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TherapeuTic advances in 
Musculoskeletal disease

Introduction
Osteoarthritis (OA), the most prevalent form of 
arthritis, results in joint pain and disability. OA 
can affect any articulating joint in the body, often 
multiple joints at a time. The most common clin-
ical symptoms of OA present as joint pain and 
stiffness, restricting mobility and function.1 
While the underlying causes of OA remain 
unknown, it is thought to begin with molecular, 
anatomical, and/or physiological anomalies in 
joint tissues. These perturbances initiate, usually 
over many years, a cascade of progressive, 
dynamic, whole-joint changes involving local 
inflammation, articular cartilage degradation, 
and bone remodeling.

Pathological tissue changes can be detected by 
different imaging modalities.2 Primary assess-
ment methods to diagnose OA are based on 

clinical evaluations and patient-reported outcome 
measures3,4 combined with radiographic analysis 
of osteophytes, bone sclerosis, and joint space 
narrowing, using the Kellgren and Lawrence 
(KL) grading scale.5 Even though X-ray and 
magnetic resonance imaging (MRI) are employed 
to diagnose joint disorders, these have a limited 
ability to monitor very early molecular changes 
occurring in joint tissues that precede the mor-
phological changes they detect.2,6,7 Moreover, 
findings from imaging modalities do not always 
correlate with patient symptoms.8 Joint altera-
tions detected by radiographs generally identify 
structural modifications detected relatively late in 
disease pathogenesis. However, these late-stage 
alterations are the result of ongoing molecular 
changes that are only detectable using assays 
capable of detecting these specific molecular enti-
ties.9 With populations rapidly aging10 and the 
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close association of OA prevalence with increas-
ing age,1,11 there is an urgent need for cost-effi-
cient and sensitive methods to identify molecular 
changes occurring in joints that precede imaging-
detected pathologies. Use of these molecules as 
biomarkers would enable earlier detection and 
more effective treatment of OA. As OA appears to 
diagnose and prognose joint disease progression 
over weeks or months, as opposed to years. In this 
regard, recent studies suggest the association of 
biomarkers, such as noncoding RNAs,12 metabo-
lites,13 inflammatory markers,14–16 and cartilage 
degradation products17,18 with OA pathology 
(Figure 1), as well as other biomarker entities 
(e.g. epigenetic and microbial) reviewed in detail 
elsewhere.19–22 This narrative review includes dis-
cussion of some key emerging and classical 
molecular indicators found in human fluids that 
associate with OA diagnosis, progression, and 
prognosis, published in the past 5 years.

Emerging molecular biomarkers

Metabolites
Metabolites are small molecules produced as by-
products of metabolic processes and include lipids, 

amino acids, sugars, and their derivatives. A metab-
olome includes all metabolites found in a biological 
unit (i.e. any given cell, tissue, or biological fluid of 
interest). Methods to detect metabolite levels can 
be targeted or untargeted. Targeted approaches 
have the advantage of measuring concentrations of 
specific metabolites. Conversely, untargeted 
approaches more comprehensively measure metab-
olites within a metabolome and have the potential 
to uncover novel entities, but with limitations, as 
metabolite identification is generally based on com-
parison of measurement spectra to database 
records. In the past 5 years, multiple studies have 
investigated metabolomes of urine, synovial fluid, 
and blood (serum and plasma), as potential sources 
of biomarkers for OA.

