocyte infiltration could 
be a possible way to widen the therapeutic window after ischemic 
stroke [12-14]. Given that the immune system consists of a variety 
of different cell populations with a range of different functions at 
different time points following tissue damage, detailed analyses of 
specific immune cell infiltration is certainly needed. 

This review examines the role of glia and leukocytes in ischemic 
stroke, exploring how these two sets of immune cells work 
in tandem to both mediate repair and augment injury. Better 
understanding these mechanisms may help expand stroke’s 
narrow therapeutic window and lead to the discovery of novel 
pharmacologic interventions involving one or more immune cell 
population(s).

Dynamic microglia and astrocyte in ischemic stroke

Microglia

Microglia are key modulators of the immune response in the 
brain and are considered the resident immune cell of the central 
nervous system. Under normal conditions, microglia are primarily 
involved in activity-dependent synaptic pruning and repair [15]. 
In the event of acute brain injury, microglia can quickly undergo 
morphologic transformation from a ramified resting state, 
characterized by many branching processes, to an active, motile 
ameboid state, where they become virtually indistinguishable 
from circulating macrophages [16, 17]. Therefore, activated 
microglia are often called brain macrophages. Active microglia 
can then phagocytose foreign organisms as well as injured brain 
cells [18-20]. In ischemic stroke, microglial activation occurs in 
the early stages of neuroinflammation; activated microglia can be 
detected in lesions as early as 2 hours post-ischemia and can be 
detected up to 1 week after brain injury [21]. Several reports have 
demonstrated that the direct application of activated microglia has 
been shown to effect cell death in neurons [22, 23]. In in vitro and 

in vivo models, these activated microglia release cytotoxic factors 
such as superoxide, nitric oxide, and TNF-α [24-26]. The cytotoxic 
effects begin shortly after insult and can continue to exacerbate 
injury for a few days afterward. It is thought that the later effects of 
activated microglia may be important for tissue repair and wound 
healing [27, 28].

In experimental stroke models, activated microglia have been 
shown to migrate toward the ischemic hemisphere of the cerebral 
cortex [29]. The precise mechanisms of microglial activation 
following ischemia are unclear. However, the literature to date 
strongly indicates that activate microglia have predominantly 
harmful effects in the acute stages of ischemic stroke and that 
most beneficial effects appear in delayed stages. Numerous 
studies indicate that different signals lead to two primary 
activation phenotypes: classically activated (M1) and alternatively 
activated (M2) [30-32]. The M1 phenotype microglia, activated 
by lipopolysaccharide (LPS) and the proinflammatory cytokine 
interferonc (IFNc), induces transcriptional activation of nuclear 
factor-kB and makes high levels of proinflammatory cytokines and 
oxidative metabolites such as TNF-α, interleukin (IL)-12, IL-6, IL- 
1β, and nitric oxide (NO), formerly indicated to cause additional 
damage (Fig. 1) [33]. In contrast, the M2 phenotype microglia is 
promoted by anti-inflammatory cytokines such as IL-4 or IL-13 
[34], which are considered to prevent inflammation and improve 
tissue repair and wound healing (Fig. 1) [35]. Microglial activation 
may begin with an M1 phenotype which mediates an innate or an 
adaptive immune response and ultimately exacerbates neuronal 
damage [36, 37]. At later timepoints after injury, microglia may 
also transform the M2 phenotype microglia which facilitate repair-
oriented functions by secreting growth factors such as vascular 
endothelial growth factor or brain-derived neurotrophic factor, 
and by clearing cellular debris via phagocytosis. M2 phenotype 
microglia tend to limit proinflammatory signal production. The 
timing and mechanism of M1 vs M2 phenotype activation is an 
important element to consider when manipulating microglia in 
stroke, and it is important to identify and understand the different 
microglial phenotypes and their unique functions at different time 
points [38, 39]. 

Recent research has also demonstrated that microglia can switch 
from the M1 phenotype to the M2 phenotype [40-42]. One 
such study showed that HIV-associated dementia initiates and 
maintains M1 phenotype microglia in the event of CD40 ligation 
by CD40L and TNF. These glia may later switch glia to the M2 
phenotype via upregulation of CD45 [43]. In another study of 
aged mice subjected to brain injury, histological results indicated 
that aged brains of injured mice had not only larger lesions and 
worsened outcome, but also showed microglial polarization 
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toward M1 phenotype compared to younger mice [44]. 
The dual phenotype functions make microglia a promising target 

for treating ischemic stroke. Future research for stroke therapies 
can build on studies characterizing different modes of microglia 
activation by, for example, dampening injury-exacerbating M1 
phenotype functions or by inducing or amplifying native M2 
phenotype repair functions at the appropriate time intervals 
following injury. For example, one recent study showed that 
activating microglia membrane protein triggering receptor 
expressed on myeloid cells 2 (TREM2) may also lead to phagocytic 
activity [45] and drive other anti-inflammatory functions [46]. 
Transgenic TREM2-deficient mice showed poorer recovery 
following ischemic stroke [47]. The challenge will be to discover 
methods for selectively suppressing the detrimental effects of 
microglial activation without compromising the restorative 
properties such as repair and remodeling. Studies in therapeutic 
microglial targets will also need to find ways to suppress 
cytotoxic mechanisms without disrupting beneficial effects. In 
neurodegenerative diseases, down-regulating CD40 or turning 
on CD45 has been shown to induce M2 phenotype and improve 
neurological outcome [43]. Similar strategies may also prove to 
protect against brain ischemia. 

Astrocyte

Astrocytes are important mediators of homeostasis in the brain, 
including the regulation of immune reactions. In addition to their 
immunological functions, astrocytes have been reported to release 
various pro-inflammatory factors after ischemic injury, such as 
glial fibriliary acidid protein (GFAP) [48]. These cells also play an 
central role in enhancing reactive gliosis and glial scar formation 
(Fig. 1) [8]. Although an important part of the long-term healing, 
astrocytic gliosis may also be destructive after brain injury [18]. 
A massive astroglial response appears in the core of the lesion 
from hour 4 to day 1 following ischemic stroke, and reaches a 
peak around day 4 [49]. This glial scar has both neurotoxic and 
neurotrophic properties. The scar acts as a barrier which prevents 
axonal ingrowth and reinnervation, thus interrupting recovery. 
However, this scar also isolates damaged tissue from viable tissue 
and prevents additional damage to the surrounding brain [49]. 
Recent study showed beneficial effect of astrocytic gliosis which 
aids rather than prevents CNS axon regeneration [50]

In addition to modulating scar formation, astrocytes have 
also been observed releasing various immune molecules such 
as cytokines, chemokines and inducible nitric oxide synthase 
(iNOS), and inducing a Th2 (anti-inflammatory) immune 
response [51]. In ischemic stroke, iNOS was observed in reactive 

Fig. 1. Immune signaling of microglia and astrocyte after ischemic stroke. Resting microglia can be polarized to either the M1 or M2 phenotype. 
M1 microglia contribute to neuronal damage by pro-inflammatory mediators, whereas M2 microglia improve neuronal protection through anti-
inflammatory mediators and phagocytic functions. Astrocytes accumulate at the borders of the lesion, become reactive, and start the formation of a glial 
scar.
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hippocampal astrocytes [52]. The inflammatory role of astrocytes 
has also been demonstrated in a study of TNF-like weak inducer 
of apoptosis (TWEAK), a member of the TNF superfamily. 
TWEAK was detected on neurons, astrocytes and endothelial 
cells, where it was shown to increase pro-inflammatory molecule 
production through interaction with the astrocytic Fn14 receptor 
[53, 54]. TWEAK and Fn14 expression have been documented 
in experimental stroke models, where Fn14 inhibition led to 
decreased ischemic injury [54]. These results show that while 
astrocytes have long been viewed to play scaffolding and 
supportive roles for neurons, activated astrocytes may also be 
detrimental in the ischemic brain, not unlike microglia and other 
immune cells.

Infiltrated leukocytes exacerbate ischemic stroke

Infiltrated leukocytes promote cerebral ischemic injury in a 
number of different ways. First, adhesion of leukocytes to the 
endothelium can reduce the flow of erythrocytes through the 
microvasculature causing the cerebral no-reflow phenomenon 
and additional brain injury. Activated leukocytes at the surface 
of the endothelium also release proteases, ROS, gelatinases, and 
collagenases, and impair potentially salvageable blood vessels and 
brain tissues. Phospholipase activation in leukocytes leads to a 
production of biologically active substances, such as leukotrienes, 
eicosanoids, prostaglandins, and platelet-activating factor, which 
result in vasoconstriction and extend platelet aggregation. Lastly, 
infiltrated leukocytes release pro-inflammatory cytokines and 
other immune modulators in the penumbra surrounding the 
infarct core causing further neuronal injury [55-58].