Blood is a whole-body metabolome to which sev-
eral tissues, including those in the joints, contrib-
ute. Blood-derived metabolites have been 
investigated as a source for diagnostic and prog-
nostic biomarkers of OA. Untargeted metabo-
lomics using gas chromatography, coupled with 
time-of-flight mass spectrometry (GC/TOF-MS), 
found 58 significantly changed metabolites in the 
plasma of OA patients compared to healthy vol-
unteers, of which succinic acid, xanthurenic acid, 

Figure 1. Diagrammatic representation of some key biomarkers in biofluids from patients with osteoarthritis. 
Metabolites, noncoding RNAs, inflammatory markers and type II collagen cleavage products have been 
investigated as potential biomarkers of OA diagnosis, progression and prognosis in multiple biofluids including 
blood isolates (plasma and serum), synovial fluid and urine.
Source: Created by Biorender.
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and L-tryptophan could potentially assist in OA 
diagnosis.23 Gender-specific effects have also 
been observed. Using the Multicenter 
Osteoarthritis study, a comparison of the knee 
(K)OA progressors (n = 234) versus nonprogres-
sors (n = 322) found that baseline plasma pheny-
lalanine was associated with increased risk of 
KOA progression (unilateral or bilateral), partic-
ularly in women.24 Furthermore, baseline serum 
ratio of lysophosphatidylcholine (lysoPC)18:2 to 
phosphatidylcholine (PC)44:3 was associated 
with lateral KOA cartilage loss examined over a 
24-month period (n = 139).25 Finally, targeted 
serum metabolomics of end-stage knee or hip OA 
patients (n = 70) compared to controls (n = 82) 
showed decreased levels of C10:1, C10:2, C12, 
C12:1, C14, C14:2, C14:1-OH, carnitine palmi-
toyltransferase 1-ratio and total acylcarnitine/car-
nitine, with acylcarnitines also showing association 
to OA radiographic severity,26 suggesting acylcar-
nitine levels could aid in grading of OA through 
nonimaging modalities. Thus blood is a rich 
source of OA-relevant metabolites that could 
potentially be used as diagnostic and prognostic 
measures of OA.

Up to 34% of patients with end-stage KOA do 
not show reduced pain or improved function after 
total knee arthroplasty (TKA).27 Circulating bio-
markers could contribute to the decision-making 
process involved in determining the likelihood of 
beneficial surgical outcomes. For instance, differ-
ential correlation network analysis of plasma 
metabolites from TKA patients (n = 461) at base-
line identified 12 and 23 metabolites that were 
positively associated with pain and function non-
responders, respectively.28 In the same cohort, 
pain nonresponders were positively associated 
with ratios of acetyl-carnitine (C2) to PC acyl-
alkyl (ae) C40:1, and negatively associated with 
PC diacyl (aa) C36:4 to isoleucine, while func-
tion nonresponders were negatively associated 
with the ratio of glutamine to isoleucine.29 Thus, 
in addition to individual metabolites, their ratios 
might also be good candidates as biomarkers of 
OA prognosis.

Specific patient characteristics may also contrib-
ute to differences in the circulating metabolome. 
For instance, network analysis of plasma and syn-
ovial fluid metabolites from advanced KOA 
patients (males and females, both n = 50) found 
sex-specific differences in synovial fluid versus 
plasma, with individual metabolites serving as key 
‘nodes’ for the differential networks.30 

Furthermore, plasma cystine, uric acid, and 
tyrosine were associated with OA severity and 
effusion synovitis in female volunteers (n = 596).31 
However, a comparison to males is needed to see 
if these metabolite-OA disease associations are 
female-selective. Weight is another potential con-
tributing factor to the circulating metabolome. 
LC/Q-TOF/MS/MS analyses of metabolites in 
the serum of control, normal weight KOA, and 
obese KOA subjects found differences in levels of 
21 metabolites in KOA patients versus controls 
and 15 differences in metabolite levels between 
healthy weight and obese KOA patients.32 
However, targeted nuclear magnetic resonance 
(NMR)-spectroscopy of serum from 31 KOA 
patients showed no detectable differences in 
metabolites between underweight and obese indi-
viduals.33 This suggests that the contribution of 
weight to OA is complex. Age is another likely 
contributor to the metabolome of OA patients, as 
analysis of plasma from a cohort of 346 subjects 
(152 KOA, 194 healthy volunteers) by targeted 
metabolomics found that individual levels of 
select lysoPC and PC analogs were associated 
with individuals with KOA in older populations, 
particularly males.34 Thus, multiple patient char-
acteristics should be considered when investigat-
ing the role of metabolites in OA prognosis. The 
challenge lies in their identification, which is 
essential as their inclusion in computational mod-
eling would further help improve metabolite dis-
covery as well as biomarker accuracy for diagnosis 
and prognosis, optimizing precision medicine 
approaches.

While research has mainly focused on metabolite 
levels in the blood, examining more local fluids, 
like synovial fluid, may be a more direct, and 
potentially earlier, indicator of OA and its pro-
gression. OA-affected tissues (cartilage, syn-
ovium, osteophytes, fat pad, subchondral bone, 
etc.) secrete their metabolic by-products, directly 
contributing to the fluid’s composition. 
Untargeted metabolite profiling identified 10 
metabolites that were found at different levels in 
synovial fluid from primary KOA patients (n = 10) 
versus control individuals (n = 5).35 Untargeted 
metabolomics of synovial fluid from OA and 
healthy individuals (n = 5 each) identified 35 
metabolites as potential biomarkers, including 
phosphatidylcholines, lysophosphatidylcholines, 
ceramides, myristate derivatives, and carnitine 
derivatives.36 Synovial fluid metabolite levels of 
glutamine, 1,5-anhydroglucitol, gluconic lactone, 
tyramine, threonine, and 8-aminocaprylic acid, 
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detected by untargeted GC/TOF-MS, were sig-
nificantly different in a sample of KOA patients 
(n = 25) compared to controls (n = 10). A valida-
tion set of 11 controls and 24 OA subjects with 
targeted metabolomics of the synovial fluid found 
glutamine, 1,5-anhydroglucitol, gluconic lactone 
and 8-aminocaprylic acid, or 1,5-anhydroglucitol 
and gluconic lactone in combination, could dif-
ferentiate control and OA patients.37 Metabolites 
might also be helpful in identifying the stage of 
OA, as levels of 28 metabolites were differentially 
detected by GC/TOF-MS in synovial fluid from 
KOA patients divided into KL1/2 (n = 8) and 
KL3/4 (n = 7), which related to fatty acid metabo-
lism, glycerophospholipid metabolism, and glyc-
erolipid metabolism.38 Metabolites in synovial 
fluid offer the potential to expand our under-
standing of the local changes in joint metabolic 
processes during OA. However, this approach is 
limited by the increased chance of joint insult 
during acquisition, which could increase the risk 
of OA or exacerbate its progression. Thus, the 
need remains to identify OA-specific metabolites 
in more readily accessible biofluids, like blood.

Urine is an even easier and less invasive biofluid 
to acquire than blood, but metabolites in urine 
have been less frequently studied over the past 
5 years as compared to plasma and synovial fluid. 
To our knowledge, only a single study was identi-
fied that used untargeted liquid chromatography-
high resolution mass spectrometry of urine from 
KOA patients classified into inflammatory OA 
(n = 22) and noninflammatory (n = 52), compared 
to non-OA controls (n = 68) to identify 26 metab-
olites that could distinguish inflammatory OA 
versus non-OA controls, but no metabolites that 
could distinguish noninflammatory OA versus 
non-OA controls.39

Multiple studies indicate that metabolite levels in 
biofluids of OA patients may be helpful in provid-
ing diagnostic and prognostic information. 
However, future studies should focus on estab-
lishing congruency between joint metabolite 
changes associated with disease progression and 
their detection in systemic fluids while controlling 
for changes resulting from additional clinical, 
anthropometric, and demographic factors. This 
would help to better define the links between 
local pathogenesis and systemic biomarkers. 
Additional investigations probing putative uri-
nary metabolite biomarkers and studying their 
possible interrelationships with other body fluids 

may be helpful in understanding the relationships 
of metabolite biomarkers to OA.