Neutrophils

Neutrophils are the first blood-borne immune cells to arrive at 
ischemic brain tissues. These innate immune cells have important 
roles in acute ischemic brain injury and in the events leading up 
to infarction such as atherosclerosis and thrombus formation. 
Following ischemic stroke, neutrophils may cause sterile 
inflammation by interacting with endothelial adhesion molecules 
to slow their intravascular movement and induce polarization, 
which causes adhesion to the pro-inflammatory endothelium 
[59]. Neutrophils attach to the endothelium by binding various 
adhesion molecules including the selectins (P-, E-, and L-selectin), 
intracellular cell adhesion molecule-1 (ICAM-1) and integrins 
(CD11a, b and c) within 15 minutes of ischemic stroke [60, 61]. By 
2 hours, neutrophils rolling and adhesion appear in the pial vessels 
of brain [62]. After initial adherence, neutrophils will follow a 
chemokine and activator gradient produced by the injured tissue. 

Neutrophils reach peak numbers at 2~4 days after ischemic stroke 
and then decrease thereafter [63, 64]. During this period, pro-
inflammatory neutrophil activation contributes to disruption 
of blood brain barrier, increased infarct size, hemorrhagic 
transformation, and worse neurologic outcomes.

Neutrophil adhesion is an important step in the immune 
response to ischemic brain injury [65]. Adhesion molecules 
attach immune cells tightly to the endothelial wall, thereby 
stimulating and facilitating diapedesis through the vessel wall to 
the site of ischemic brain injury [65]. These neutrophil adhesion 
factors include ICAM-1, MAC-1 (CD11b/CD18), and selectins. 
Expression of ICAM-1 is increased in endothelia proximal to 
the injured brain within hours after stroke onset, and peaks at 
about 12-48 hours [66]. Mice deficient in adhesion molecules 
either by transgenic manipulation or pharmacologic interruption 
of ICAM-1 activity have been shown with decreased infarct 
areas and reduced brain leukocyte infiltration in experimental 
stroke [67, 68]. Neutrophils express CD11b/CD18, also known 
as MAC-1, which are integrins that contain a common β2 
chain (CD18) and are thus classified as β2 integrins. Integrins 
are located in neutrophil plasma membranes, where they bind 
to endothelial ICAM-1 and enable cell migration through the 
vessel wall. In MAC-1 deficient transgenic mice, infarct size, 
mortality, and neutrophil infiltration into ischemic brain are 
reduced after ischemic stroke [69]. Another study inhibited MAC-
1 via monoclonal antibodies in experimental stroke models 
and found decreased infarct sizes and improved functional 
outcomes in rabbits [70]. Similarly, blocking MAC-1 with 
recombinant neutrophil inhibitory factor (rNIF) is associated 
with reduced infarct size, and improved neurological outcomes 
[71]. However, this benefit only occurs when rNIF is administered 
early after cerebral reperfusion (2 to 6 hours) and is not effective 
in models where no reperfusion occurs. Lastly, selectins are 
calcium-dependent, transmembrane glycoproteins that bind 
to carbohydrate residues (sialyl-Lewis X), and mediate rolling 
and adhesion to vascular endothelium. E-, P-, and L-selectin 
work together to coordinate neutrophil trafficking after brain 
ischemia [72]: E-selectin and P-selectin participate in initial 
neutrophils rolling and recruitment [73], whereas L-selectin 
guides unstimulated neutrophils to areas of activated endothelium 
[74]. Various experimental stroke models have found positive 
correlations between P- and E-selectin upregulation and the 
promotion of post-ischemic inflammatory responses as well as 
injury severity [75, 76]. 

Inflammatory neutrophil activity after ischemic stroke is further 
modulated by interactions with chemokines and other cytokines, 
both of which are released in brain tissues after injury. These 
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signaling ligands can increase the neutrophil recruitment and 
migration mechanisms mediated by adhesion factors by binding 
and activating neutrophils. Chemokine receptors are expressed 
on neutrophil plasma membranes, and their activation drives 
neutrophils to sustain or even amplify inflammatory pathways 
at brain lesion. Different classes of chemokines are identified 
by their structures, the main classes being CXC, CC, XC and 
CX3C. The “C”s refer to N-terminal cysteine residues, and the 
classes are divided depending on whether these residues flank an 
amino acid between them (CXC) or whether they are adjacent 
(CC). The different classes of chemokines act through unique 
and overlapping receptors which are a part of a superfamily of 
G-protein-coupled receptors [77]. The CXC class can be further 
split into ELR+ or ELR- groups based on whether the glutamate-
leucine-arginine motif is present between the N-terminus and 
the first cysteine [78]. Chemokine receptors can also be flexible, 
binding multiple classes or subtypes of ligands, and many different 
chemokines are capable of activating neutrophils [79]. However, 
the ELR+ CXC chemokine subfamily are thought to be mainly 
neutrophil chemoattractants, whereas the CC chemokines more 
typically attract monocytes and T lymphocytes [80]. Though 
as a whole, their signaling is associated with more general pro-
inflammatory mechanisms and pathways, several chemokines 
in CXC group have also been directly implicated in mediating 
neutrophil infiltration [81]. Because of this, chemokine signaling 
is closely associated with worse stroke outcomes [60], and 
chemokine ligands and receptors have become a hot topic of 
research investigating potential therapeutic targets. One recent 
study showed large increases in expression of key members of the 
ELR+ CXC chemokine subfamily, the neutrophil receptor CXCR2, 
and its ligands CXCL1 and CXCL2, which reached maximum 
levels at 1 to 3 days after injury [81]. In the rodent stroke model, 
inhibition of CXCR1 and CXCR2 with Reparixin decreased 
infarct size, improved motor function, and reduced brain levels of 
MPO and IL-1β [82].