Noncoding RNAs
In the past 5 years, several studies have provided 
intriguing data to support noncoding RNAs as 
biomarkers for OA, particularly microRNAs 
(miRNAs). These noncoding RNAs are encoded 
in DNA, transcribed into RNA but not translated 
into protein. MicroRNAs bind mRNA and either 
promote mRNA degradation or suppress protein 
translation.40 Some studies have identified miR-
NAs as diagnostic of OA. For instance, higher 
levels of miR-497 were found in serum of women 
with hip OA (KL IV; n = 23) compared to con-
trols (n = 52) and its levels were also an effective 
discriminator of individuals with OA 
(AUC = 0.89).41 Plasma miR-146a and miR-
365 were also increased in KOA patients (KL 
I-III; n = 42) compared to healthy controls 
(n = 28) and could distinguish individuals with 
OA (AUC=0.8843 and 0.8182, respectively).42 
However, not all miRNAs are increased with OA. 
Compared to trauma patients without KOA 
(n = 10), serum levels of let-7e were lower in KOA 
patient patients (n = 10).43 Similarly, serum sam-
ples from primary KOA patients (KL III/IV) and 
healthy individuals (both groups, n = 12) were 
screened by microarray and three miRNAs (miR-
33b-3p, miR-671-3p, miR-140-3p) were found 
to be downregulated in KOA patients, with sub-
sequent validation by qRT-PCR.44 In a study 
using whole blood, miR-582-5p, and miR-424-5p 
were reduced in KOA patients compared to con-
trol individuals and were found to be reduced in 
expression in KOA patients with sclerotic (n = 6) 
compared nonsclerotic (n = 4) subchondral 
bone.45 In a larger cohort study using synovial 
fluid, levels of miR-100-5p, miR-200c-3p, and 
miR-1826 were lower in KOA patients (KL II-IV, 
n = 150) compared to controls (n = 150), with 
each found to be fair to good at distinguishing 
individuals with KOA based on AUC analysis.46 
Overall, these studies suggest that miRNAs in dif-
ferent biofluids from OA patients may help in 
diagnosing OA, potentially even individual 
pathologies associated with the disease. However, 
a better understanding of the differences between 
healthy control subjects and OA patients at differ-
ent stages of disease progression is needed.

Identification of biomarkers capable of distin-
guishing OA at early stages would help provide 
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interventions to slow disease progression in a 
timelier manner. Some studies have investigated 
miRNA levels in biofluids from early compared to 
late-stage OA patients. For instance, miR-210 in 
synovial fluid was lower in healthy volunteers 
(n = 10) compared to both KL I/II and KL III/IV 
KOA patients (both KOA groups, n = 20), sug-
gesting that miR-210 may be a putative early 
diagnostic marker of OA.47 In a separate study of 
early (KL 0/I; n = 41) and late (KL III/IV; n = 50) 
KOA subjects, a distinct panel of 11 plasma miR-
NAs was able to distinguish the 2 groups.48 
Finally, in women with KOA, serum miR-186-5p 
was found to be positively associated with inci-
dent KOA, while miR-146a-5p was also found to 
be positively associated with prevalent KOA in 
the same sample.49 Further studies involving lon-
gitudinal and early OA patients would help iden-
tify novel miRNA biomarkers or validate already 
identified miRNA biomarkers of early disease, 
enabling earlier intervention to slow disease pro-
gression and prolong the time to potential surgi-
cal intervention.

Additional recent studies have focused on bio-
fluid miRNAs as prognostic biomarkers of OA. 
Using hip and KOA subjects from Research 
Arthritis and Articular Cartilage (RAAK) 
(n = 22) and Genetics osteoARthritis and 
Progression (GARP) (n = 71) study cohorts, a 
panel of 7 miRNAs in plasma (miR140-3p, miR-
1307-5p, miR-181a-3p, miR-221-5p, miR-
4326, miR-443, and miR-99a-5p) was capable 
of predicting OA progression over 2 and 5 years.50 
Furthermore, in a KOA patient sample from the 
Osteoarthritis Initiative (OAI) cohort (n = 106), 
an association was found between plasma levels 
of the miR-320 family (miR-320b/c/d/e) and 
fast-progressing radiographic KOA subjects over 
a 4-year period.51 Finally, in a sample of KOA 
patients (KL II-IV, n = 136), baseline levels of 3 
miRNAs (miR-146a-5p, miR-145-5p, and miR-
130b-3p) were higher in individuals with lower 
pain relief, with mir-146a-5p trending as an 
independent predictor of postoperative pain 
relief.52 Taken together, these findings suggest 
that miRNAs may act as important predictors of 
OA progression.

In addition to predicting OA progression, bio-
marker tracking of therapeutic intervention effi-
cacy could also be useful, alerting clinicians to 
when therapy is no longer effective and to try 
alternative interventions. For instance, in a study 
of OA patients (KL II/III, n = 28) who underwent 

high tibial osteotomy for medial compartmental 
KOA, miR-30c-5p was reduced in 6-month post-
operative synovial fluid compared to preopera-
tive, which also associated with postoperative 
pain relief.53 Additionally, miR-98 levels were 
higher in the serum of KOA patients meeting the 
American College of Rheumatology Classification 
Criteria for OA compared to controls (both 
groups, n = 20), which were reduced with treat-
ment with glucosamine sulfate.54 Future studies 
are required to determine if the decrease in miR-
98 levels with treatment corresponded with 
improvements in patient outcome measures.

In addition to miRNAs, some of their regulators 
have also begun to be investigated as potential 
biomarkers of OA. Long noncoding (lnc) RNAs 
act as miRNA “sponges,” effectively inhibiting 
miRNA-RNA interactions, reducing the overall 
epigenetic contributions of miRNAs.40 The 
lncRNA MIR4435-2HG was downregulated in 
both plasma and synovial fluid of OA patients 
(stage 3/4, n = 78) compared to healthy volunteers 
(n = 58), with synovial fluid levels being an excel-
lent OA diagnostic indicator (AUC = 0.96). In 
this study, OA treatments, including exercise, 
reduction of joint burden, and nonsteroidal anti-
inflammatory drugs, increased MIR4435-2HG 
plasma levels up to 3 months after treatment ini-
tiation.55 The sustained elevation of this lncRNA 
suggests it might be a good biomarker of thera-
peutic efficacy; however, further study is needed 
to correlate its plasma levels to pain and function 
outcome measures. Additionally, a study of 20 
preoperative KOA patients revealed that serum 
levels of MZF1-AS1, MALAT1, and 
LOC100287846 were lower preoperatively in the 
chronic postoperative pain group (n = 10) com-
pared to the normal postoperative pain recovery 
group (n = 10).56 Thus, in addition to miRNAs, 
biofluid lncRNAs may also be good candidate 
biomarkers for OA diagnosis, prognosis, and 
therapeutic efficacy tracking. More extensive 
studies investigating lncRNAs, their links to indi-
vidual miRNAs, and changes with OA stage, 
symptoms and outcomes are necessary.

Overall, additional longitudinal validation studies 
with larger sample numbers are needed to con-
firm the applicability of these noncoding RNAs as 
biomarkers of OA. In addition to blood isolates, 
studies should also focus on other biofluids, like 
synovial fluid and urine, which may reveal con-
nections between joint-specific production, pres-
ence in circulation, and eventual clearance, 
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helping to understand molecular dynamics of 
noncoding RNAs for biomarker purposes.

Classical molecular biomarkers: Recent 
progress
Inflammatory markers. Compared to rheumatoid 
arthritis (RA), inflammation in OA is considered 
a low-grade process. Despite this, inflammation is 
still an important contributor to the development 
and progression of OA, even in the early stages.18 
Structural alterations in the OA-inflicted joint are 
hypothesized to be linked, at least in part, to mul-
tiple proinflammatory cytokines.57 The role of 
inflammatory mediators in human OA has been 
extensively reviewed.15,58 Many of the identified 
cytokines are abundantly expressed by various 
cell types involved in OA, including immune cells, 
chondrocytes, osteoblasts, and synoviocytes, and 
have become attractive biomarkers for OA diag-
nostic and therapeutic intervention efficacy track-
ing purposes.59 Of all the inflammatory mediators, 
interleukin (IL)-1β, tumor necrosis factor (TNF)-
α, and IL-6 have received notable attention due 
to their modulation of a myriad of OA-relevant 
signaling pathways.60 Some recent studies provide 
support for further investigations into the poten-
tial of these inflammatory factors as biomarkers 
of OA.