Monocytes

Monocytes are derived from hematopoietic stem cells 
(HSC) in the liver and spleen during embryonic development 
and primarily in the bone marrow after birth [83, 84]. Like 
neutrophils, monocytes are incompletely differentiated cells 
that have a highly phagocytic capacity and react depending on 
the nature of stimuli within their microenvironment [84, 85]. 
By expression of specific surface markers, this cell type can be 
divided into pro-inflammatory (classically activated) or anti-
inflammatory (alternatively activated) subsets. Recruitment of 
circulating monocytes to the ischemic brain is similar to that 

of neutrophils, orchestrated by inflammatory cytokines, such 
as adhesion molecules and chemokines. In stroke models, the 
monocyte chemoattractant protein-1 (MCP-1, CCL2) and its 
receptor CCR2 are known to be involved in the inflammatory 
response of the injured brain [86]. At baseline, CCL2 mRNA 
expression is almost absent, but ischemia leads to a significant 
increase in MCP-1 mRNA expression in injured portions of the 
cortex after either permanent or temporary MCA occlusion 
around 12 h to 2 days and remained elevated up to 5 days [87, 
88]. Pro-inflammatory monocytes express CCR2 with low 
or no expression of CX3CR1 across different species. CCR2 
expression is critical for the trafficking of circulating monocytes 
into injured brain where they can transform into macrophages. 
Anti-inflammatory monocytes, which do not express CCR2 
but do express higher levels of CX3CR1, patrol blood vessels in 
a steady state and perform in situ phagocytosis [85, 89]. Several 
other studies showed that CCL2 or CCR2 deficient mice reduce 
phagocytic macrophage accumulation with smaller infarcts in 
experimental stroke models, suggesting CCR2 monocytes may 
have a deleterious effect [90, 91]. In rodents, monocytes fall into 
two main subsets based on chemokine receptor and Ly-6C (Gr-
1) expression levels. Ly6Chigh pro-inflammation has a short half-
life and is actively recruited to inflamed tissues, contributing 
to the inflammatory response. Ly6Clow anti-inflammatory has 
a longer half-life and is the subtype responsible for patrolling 
the lumen of blood vessels, contributing to the maintenance of 
vascular homeostasis [92]. One recent paper demonstrated an 
increase in Ly6Chigh monocytes at day 3 after stroke, whereas the 
number of Ly6Clow monocytes was greatest at day 6, paralleled by 
sequential peaks of CCR2 and CX3CR1 mRNA as well as gene 
expression of the pro- and anti-inflammatory cytokines IL-1β and 
TGF-β, respectively [93]. These data may indicate the presence of 
a dynamic shift in the recruitment and infiltration of monocyte 
subsets into injured brain after ischemic stroke, or probably the 
differentiation of pro-inflammatory monocytes (Ly6Chigh) into 
anti-inflammatory monocytes (Ly6Clow). Better understanding the 
mechanisms mediating differentiation into these two monocyte 
subsets may reveal additional therapeutic strategies for controlling 
inflammation after ischemic injury. 