A study of synovial fluid from 83 patients with 
primary KOA found negative correlations 
between IL-1β, TNF-α, or IL-6 with patient-
reported visual analog scale (VAS) pain scores or 
KL grade; however, a positive relationship 
between KL grade and VAS pain scores was 
identified.61 These findings suggest that these 
inflammatory mediators are larger drivers of 
pain in KOA patients with less severe radio-
graphic damage compared to those at later 
stages, despite their chronic presence. In a study 
of 46 subjects, proinflammatory cytokines (IL-
1β, TNF-α, or IL-6) were detected at higher 
serum levels of both American College of 
Rheumatology Stage 3 primary and secondary 
KOA subtypes compared to healthy controls.62 
Furthermore, exploratory analysis of patients 
with early KOA (n = 139; >80% KL ⩽ II) 
showed that serum IL-6 was associated with 
increases in Western Ontario and McMaster 
Universities Arthritis Index (WOMAC) function 
and MRI features (osteophytes, synovitis, and 
meniscus extrusion), synovial fluid IL-6 was 
solely associated with increases in MRI effusion, 
and serum TNF-α was associated with increases 

in osteophytes, cartilage loss, synovitis, and effu-
sion MRI features.63 In contrast, in later stage 
KOA subjects (n = 20; >70% KL ⩾ II), only 
serum IL-6 was associated with increased 
WOMAC pain and decreased function.63 Thus, 
proinflammatory mediators, like IL-1β, TNF-α, 
and IL-6, have the potential to be used to help 
subclassify OA patients (early versus late or pri-
mary versus secondary), facilitating the adminis-
tration of precision medicine procedures. Of 
note, in the later stages of KOA, the grading of 
the severity of OA has a considerable ceiling 
effect, reducing the capacity to uncover associa-
tions with increasing levels of proinflammatory 
biomarkers. Therefore, future studies should 
strive to evaluate KOA at earlier disease stages.

Evidence suggests that IL-6 may have interesting 
roles in regulating OA symptoms. IL-6 levels 
were reportedly higher in the serum of KOA 
patients undergoing TKA (n = 127) compared to 
healthy participants (n = 39).64 Linear regression 
modeling of this patient sample demonstrated 
that circulating IL-6 levels were negatively corre-
lated with pain intensity. However, in synovial 
fluid of KOA patients undergoing TKA (n = 104), 
which is more closely situated to OA-affected tis-
sues, IL-6 levels were positively associated with 
synovitis of the parapatellar subregion and pain 
(WOMAC or neuropathic).65 Similarly, a study 
of KOA subjects (n = 70; KL⩾II) also found IL-6 
synovial fluid levels were positively associated 
with pain measured on the Likert scale during 
movement. Synovial TNF-α was also positively 
associated with WOMAC total pain and WOMAC 
or Likert scale scores for pain during movement 
or at rest, while IL-1β was negatively associated 
with Likert scale scores for pain during move-
ment.66 Another study (n = 200) reported a signa-
ture of 11 serum cytokines, which included IL-1β 
and IL-6, were associated with increased 
WOMAC dysfunction scores and MRI-detected 
bone marrow lesions over 2 years.67 Undoubtedly, 
IL-6 is likely a key mediator in OA; however, its 
detection in specific biofluids, association with 
distinct stages of OA pathology, and links to pain 
at different stages of disease require further inves-
tigation. Similarly, measures of other fluid-based 
cytokines, such as TNF-α and IL-1β, and their 
relationships with one another must be better 
understood to uncover mechanisms and relation-
ships with OA pain and pathology.

Another inflammatory mediator that has gained 
considerable attention is C-reactive protein 
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(CRP), an acute phase protein primarily expressed 
downstream in response to injury and the release 
of inflammatory cytokines. TNF-α and IL1-β 
trigger the synthesis of IL-6, which subsequently 
induces the production of CRP.68 A comprehen-
sive systematic review of 32 studies recently con-
cluded that, compared to healthy controls, OA 
patient levels of serum high-sensitivity (hs-)CRP 
corresponded with increased pain and decreased 
physical function.69 Similarly, CRP metabolite 
(CRPM), but not CRP itself, was predictive of 
KOA radiographic progression as KOA patients 
(n = 152) with ⩾9 ng/mL CRPM serum levels 
were more likely to develop contralateral KOA 
after 2 years (KL change ⩾2).70 A positive asso-
ciation between the levels of hs-CRP and KOA 
patients with MRI-defined synovitis (n = 58), 
compared to healthy controls (n = 33), has been 
reported, with no association to pain intensity as 
measured by VAS.71 In a separate study of KOA 
subjects with varying degrees of pain intensity 
measured by VAS (n = 281), no relationship 
between either hs-CRP or CRPM, and clinical 
pain intensity was found, although hs-CRP did 
associate with KL grade.72 Furthermore, CRP 
was positively associated with VAS-measured 
pain severity in an independent cross-sectional 
study of a larger cohort of advanced OA subjects 
(knee or hip; n = 770), but not with any items of 
the WOMAC questionnaire.73 Finally, CRPM 
serum levels correlated with knee joint inflamma-
tion, particularly synovitis, as measured by etar-
folatide radionucleotide imaging in KOA patients 
(n = 25).68 CRP and its metabolites appear to be 
involved in OA-related pain, but because measur-
ing pain is typically a subjective measure, its analy-
sis and outcome interpretations are complicated.61 
Additional investigations are needed to clarify the 
associations between hs-CRP, CRPM, pain 
severity, and OA pathologic severity, to further 
support its use as a diagnostic or prognostic bio-
marker for OA.

Cartilage degradation markers. Collagen type II, 
the principle component of the extracellular 
matrix (ECM) of healthy hyaline cartilage, forms 
an extensive collagen fibrillar network.74 Over 
time, it is susceptible to degradation, notably by 
collagenases, resulting in peptide fragments that 
can be readily assayed in biofluids. If the balance 
is shifted such that degradation occurs faster than 
anabolic processes, loss of cartilage ensues, exac-
erbating OA pathology. Various degradation prod-
ucts of type II collagen have been identified, 

including the C-telopeptide of cross-linked type 
II collagen (CTX-II), 45-mer peptide (C2C), a 
specific 45-mer peptide containing the down-
stream C2C neoepitope and intrachain epitope 
(IB-C2C-HUSA), and a 9-mer peptide 
(108HRGYPGLDG116) released during degrada-
tion from the triple helical region of type II colla-
gen (Coll2-1). Immunoassays detecting these 
degradative type II collagen fragments have 
emerged as promising tools in the search for 
molecular biomarkers of OA.17,75,76

In 2016, a longitudinal nested case–control study 
(194 cases and 406 OA comparators) of the OAI 
cohort was published that evaluated 18 biochemi-
cal molecules for their ability to predict OA pro-
gression between 24 and 48 months, defined as 
both progression of radiographic joint space loss 
and persistent progressive pain worsening.75 This 
study identified that, baseline, 12-, and 24-month 
time-integrated levels of urinary CTX-II, and 
24-month time-integrated level of urinary 
IB-C2C-HUSA™, were promising predictors of 
OA progression status. Furthermore, both time-
integrated urinary CTX-II and urinary IB-C2C-
HUSA™ levels at baseline, 12 months, or 
24 months were able to predict OA progression, 
as defined by radiographic joint space loss, persis-
tent progressive pain worsening, or both.