Lymphocyte

The patterns and consequences of lymphocyte activity after 
stroke are not as well characterized as that of neutrophils and 
monocytes. A number of studies have observed that lymphocytes 
may negatively contribute to brain injury pathogenesis. Similar 
to neutrophils and monocytes, these cells also release pro-
inflammatory cytokines and cytotoxic substances, such as ROS. 
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Several stroke studies have shown that the number of lymphocytes 
spikes in the ischemic brain at later time-points than neutrophils 
[94, 95]. Interrupting lymphocyte entry into infarcted brain 
tissues decreases the severity of the injury, and suggests that, 
like neutrophils, lymphocytes perform an overall harmful role 
[96]. T lymphocytes are a key player in amplifying inflammation 
after ischemic stroke, whereas B lymphocytes have been shown 
to play a lesser role [81]. One study showed that T lymphocyte-
deficient mice had smaller infarct sizes and improved neurological 
outcomes relative to control groups in a model of transient focal 
ischemia [13, 97]. This and other studies of lymphocyte-deficient 
mice together suggest that the neuroprotective effects produced 
by lymphocyte suppression in stroke appear dependent on the 
absence of T lymphocytes and not B lymphocytes because the 
reconstitution of B lymphocytes does not affect the protection 
observed. By contrast, when T lymphocytes are transplanted 
back in to Rag1-deficient mice, this protection disappeared [13, 
97, 98]. This distinction between T and B lymphocytes remains 
somewhat controversial since another recent study failed to see 
noteworthy differences in infarct size between immune-deficient 
mice (deficient in both T and B lymphocytes) and wildtype after 
stroke [99]. The cause for these conflicting observations is unclear, 
although they may be related to the type of stroke; the latter study 
adopted a permanent model of focal cerebral ischemia instead of 
the temporary focal ischemia model used in the first study. 

Another faction of the current literature suggests that not all 
T lymphocytes subtypes are detrimental to acute brain injured 
outcome. In one study that recreated ischemia-like injury 
in cultured primary neurons, isolated neutrophils released 
excitotoxins that induced neuronal death, whereas lymphocytes 
were not shown to be neurotoxic and actually increased astrocyte 
proliferation [100]. Another group showed that natural killer 
(NK) cells and T lymphocyte functions that rely on T cell receptor 
co-activation may not influence ischemic injury at all [98]. 
Furthermore, the impact of regulatory T (Treg) lymphocytes 
is still in question. Liesz et al. reported that infarct volume and 
neurological deficit were significantly increased in mice given an 
antibody to neutralize Treg lymphocytes compared to controls 
Beneficial effects of Treg in brain ischemia were mediated by IL-10 
[101]. These data also demonstrated that IL-10 may be important 
for this immunomodulatory event. However, other study could 
not show any modulatory role of Treg cells [102]. While there is 
little evidence of their impact at the site of ischemic injury, NK cells 
may nevertheless influence stroke patient outcomes. In the liver, 
resident NK cell function is reduced by augmented sympathetic 
neurotransmission, which leads to the immunosuppression and 
susceptibility to infections that occur following stroke [103]. 

Whether harmful or protective, the mechanisms of lymphocyte 
activity after stroke are currently unclear. However, among 
the various theorized roles of lymphocytes in stroke, injury-
exacerbating mechanisms of T lymphocytes have been best 
characterized to date. Generally, T lymphocytes attack bacteria- 
and virus-infected cells by releasing cytokines or cytotoxins [104], 
and they may respond similarly at sterile ischemic brain lesions. 
These T lymphocytes secretions cause cell death via interaction 
with the Fas receptor [105], and a few studies reported that 
neutralization of T lymphocyte-derived cytokines (IL-17, IL-12, 
IL-23, interferon gamma) reduced brain injury and improved 
neurological outcomes in experimental stroke models [13, 101]. 
Another paper showed that mice lacking T lymphocyte-secreted 
perforin demonstrated significant neuroprotection, suggesting 
another pathway by which lymphocytes may contribute to 
ischemic damage [48]. In addition to these findings, yet another 
recent study observed circulating T cells producing 7 to 15 fold 
greater amounts of NADPH oxidase type 2 (Nox2)-derived 
superoxide after ischemic stroke, suggesting that peripheral T 
lymphocytes may exacerbate oxidative tissue injury at the brain 
lesion remotely, without having to migrate to the brain lesion, by 
releasing Nox-2-derived superoxide into the blood [106].

ConclusionS

The role of inflammation following ischemic stroke has become 
an increasingly popular area for understanding interactions 
between the peripheral immune system and brain injury. 
Glia and leukocytes are considered the two major classes of 
immunocompetent cells involved in ischemic brain injury, 
and their activation and recruitment represent key stages in 
in initiating and sustaining neuroinflammation. However, our 
understanding of the mechanisms governing their activation 
and function after ischemia is still limited. For this reason, much 
effort has been directed toward an understanding of where each 
cell migrates and localizes in the ischemic brain, when they 
accumulate and infiltrate in brain injury, and how they become 
activated and mediate neuroinflammation (Table 1). Future 
studies investigating the spatial, temporal, and functional attributes 
of glia and leukocytes are necessary for greater insight into how 
these cells may exacerbate or protect against ischemic stroke. The 
mechanisms underlying these functions are critical to understand 
for developing new therapeutic strategies to treat acute ischemic 
brain.
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