CTX-II levels in urine, serum, or synovial fluid 
are increased in KOA patients with higher radio-
graphic KL grades.66,76-82 Of note, no significant 
differences in urine CTX-II levels were detected 
between patients with early radiographic stages of 
OA (KL1) and healthy individuals,80 suggesting 
that the rise of CTX-II levels might result from 
processes occurring at later stages of OA. Other 
patient characteristics, like age, sex, and body 
mass index, can also influence urine CTX-II lev-
els. For instance, premenopausal women with 
early KOA (n = 146; KL ⩽ 1) had significantly 
higher urine CTX-II levels compared to controls 
(n = 108), an effect not observed in men.83 Urine 
CTX-II has also been found to be associated with 
pain duration and body weight of Mexican 
females with KOA (n = 155).82 Moreover, a longi-
tudinal study showed baseline urine CTX-II lev-
els as a risk factor for the incidence of total joint 
replacement in postmenopausal women 
(n = 478).84 Thus, patient characteristics likely 
influence urine CTX-II levels, which may need to 
be considered when examining the role of this 
cartilage degradation product in OA studies.
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Elevated IB-C2C-HUSA™ in urine was first 
reported in detail to discriminate subjects with 
early from advanced OA85 and has been shown to 
predict the risk of emerging KOA over a 12-year 
span.86 Higher baseline IB-C2C-HUSA™ levels 
were also shown to associate with, and increase 
the risk of, progressive radiographic cartilage loss 
over 3 years in the human population-based 
cohort study originally using IB-C2C-HUSA™.87 
Moreover, it was noted that IB-C2C-HUSA™ 
may be an effective preoperative marker of symp-
tom outcome of total knee replacement in 
females.88 Similarly, an analysis of 600 OA patient 
samples from the Foundation for the National 
Institutes of Health study suggested a positive 
association with MRI-measured infrapatellar fat 
pad signal intensities with IB-C2C-HUSA™ and 
uCTX-II.89

Serum levels of another collagen degradation 
product, Coll2-1, and its nitrated form, Coll2-
1NO2, were reported to be associated with KOA 
features identified by whole-organ MRI scoring 
(n = 121)90 or radiographic analysis (n = 598).76 
Overall, these recent findings further indicate that 
CTX-II, IB-C2C-HUSA™, and Coll2-1 (and its 
nitrated form) may be promising cartilage degra-
dation biomarkers found in patient biofluids, 
which will further enhance diagnostic and prog-
nostic accuracy. To support their usefulness in 
precision medicine, it will be imperative to con-
sider how patient demographic, anthropometric, 
or clinical characteristics influence levels of these 
putative biomarkers in large-scale future studies.

Concluding remarks
It is evident that newly emerging and classical 
OA-related molecules, including metabolites, 
miRNAs, inflammatory cytokines, and type II col-
lagen degradation fragments, could be helpful bio-
markers for assessing disease incidence, staging, 
prognosis, and therapeutic intervention efficacy. 
However, to increase the chances of their success 
at adding value to patient care and advance prog-
nostic and diagnostic precision medicine 
approaches, additional large, longitudinal, multi-
center studies are required to uncover likely inter-
relationships between the various identified 
biomarkers and their levels in different biofluids. 
For example, although blood-based biomarkers 
tend to be frequently evaluated, the use of synovial 
fluid, a more isolated biofluid in the synovial joint, 
can provide insightful information on local disease 
activities. Similarly, urine is another worthwhile 

biofluid for the exploration of biomarkers. As a 
result, studies investigating the convergence of 
biomarkers from all three fluids might also be of 
interest to intersect local, systemic, and excreted 
OA biomarkers. Finally, investigating OA popula-
tions to generate models using multiple molecular 
entities that link to OA metrics, while considering 
the influence of various patient characteristics, 
would be helpful to further define and refine OA 
biomarkers signatures best associated with specific 
OA pathologies.
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